[go: up one dir, main page]

JPH08187728A - Manufacture of fiber-reinforced thermoplastic resin material - Google Patents

Manufacture of fiber-reinforced thermoplastic resin material

Info

Publication number
JPH08187728A
JPH08187728A JP401395A JP401395A JPH08187728A JP H08187728 A JPH08187728 A JP H08187728A JP 401395 A JP401395 A JP 401395A JP 401395 A JP401395 A JP 401395A JP H08187728 A JPH08187728 A JP H08187728A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
resin
reinforced thermoplastic
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP401395A
Other languages
Japanese (ja)
Other versions
JP3569018B2 (en
Inventor
Masanori Wada
正典 和田
Sadamitsu Murayama
定光 村山
Tadahiko Takada
忠彦 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP401395A priority Critical patent/JP3569018B2/en
Publication of JPH08187728A publication Critical patent/JPH08187728A/en
Application granted granted Critical
Publication of JP3569018B2 publication Critical patent/JP3569018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE: To obtain a fiber-reinforced thermoplastic resin coating material having a filament mixing ratio and a sectional shape of a target by previously heat treating a reinforcing fiber bundle at a predetermined temperature or higher, then covering it with the reinforcing fiber, cooling it and forming an uneven part on the surface of the covering resin. CONSTITUTION: A reinforcing fiber bundle 1 from a bobbin 2 is wound necessary times by a front side tension controller 4, guided to a preheater 5, heat treated at 100 deg.C or higher to evaporate and vaporize detrimental components at the time of molding, and then guided to a polymer reservoir 8 from an introducing side die 7. The bundle 1 is covered with a melted thermoplastic resin melted, pressurized and extruded by a screw 11, fed via a discharging side die 9, then throttled at the excess resin by a remolding nozzle 13 heated to the melting temperature or higher of the resin, and cooled by a cooling bath 15. Then, a tension is controlled by a rear side tension controller 17 while forming an uneven part on the surface by a resin surface uneven part forming unit 16, drawn by a drawing roll 18, and wound on a winder 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は射出成形機等を用いて、
繊維強化熱可塑性樹脂材料を成形するに際し、その品質
を大きく左右するガスの発生が抑制され、補強用繊維が
樹脂により十分にその特性を発揮すべく高度に含浸さ
れ、かつ成形材全体に補強用繊維が均一に分散混入さ
れ、更に、繊維強化熱可塑性樹脂表面に均一かつ微細な
凹凸を有する高品質な成形材を得る為の繊維強化熱可塑
性樹脂材料の製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention uses an injection molding machine or the like to
When molding a fiber-reinforced thermoplastic resin material, the generation of gas, which greatly affects the quality of the material, is suppressed, and the reinforcing fibers are highly impregnated with resin to fully exhibit their characteristics, and the entire molding material is reinforced. The present invention relates to a method for producing a fiber-reinforced thermoplastic resin material for obtaining a high-quality molding material in which fibers are uniformly dispersed and mixed, and further, the surface of the fiber-reinforced thermoplastic resin has uniform and fine irregularities.

【0002】[0002]

【従来の技術】従来、繊維強化熱可塑性樹脂材料の製造
方法としては、一般に5mm位に繊維束を切断したチョ
プドストランドと樹脂を押出機により混練押し出しする
方法が知られている。しかしながらこの方法によれば、
例えば有機繊維である芳香族ポリアミド繊維では、短く
切断した場合、繊維は綿状になって、著しく嵩高になる
ため、押出機やニーダーに噛み込みにくく、また無機繊
維である炭素繊維とかガラス繊維は押出機の混練工程
で、高い煎断力により粉砕され0.5mm以下となり、
得られる繊維強化熱可塑性樹脂材料の機械的特性が低下
するという問題点があった。更に、近年PPS、PEE
K、PESの如く耐熱性のある熱可塑性樹脂による補強
が必要になるにつれて、押出機によるペレット作成時及
び射出形成時に補強用繊維の集束剤が熱劣化する事によ
り繊維の分散性が悪化するという問題点もあった。更
に、成形品の高温使用時に、補強繊維の水及び熱劣化し
た集束剤がガス化するために、得られた繊維強化熱可塑
性樹脂の耐熱性、機械的特性が悪化するという問題も生
じていた。これら欠点を解決するために特開昭62―2
4035号公報、特開昭57―90020号公報等が提
案されている。しかしながら噛み込み性とか補強繊維の
粉砕に対しては効果があるものの、強化用繊維の水及び
熱劣化した集束剤がガス化するという問題を解決するに
は至っていない。さらに、連続繊維で強化した繊維強化
熱可塑性樹脂材料用に供する原料については、長さ方向
のフィラメント(単繊維)混率が均一なことも重要な要
因の一つであるが、該公報の方法では均一な材料を作る
ことは至難である。また、特開平01―019591号
公報等もあるが、繊維間の樹脂含浸性にバラツキのある
ことも我々の解析において判明した。
2. Description of the Related Art Conventionally, as a method for producing a fiber-reinforced thermoplastic resin material, there is generally known a method in which a chopped strand obtained by cutting a fiber bundle into about 5 mm and a resin are kneaded and extruded by an extruder. However, according to this method,
For example, in the case of aromatic polyamide fiber which is an organic fiber, when cut into a short length, the fiber becomes cotton-like and becomes extremely bulky, so that it is difficult to bite into an extruder or a kneader, and carbon fiber or glass fiber which is an inorganic fiber In the kneading process of the extruder, it was crushed by high decoupling force to 0.5 mm or less,
There is a problem that the mechanical properties of the obtained fiber reinforced thermoplastic resin material are deteriorated. Furthermore, in recent years PPS, PEE
It is said that as reinforcement with a heat-resistant thermoplastic resin such as K and PES becomes necessary, the dispersability of the fibers deteriorates due to heat deterioration of the sizing agent for the reinforcing fibers during pellet formation by the extruder and during injection molding. There were also problems. Further, when the molded product is used at high temperature, water and heat-deteriorated sizing agent of the reinforcing fiber are gasified, so that heat resistance and mechanical properties of the obtained fiber-reinforced thermoplastic resin are deteriorated. . In order to solve these drawbacks, JP-A-62-1
Japanese Patent No. 4035, Japanese Patent Application Laid-Open No. 57-90020, and the like are proposed. However, although it has an effect on the biting property and the crushing of the reinforcing fiber, it has not yet solved the problem that the water of the reinforcing fiber and the heat-degraded sizing agent are gasified. Further, regarding the raw material used for the fiber-reinforced thermoplastic resin material reinforced with continuous fibers, one of the important factors is that the filament (single fiber) mixing ratio in the length direction is one of the important factors. It is extremely difficult to make a uniform material. In addition, as disclosed in Japanese Patent Laid-Open No. 01-01591, it was also found in our analysis that the resin impregnating property between the fibers varies.

【0003】さらに上述の先行資料等で作成された連続
する長繊維で強化されてなる繊維強化熱可塑性樹脂材料
では、その材料の破断伸度が、一般的には強化繊維によ
って規制される。例えばスチール補強材等に比べて高伸
度である有機系及び無機系繊維で補強された材料の破断
伸度は高くなる。従って有機系繊維強化材料等の寸法安
定性やクリープ特性はスチール補強材料に比べて劣ると
いう問題もあった。
Further, in the fiber reinforced thermoplastic resin material which is reinforced with continuous long fibers prepared in the above-mentioned prior materials, the breaking elongation of the material is generally regulated by the reinforcing fiber. For example, the breaking elongation of a material reinforced with organic and inorganic fibers having a higher elongation than that of a steel reinforcing material is high. Therefore, there is also a problem that the dimensional stability and creep characteristics of the organic fiber reinforced material and the like are inferior to those of the steel reinforcing material.

【0004】また、上述の先行試料等で作成された繊維
強化熱可塑性樹脂材料では、その後に各種剤などを被覆
する場合、樹脂表面に均一に付着せず、樹脂表面上に斑
となって付着したり、かつ後加工剤との接着性にも劣る
という問題も生じていた。
Further, in the case of the fiber reinforced thermoplastic resin material prepared from the above-mentioned preceding sample, etc., when various agents are coated thereafter, the resin does not uniformly adhere to the resin surface, and it adheres as spots on the resin surface. Also, there is a problem that the adhesiveness with the post-processing agent is poor.

【0005】[0005]

【発明の目的】本発明は、前述の如く従来技術の問題点
を解決する事を目的とするもので短繊維強化熱可塑性樹
脂材料として用いる場合に対し、噛み込み性、分散性が
良好で成形段階での熱劣化によるガスの発生も少なく、
補強用繊維が樹脂により十分にその特性を発揮すべく高
度に含浸され、かつ成形材全体に補強繊維が均一に分散
混合され、更に、繊維束被覆樹脂表面に特殊な処理を施
すことにより、その後の各種表面加工剤との接着に優れ
た材料を提供する事であり、又連続する長繊維補強の繊
維強化熱可塑性樹脂材料として用いる場合に於いても、
成形段階での熱劣化によるガスの発生が少なく、補強用
繊維が樹脂により十分にその特性を発揮すべく含浸さ
れ、気泡もなく、成形材全体に補強用繊維が均一に分散
混入され、更に、被覆樹脂表面上に均一かつ微細な凹凸
を付与されてなる接着性、耐熱性、寸法安定性及び機械
的特性等に優れた材料を提供するための製造方法を提案
する事にある。本発明者らは、補強用繊維束を熱可塑性
樹脂で被覆する製造方法に於いて、補強用繊維束を予め
熱処理して該補強用繊維に吸着及び付着されている水分
や油剤など蒸発物を気化させることにより、成形時のガ
ス化とその発生を防ぎ、更に、該補強用繊維束を溶融し
た熱可塑性樹脂で被覆するに際し、該樹脂に圧力を加え
る事で高粘度である熱可塑性樹脂を補強用繊維束の中に
注入し、かつ、該被覆された繊維束を該熱可塑性樹脂の
溶融温度以上で成形ノズルを用い再成形する事により長
さ方向に単繊維の混率を均一にし、該被覆された繊維束
を特殊な表面処理装置を通過させることにより、樹脂表
面上に微細な凹凸を形成し、その後の加工剤との接着性
を向上させて、これを材料として用いた場合の成形材の
接着性、または、これをカットして原料として用いた射
出成形品やプレス成形品の耐熱性、寸法安定性、及び機
械的特性が優れている事を見いだし本発明に至ったもの
である。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the problems of the prior art as described above, and has good biteability and dispersibility when used as a short fiber reinforced thermoplastic resin material. Less gas is generated due to heat deterioration at the stage,
The reinforcing fibers are highly impregnated with a resin to sufficiently exhibit their properties, and the reinforcing fibers are uniformly dispersed and mixed in the entire molding material, and further, by applying a special treatment to the fiber bundle coating resin surface, The purpose of the present invention is to provide a material excellent in adhesion with various surface-treating agents, and also when used as a continuous fiber reinforced fiber-reinforced thermoplastic resin material.
Generation of gas due to heat deterioration at the molding stage is small, reinforcing fibers are impregnated with resin to sufficiently exhibit its characteristics, there are no bubbles, and reinforcing fibers are uniformly dispersed and mixed in the entire molding material. It is an object of the present invention to propose a manufacturing method for providing a material which is provided with uniform and fine irregularities on the surface of a coating resin and which is excellent in adhesiveness, heat resistance, dimensional stability, mechanical properties and the like. The present inventors, in a manufacturing method for coating a reinforcing fiber bundle with a thermoplastic resin, heat-treat the reinforcing fiber bundle in advance to remove evaporants such as water and oil adsorbed and attached to the reinforcing fiber. By vaporizing, gasification and its generation at the time of molding are prevented, and when the reinforcing fiber bundle is coated with a molten thermoplastic resin, a high-viscosity thermoplastic resin is obtained by applying pressure to the resin. It is poured into a reinforcing fiber bundle, and the coated fiber bundle is reshaped at a temperature not lower than the melting temperature of the thermoplastic resin by using a molding nozzle to make the mixing ratio of single fibers uniform in the longitudinal direction, By passing the coated fiber bundle through a special surface treatment device, fine irregularities are formed on the resin surface, the adhesiveness with the subsequent processing agent is improved, and molding when using this as a material The adhesiveness of the material, or cut it The heat resistance of the injection molded article and press-molded products used as the raw material, which has led to dimensional stability, and found the present invention that the mechanical properties are excellent.

【0006】[0006]

【発明の構成】即ち本発明は、「(請求項1) 補強用
繊維束を熱可塑性樹脂で被覆する方法に於いて、補強用
繊維束を予め、100℃以上の温度で熱処理を行う工
程、この工程と連続して該補強用繊維を被覆する工程、
続いて冷却する工程、及び被覆された該熱可塑性樹脂の
表面に凹凸を形成する工程を有する事を特徴とする繊維
強化熱可塑性樹脂材料の製造方法。 (請求項2) 該熱可塑性樹脂で被覆された繊維束を該
熱可塑性樹脂の溶融温度以上の温度で、再成形用ノズル
により再成形後、冷却する事を特徴とする請求項1記載
の繊維強化熱可塑性樹脂材料の製造方法。 (請求項3) 溶融した熱可塑性樹脂で覆うにあたり2
5kg/cm2 以上の圧力を該樹脂含浸時に付与する請
求項1及び請求項2記載の繊維強化熱可塑性樹脂材料の
製造方法。 (請求項4) 補強用繊維束を熱可塑性樹脂で被覆する
前に、予め、熱可塑性樹脂の溶融温度以上の高温で熱処
理する工程を含む請求項1,2,3記載の繊維強化熱可
塑性樹脂材料の製造方法。 (請求項5) 繊維束被覆熱可塑性樹脂表面に3〜50
μm範囲内の微細な凹凸が形成されてなる繊維強化熱可
塑性樹脂材料の製造方法。」である。
That is, the present invention provides "(Claim 1) a method of coating a reinforcing fiber bundle with a thermoplastic resin, wherein the reinforcing fiber bundle is preliminarily heat-treated at a temperature of 100 ° C or higher, A step of coating the reinforcing fiber continuously with this step,
A method for producing a fiber-reinforced thermoplastic resin material, which comprises a step of subsequently cooling and a step of forming irregularities on a surface of the coated thermoplastic resin. (2) The fiber according to (1), wherein the fiber bundle coated with the thermoplastic resin is reshaped at a temperature above the melting temperature of the thermoplastic resin by a remolding nozzle and then cooled. A method for producing a reinforced thermoplastic resin material. (Claim 3) In covering with the molten thermoplastic resin, 2
The method for producing a fiber-reinforced thermoplastic resin material according to claim 1 or 2, wherein a pressure of 5 kg / cm 2 or more is applied during the resin impregnation. (Claim 4) Prior to coating the reinforcing fiber bundle with the thermoplastic resin, the fiber-reinforced thermoplastic resin according to any one of claims 1, 2 and 3 including a step of heat treatment in advance at a temperature higher than a melting temperature of the thermoplastic resin. Material manufacturing method. (Claim 5) 3 to 50 on the surface of the thermoplastic resin coated with fiber bundles
A method for producing a fiber reinforced thermoplastic resin material, wherein fine irregularities within a μm range are formed. ".

【0007】本発明で用いられる補強用繊維束として
は、ポリアクリルニトリル系、レーヨン系、ガラス繊
維、芳香族ポリアミド繊維で総称されるポリ−(P−フ
ェニレンテレフタラミド)、ポリ−(m−フェニレンテ
レフタラミド)及びそれを骨格とする共重合体、無機
系、有機系の様々の繊維の一種又は二種以上の組み合わ
せが挙げられる。また、各々の繊維と樹脂との組み合わ
せに於いて、繊維に適当なサイジング処理あるいはカッ
プリング剤処理等、適宜表面処理を施す事もできる。被
覆に用いる熱可塑性樹脂としてはポリアミド、ポリエチ
レン、ポリブチレンテレフタレート、ポリエチレンテレ
フタレート、ポリアリレート、ポリエーテルニトリル、
ポリサルフォン、ポリアリーレンスルファイド、ポリエ
ーテルサルフォン、ポリエーテルイミド、ポリアミドイ
ミド、ポリアクリルニトリル、ポリカーボネイト、ポリ
オレフィン、ポリアセタール、ポリスチレン等の剛性樹
脂及びそれらの混合物又は共重合体が挙げられる。
The reinforcing fiber bundle used in the present invention includes polyacrylonitrile-based, rayon-based, glass fiber, poly- (P-phenylene terephthalamide), which is a generic name for aromatic polyamide fiber, and poly- (m-. (Phenylene terephthalamide) and a copolymer having the skeleton thereof, and one or a combination of two or more kinds of various inorganic and organic fibers. In addition, in each combination of the fiber and the resin, the fiber may be subjected to an appropriate surface treatment such as an appropriate sizing treatment or a coupling agent treatment. As the thermoplastic resin used for coating, polyamide, polyethylene, polybutylene terephthalate, polyethylene terephthalate, polyarylate, polyether nitrile,
Examples include rigid resins such as polysulfone, polyarylene sulfide, polyether sulfone, polyetherimide, polyamideimide, polyacrylonitrile, polycarbonate, polyolefin, polyacetal, polystyrene, and mixtures or copolymers thereof.

【0008】更に、これらの熱可塑性樹脂は、その特性
を改善する為に様々の添加剤、例えば耐熱剤、耐光性向
上剤、紫外線劣化防止剤、帯電防止剤、滑剤、離型剤、
染料、顔料等の着色剤、結晶化促進剤、難燃剤等や、第
三成分として炭酸カルシウム等の無機系、有機系、金属
系の粉末等も容易に添加する事ができる。
Further, these thermoplastic resins are added with various additives such as heat resistance agents, light resistance improvers, UV deterioration inhibitors, antistatic agents, lubricants, release agents, in order to improve their properties.
Colorants such as dyes and pigments, crystallization accelerators, flame retardants, and the like, and inorganic, organic, and metal powders such as calcium carbonate as the third component can be easily added.

【0009】次に、図面に従って本発明を説明する。Next, the present invention will be described with reference to the drawings.

【0010】図1は、本発明の繊維強化熱可塑性樹脂材
料の製造に用いられる製造装置の一例を示すものであ
る。複数の連続した補強用繊維束1は、ボビン2から案
内ガイド3を経由して、前側張力制御装置4で1回以上
の必要回数で巻かれ、予熱ヒーター5に導かれ、ここで
熱処理を受け成形時に有害となる成分を蒸発、気化させ
た後に、案内ガイド6を経由して繊維束の導入側ダイ7
からポリマー溜まり8に導入される。補強用繊維束はス
クリュー11で溶融加圧され、スロート10を経て押し
出されてきた溶融熱可塑性樹脂で被覆され、導出側ダイ
9を経た後、引き続いて熱可塑性樹脂の溶融温度以上に
加熱された再成形用ノズル13により、過剰な樹脂を絞
り込んだ後に、冷却バス15で冷却されつつ、案内ガイ
ドローラー14を介し、樹脂表面凹凸形成装置16で被
覆樹脂表面に微細な凹凸を形成しながら、後側張力制御
装置17で張力制御された後に、引き取りロール18で
引き取り、捲き取り機19に巻かれて、目標とするフィ
ラメント混率、断面形状である連続長繊維強化熱可塑性
樹脂被覆材料が得られる。
FIG. 1 shows an example of a manufacturing apparatus used for manufacturing the fiber-reinforced thermoplastic resin material of the present invention. A plurality of continuous reinforcing fiber bundles 1 are wound from the bobbin 2 via the guide guide 3 by the front tension control device 4 at least one required time, guided to the preheating heater 5, and subjected to heat treatment there. After vaporizing and vaporizing components that are harmful at the time of molding, the fiber bundle introduction side die 7 is passed through the guide 6
Is introduced into the polymer reservoir 8. The reinforcing fiber bundle was melt-pressed with the screw 11, covered with the molten thermoplastic resin extruded through the throat 10, passed through the lead-out die 9, and subsequently heated above the melting temperature of the thermoplastic resin. After the excessive resin is squeezed by the remolding nozzle 13, while being cooled by the cooling bath 15, the resin surface unevenness forming device 16 forms fine unevenness on the coated resin surface via the guide guide roller 14 and After the tension is controlled by the side tension control device 17, the material is taken up by a take-up roll 18 and wound on a winder 19 to obtain a continuous filament-reinforced thermoplastic resin coating material having a target filament mixture ratio and cross-sectional shape.

【0011】このストランド状で樹脂被覆された繊維強
化熱可塑性樹脂材料を捲き取り機19で捲き取る代わり
にストライドカッターあるいはペレタイザーで任意の長
さに切断することにより、樹脂中に切断長に等しい補強
用繊維がモノフィラメント又はそれに近い状態で均一に
分散されてなるペレット状の繊維強化熱可塑性樹脂原料
を得ることもできる。
Instead of winding the fiber-reinforced thermoplastic resin material coated with a resin in the form of a strand with the winding machine 19, the fiber-reinforced thermoplastic resin material is cut into a desired length with a stride cutter or a pelletizer, so that reinforcement equal to the cut length is obtained in the resin. It is also possible to obtain a pellet-shaped fiber-reinforced thermoplastic resin raw material in which the fibers for use are monofilaments or uniformly dispersed in a state close to the monofilaments.

【0012】図1中の予熱ヒーター5は、繊維に付着ま
たは吸着しており成形時に有害となる水分とか処理用油
剤、固着剤等を蒸発、気化させることができる温度まで
上げることができるものなら特にその形状、種類を問わ
ないが、繊維束のダメージを最小限に抑える為には非接
触方式のヒーターを用いることが望ましい。又、ヒータ
ーは繊維束から立ち昇る蒸発物、ガス化物等による汚れ
を防ぐため、繊維束の下方に配するのが望ましい。更
に、複数の繊維束を均一に熱処理する為には反射板を設
け、各繊維束間の温度を均一にすることが望ましい。予
熱ヒーター5中に於ける繊維束の熱処理温度は、熱処理
時間にもよるが、繊維に付着または吸着している物質が
蒸発またはガス化する温度以上、即ち、吸着水の蒸発な
らば100℃以上、油剤の分解、除去ならば230℃以
上必要であり、さらに好ましくは該繊維束に含浸しよう
とする熱可塑性樹脂の溶融温度より高く設定して成形時
に問題となる蒸発物やガス化物を予め除去する事であっ
て、この効果を高引き取り速度下で得ようとするなら
ば、該予熱処理温度は熱可塑性樹脂の溶融温度より20
℃以上高い方が望ましい。しかしながら、該温度を高く
すると、加熱するためのエネルギーロスが大きいばかり
でなく、該繊維が熱によりダメージを受け、機械的強力
の低下等を生ずる場合があるため好ましくない。従っ
て、例えば有機繊維であるアラミド繊維の場合には該熱
可塑性樹脂溶融温度より150℃、無機繊維の場合には
該溶融温度より200℃の高い温度以下で、かつ、アラ
ミド繊維が分解を開始しはじめる485℃以下の温度で
熱処理するのが望ましい。又、処理時間は処理温度によ
り異なるが10秒以上の処理時間があれば成形時のガス
発生を抑制することが可能である。
If the preheater 5 in FIG. 1 is capable of evaporating and evaporating water, which adheres to or is adsorbed to the fibers and which is harmful during molding, processing oils, adhesives, etc. The shape and type are not particularly limited, but it is desirable to use a non-contact type heater in order to minimize damage to the fiber bundle. Further, the heater is preferably arranged below the fiber bundle in order to prevent contamination by evaporative substances and gasification products rising from the fiber bundle. Further, in order to heat-treat a plurality of fiber bundles uniformly, it is desirable to provide a reflecting plate and make the temperature between the fiber bundles uniform. The heat treatment temperature of the fiber bundle in the preheater 5 depends on the heat treatment time, but it is higher than the temperature at which the substance adhering to or adsorbing to the fibers is vaporized or gasified, that is, 100 ° C or higher if the adsorbed water is vaporized. 230 ° C. or higher is required for the decomposition and removal of the oil agent, and more preferably, it is set higher than the melting temperature of the thermoplastic resin to be impregnated into the fiber bundle to remove the vaporized matter or gasified matter which is a problem during molding in advance. In order to obtain this effect at a high take-up speed, the preheat treatment temperature is 20% higher than the melting temperature of the thermoplastic resin.
Higher than ℃ is desirable. However, if the temperature is increased, not only the energy loss for heating is large, but also the fibers may be damaged by heat and mechanical strength may be lowered, which is not preferable. Therefore, for example, in the case of aramid fiber which is an organic fiber, the temperature is 150 ° C. higher than the melting temperature of the thermoplastic resin, and in the case of inorganic fiber, the temperature is 200 ° C. or higher higher than the melting temperature, and the aramid fiber starts to decompose. It is desirable to perform the heat treatment at a temperature of 485 ° C. or lower at the beginning. Further, the processing time varies depending on the processing temperature, but if the processing time is 10 seconds or more, it is possible to suppress gas generation during molding.

【0013】この様にして予熱処理された補強繊維を用
いると、成形時のガス発生抑制効果以外にも実に驚くべ
き事実が発見された。それはパラ系アラミド繊維に於い
て特に顕著に見られる現象であるが、予熱処理により繊
維束の吸着水分や主として油剤である表面処理剤等が除
去された繊維束では、繊維と熱可塑性樹脂の界面接着性
が向上するという現象である。つまり、予熱処理をしな
い繊維束に溶融した熱可塑性樹脂を付着させる時に、引
き取り速度が一定以上になると樹脂の付着が追いつか
ず、繊維束の長さ方向に樹脂の付着斑が生じるようにな
るが、予熱処理を行った繊維束では、予熱処理の無い場
合に比べ1.5倍以上の早い引き取り速度に於いても樹
脂の付着斑が発生せず、生産性の向上及び品質向上に有
効である事が判った。即ち、予熱処理により、繊維表面
に付着または吸着した水分や、油剤等が除去され、か
つ、繊維の極表層部が酸化されて、樹脂とのぬれ性が向
上する結果、接着性(付着性)が向上するものと考えら
れる。
When the reinforcing fiber preheated in this way is used, surprising facts have been discovered in addition to the effect of suppressing gas generation during molding. This is a phenomenon that is particularly prominent in para-aramid fibers, but in the fiber bundle from which the adsorbed moisture of the fiber bundle and the surface treatment agent that is mainly an oil agent have been removed by the preheat treatment, the interface between the fiber and the thermoplastic resin This is a phenomenon that the adhesiveness is improved. That is, when the molten thermoplastic resin is attached to the fiber bundle that is not preheated, the attachment of the resin cannot catch up if the take-up speed becomes a certain value or more, and resin adhesion unevenness occurs in the length direction of the fiber bundle. In the case of the preheated fiber bundle, resin adhesion unevenness does not occur even at a take-up speed of 1.5 times or more faster than in the case of no preheat treatment, which is effective in improving productivity and quality. I understood. That is, the pre-heat treatment removes the water or oil adhering to or adsorbed on the fiber surface, and oxidizes the outermost surface layer of the fiber to improve the wettability with the resin, resulting in adhesiveness (adhesiveness). Is expected to improve.

【0014】図1中の導入側ダイ7は、ボルトによりダ
イヘッド12に固定されている。図2にダイ7の詳細を
示すが、繊維束の入り側である上部は繊維束を通し易く
する為にテーパーを設ける事が望ましい。また、補強用
繊維の導入孔20はポリマー溜8での加圧を容易にし、
溶融熱可塑性樹脂が導入孔20から系外へ流出すること
を防ぐために、該繊維束の断面積に近づけることが望ま
しいが、あまり近づけると繊維束と導入孔20間の抵抗
が大きくなり、繊維束の引き抜きが困難となる為、導入
孔断面積は繊維束断面積の1.02倍以上が望ましく、
また大きすぎると溶融熱可塑性樹脂が流出し易くなって
樹脂の加圧が困難になるため、該比率は1.70倍以下
が望ましい。また導入孔20の長さは、加圧力向上及び
溶融熱可塑性樹脂の加圧による導入孔20からの外部へ
の流出防止の為に、長い方が良好であるけれども、工作
性や取扱い性の点から3mm〜20mmが望ましい。
The introduction die 7 in FIG. 1 is fixed to the die head 12 by bolts. The details of the die 7 are shown in FIG. 2, but it is desirable to provide a taper on the upper side, which is the entrance side of the fiber bundle, so that the fiber bundle can pass through easily. Moreover, the introduction hole 20 of the reinforcing fiber facilitates pressurization in the polymer reservoir 8,
In order to prevent the molten thermoplastic resin from flowing out of the system from the introduction hole 20, it is desirable to bring it close to the cross-sectional area of the fiber bundle, but if it is too close, the resistance between the fiber bundle and the introduction hole 20 becomes large and the fiber bundle Since it becomes difficult to pull out, it is desirable that the cross-sectional area of the introduction hole is 1.02 times or more the cross-sectional area of the fiber bundle.
On the other hand, if it is too large, the molten thermoplastic resin tends to flow out, and it becomes difficult to pressurize the resin. Therefore, the ratio is preferably 1.70 times or less. Further, the length of the introduction hole 20 is preferably long in order to improve the pressing force and prevent the molten thermoplastic resin from flowing out from the introduction hole 20 due to the pressurization. To 3 mm to 20 mm is desirable.

【0015】出側ダイ9はボルトによりダイヘッド12
に固定されている。図3にダイ9の詳細を示すが、繊維
束の入り側である上部にはテーパーを設けて補強用繊維
に付着含浸した溶融熱可塑性樹脂を絞り込みながら引き
抜く事が該樹脂の含浸を向上させる点から望ましい。
又、溶融熱可塑性樹脂で被覆含浸された補強用繊維束の
導入孔21は、ポリマー溜8での加圧力及び溶融熱可塑
性樹脂の加圧による導入孔20からの外部への不必要樹
脂の流出防止の観点から、導入孔20の断面積と同じか
それ以上にする事が望ましい。又、導入孔21の長さは
ポリマー溜8での加圧性及び溶融熱可塑性樹脂の加圧に
よる導入孔20からの外部への流出防止ならびに樹脂含
浸繊維の移動性の観点から、導入孔20の長さ以下であ
る事が望ましい。
The delivery die 9 is attached to the die head 12 by bolts.
It is fixed to. The details of the die 9 are shown in FIG. 3. A point is provided on the upper side, which is the entrance side of the fiber bundle, and the molten thermoplastic resin adhered and impregnated to the reinforcing fiber is drawn out while being squeezed to improve impregnation of the resin. From desirable.
Further, the introduction hole 21 of the reinforcing fiber bundle which is coated and impregnated with the molten thermoplastic resin is provided with an undesired resin outflow from the introduction hole 20 to the outside due to the pressing force in the polymer reservoir 8 and the pressure of the molten thermoplastic resin. From the viewpoint of prevention, it is desirable that the cross-sectional area of the introduction hole 20 be equal to or larger than that. In addition, the length of the introduction hole 21 is determined from the viewpoints of pressurization in the polymer reservoir 8, prevention of outflow from the introduction hole 20 due to pressurization of the molten thermoplastic resin, and mobility of the resin-impregnated fiber. It is desirable that it is less than or equal to the length.

【0016】これら導入側ダイ7と導出側ダイ9により
形成されたポリマー溜8中に、スクリュー11から溶融
熱可塑性樹脂を供給する事により、ポリマー溜8での加
圧が可能となり補強用繊維束の気泡を排除しつつ、該溶
融熱可塑性樹脂を該補強用繊維中に含浸する事が可能と
なる。溶融熱可塑性樹脂の粘度が100000センチポ
イズと高い為に、加圧力が低いと、繊維束1内に熱可塑
性樹脂が入り込めず充分な含浸性を得ることができな
い。しかしながら、25kg/cm2 以上、望ましくは
50kg/cm2 以上の圧力で樹脂を加圧すると、補強
用繊維束内に溶融した熱可塑性樹脂が均一に入り込み、
その結果、該樹脂中に補強用繊維がモノフィラメントあ
るいはそれに近い状態で均一に分散した形態になって、
繊維と樹脂間の密着性が高まり、良好な繊維強化熱可塑
性樹脂材料を得ることができる。又、該圧力は高い程短
時間に繊維束内部まで溶融熱可塑性樹脂を含浸する事が
可能となるが、加圧の為のスクリュー11の回転エネル
ギー及びダイ7、9の工作精度を考慮し、200kg/
cm2 以下の圧力とするのが望ましい。
By supplying the molten thermoplastic resin from the screw 11 into the polymer reservoir 8 formed by the introduction side die 7 and the discharge side die 9, pressurization in the polymer reservoir 8 becomes possible and the reinforcing fiber bundle is obtained. It becomes possible to impregnate the reinforcing fiber with the molten thermoplastic resin while eliminating the bubbles. Since the viscosity of the molten thermoplastic resin is as high as 100,000 centipoise, if the applied pressure is low, the thermoplastic resin cannot enter the fiber bundle 1 and sufficient impregnability cannot be obtained. However, when the resin is pressed at a pressure of 25 kg / cm 2 or more, preferably 50 kg / cm 2 or more, the molten thermoplastic resin uniformly enters the reinforcing fiber bundle,
As a result, the reinforcing fibers are uniformly dispersed in the resin in a monofilament or a state close thereto,
The adhesion between the fiber and the resin is enhanced, and a good fiber-reinforced thermoplastic resin material can be obtained. Further, the higher the pressure is, the more quickly the molten thermoplastic resin can be impregnated into the inside of the fiber bundle, but in consideration of the rotational energy of the screw 11 for pressurization and the working accuracy of the dies 7 and 9, 200 kg /
It is desirable to set the pressure to cm 2 or less.

【0017】図4には再成形ノズル13の詳細を示す
が、熱可塑性樹脂で被覆された補強用繊維束の入り側に
テーパーを設ける事が望ましい。このテーパーを設ける
事により、熱可塑性樹脂の絞り込みを行うと共に、この
テーパー部が絞り込みにより取り除かれた樹脂のポリマ
ー溜の役割を果たすことになって、長さ方向により均一
に熱可塑性樹脂を被覆含浸する事が可能となる。成形孔
22は、目標とするフィラメント混率および断面形状、
即ち、丸、三角、四角等の任意の形状に再形成する事が
できる。更にこの再成形ノズル13に於いて重要な事
は、繊維束を被覆含浸している熱可塑性樹脂の溶融温度
以上に加熱する事である。該熱可塑性樹脂の溶融温度以
下で該熱可塑性樹脂の絞り込みを行うと、高い引き抜き
張力が必要なばかりでなく、既に補強用繊維に被覆含浸
されている熱可塑性樹脂と補強用繊維間に剥離が生じ
て、含浸性の低下をまねき、かつ、内部歪を残留させる
事になる。又、該ノズル13の温度が熱可塑性樹脂の溶
融温度に比べ、大幅に高いときは、該熱可塑性樹脂の粘
度が低下するために、絞り込み効果が低下するだけでな
く、熱可塑性樹脂の劣化が促進され、得られる繊維強化
熱可塑性樹脂の機械的特性が低下する。
FIG. 4 shows the details of the remolding nozzle 13, but it is desirable to provide a taper on the entrance side of the reinforcing fiber bundle covered with the thermoplastic resin. By providing this taper, the thermoplastic resin is narrowed down, and this taper portion plays a role of a polymer reservoir of the resin removed by the narrowing down, so that the thermoplastic resin is uniformly coated and impregnated in the length direction. It becomes possible to do. The molding hole 22 has a target filament mixture ratio and cross-sectional shape,
That is, it can be re-formed into any shape such as a circle, a triangle, and a square. Furthermore, what is important in this re-molding nozzle 13 is that the fiber bundle is heated to a temperature above the melting temperature of the thermoplastic resin impregnated with the coating. When the thermoplastic resin is squeezed at a temperature not higher than the melting temperature of the thermoplastic resin, not only high drawing tension is required, but also peeling occurs between the thermoplastic resin already impregnated with the reinforcing fiber and the reinforcing fiber. This causes the impregnating property to be deteriorated and causes the internal strain to remain. Further, when the temperature of the nozzle 13 is significantly higher than the melting temperature of the thermoplastic resin, the viscosity of the thermoplastic resin decreases, so that not only the narrowing effect decreases but also the deterioration of the thermoplastic resin occurs. It is accelerated and the mechanical properties of the resulting fiber reinforced thermoplastic resin are deteriorated.

【0018】導出側ダイ9と該再成形ノズル13との距
離は自由に取り得るが、可能な限り近づける事が熱可塑
性樹脂で被覆された補強用繊維束の冷却固化を防ぐ点か
ら望ましい。
The lead-out die 9 and the re-forming nozzle 13 can be freely separated, but it is desirable to make them as close as possible in order to prevent the reinforcing fiber bundle coated with the thermoplastic resin from being cooled and solidified.

【0019】又、本発明の熱可塑性樹脂被覆工程中に於
ける樹脂表面凹凸形成工程では、該繊維束表面被覆熱可
塑性樹脂表面に可能な限り微細で、かつ、均一な凹凸を
形成する事が望ましい。その理由は該繊維強化熱可塑性
樹脂被覆材料を、その後、用途に応じて各種表面加工剤
で加工する場合、被覆樹脂表面に形成された凹凸が不均
一で、かつ、大きすぎると加工剤の付着斑を発生させる
ばかりでなく、特定の凹部等に応力集中を生じさせる結
果、引張破断強力や曲げ強力の低下をまねく事になり好
ましくない。又、逆に凹凸が小さすぎると被覆樹脂の表
面拡大効果やアンカー効果を充分に発揮できないため、
加工剤との接着性を向上させる事ができず好ましくな
い。我々の検討結果では3〜50μm範囲内、更に好ま
しくは5〜25μm範囲内の微細な凹凸を被覆樹脂表面
に形成すると、加工剤の付着斑の発生も少なく、接着性
も良好で、且つ、物性的にも問題のない事を確認してい
る。なお、微細な凹凸の形成は、たとえば、特定荷重の
加えられた微粒子並みの砂中を通過させる方法、または
サンドブラスト処理法、特定の微細な凹凸が刻まれたロ
ールを複数本使用する方法などで行う事ができるが、特
に限定するものではなく、他のいずれの方法であっても
良い。
Further, in the resin surface unevenness forming step in the thermoplastic resin coating step of the present invention, it is possible to form as fine and uniform unevenness as possible on the surface of the thermoplastic resin covering the fiber bundle surface. desirable. The reason for this is that when the fiber-reinforced thermoplastic resin coating material is subsequently processed with various surface-treating agents depending on the application, the unevenness formed on the surface of the coating resin is non-uniform, and if the surface-treating agent is too large, adhesion of the treating agent will occur. Not only is unevenness generated, but stress concentration is also caused in specific recesses and the like, resulting in a decrease in tensile breaking strength and bending strength, which is not preferable. On the other hand, if the unevenness is too small, the surface expansion effect and anchor effect of the coating resin cannot be fully exerted,
It is not preferable because the adhesiveness with the processing agent cannot be improved. According to the results of our study, when fine irregularities within a range of 3 to 50 μm, more preferably within a range of 5 to 25 μm are formed on the coating resin surface, the occurrence of adhesion unevenness of the processing agent is small, the adhesiveness is good, and the physical properties are good. I have confirmed that there is no problem. The fine irregularities can be formed by, for example, a method of passing through fine sand with a specific load applied, a sandblasting method, or a method of using a plurality of rolls having specific fine irregularities. However, the method is not particularly limited, and any other method may be used.

【0020】また、図1、2、3、4に示した製造装
置、及び製造工程は本願発明材料を作成するための一例
に過ぎず、前述と同様の効果を発現し得る装置、工程で
有れば、何等限定するものではない。
Further, the manufacturing apparatus and manufacturing process shown in FIGS. 1, 2, 3 and 4 are merely examples for producing the material of the present invention, and the manufacturing apparatus and process capable of exhibiting the same effects as described above are provided. If so, there is no limitation.

【0021】[0021]

【発明の効果】本発明の製造方法により作成された繊維
強化熱可塑性樹脂材料の特徴は以下の通りである。 (1)本発明の製造方法により作成された材料は、補強
用繊維中への熱可塑性樹脂の含浸性が良好で、材料中の
ボイド量も少なく、かつ樹脂と繊維間の界面接着性も高
く良好である。 (2)本発明の製造工程によれば使用目的に応じた様々
の断面形状を有する繊維強化材料を提供する事ができ
る。 (3)本発明の製造方法により作成された繊維強化熱可
塑性樹脂材料は、高強力低伸度であり、寸法安定性に優
れている。 (4)本発明の製造方法により作成された繊維強化熱可
塑性樹脂材料は使用目的に応じた各種加工剤、または各
種マトリックスとの界面接着性に優れている。
The characteristics of the fiber reinforced thermoplastic resin material produced by the production method of the present invention are as follows. (1) The material produced by the production method of the present invention has good impregnation property of the thermoplastic resin into the reinforcing fiber, has a small amount of voids in the material, and has high interfacial adhesion between the resin and the fiber. It is good. (2) According to the manufacturing process of the present invention, it is possible to provide a fiber-reinforced material having various cross-sectional shapes according to the purpose of use. (3) The fiber-reinforced thermoplastic resin material produced by the production method of the present invention has high strength and low elongation and is excellent in dimensional stability. (4) The fiber-reinforced thermoplastic resin material produced by the production method of the present invention is excellent in interfacial adhesion with various processing agents or various matrices depending on the purpose of use.

【0022】以下、実施例により、本発明の効果を具体
的に説明する。尚、繊維強化熱可塑性樹脂材料について
行った補強繊維の含有率(重量%)、線径、破断強力、
破断伸度、ガス発生の有無、繊維束中への樹脂含浸性、
被覆樹脂表面の凹凸観察等の評価は下記の方法に従って
実施した。
The effects of the present invention will be specifically described below with reference to examples. The content (% by weight) of the reinforcing fiber, the wire diameter, the breaking strength, which was performed for the fiber-reinforced thermoplastic resin material,
Elongation at break, presence or absence of gas generation, resin impregnation in fiber bundle,
Evaluations such as observation of irregularities on the surface of the coating resin were carried out according to the following methods.

【0023】<補強用繊維の含有率> 含有率(重量%)=(補強用繊維重量/繊維強化熱可塑
性樹脂被覆材重量)×100 <線径の測定>測定機を用いて樹脂被覆補強繊維に1/
20の荷重を掛けて、50cm幅中を10cm間隔毎に
5点計りその平均値で表す。
<Reinforcement Fiber Content> Content (weight%) = (Reinforcement Fiber Weight / Fiber Reinforced Thermoplastic Resin Coating Material Weight) × 100 <Measurement of Wire Diameter> Resin Coated Reinforcement Fiber Using a Measuring Machine 1 /
A load of 20 is applied, and 5 points are measured at intervals of 10 cm in the width of 50 cm, and the average value is shown.

【0024】<破断強力及び破断伸度> (株)インテ
スコ製のINTESCO(Model2005)を用い
てJIS規格,L1013に準じて測定。但し、チャッ
クはスチールファイバー用を使用。
<Strength at break and elongation at break> Measured according to JIS standard, L1013 using INTESCO (Model 2005) manufactured by Intesco Corporation. However, the chuck is for steel fiber.

【0025】<製造行程に於けるガスの発生評価> 柳
本製作所製ガスクロマトグラフィカルモデルG80を用
い昇温ガスクロ法にて、表面処理されていない補強用繊
維、熱可塑性樹脂及び繊維強化熱可塑性樹脂原料の3者
を測定し、繊維強化熱可塑性樹脂原料の分解ピークが、
表面処理されていない補強用繊維の分解ピークと熱可塑
性樹脂の分解ピークとからなる場合をガス発生無し、表
面処理されていない補強用繊維の分解ピークと熱可塑性
樹脂の分解ピーク以外の分解ピークが繊維強化熱可塑性
樹脂原料の分解ピークと対比して見られる場合をガス発
生有りとした。
<Evaluation of Gas Generation in Manufacturing Process> A reinforcing fiber, a thermoplastic resin, and a fiber-reinforced thermoplastic resin raw material which are not surface-treated by a temperature-rising gas chromatography method using a gas chromatographic model G80 manufactured by Yanagimoto Seisakusho Of the fiber-reinforced thermoplastic resin raw material
No gas is generated when the decomposition peaks of the reinforcing fiber not surface-treated and the decomposition peaks of the thermoplastic resin are generated, and the decomposition peaks of the reinforcing fiber not surface-treated and the decomposition peaks other than the decomposition peak of the thermoplastic resin are Gas was generated when it was observed in comparison with the decomposition peak of the fiber-reinforced thermoplastic resin raw material.

【0026】このときの測定条件は、 Carrier Gas:He、Inject 温度:
融点+15℃(PPS:300℃) Colum:100℃で10分放置後、10℃/1分の
割合で300℃まで昇温後、さらに10分間放置。
The measurement conditions at this time are: Carrier Gas: He, Inject temperature:
Melting point + 15 ° C. (PPS: 300 ° C.) Column: left at 100 ° C. for 10 minutes, heated to 300 ° C. at a rate of 10 ° C./1 minute, and then left for 10 minutes.

【0027】<繊維束中への樹脂の含浸性評価>繊維強
化熱可塑性樹脂材料の断面を電子顕微鏡(又は光学顕微
鏡)により繊維の樹脂中に於ける分散性を観察し、束状
に補強繊維全体が集束した状態になっているものを×
印、全体が束状ではないものの補強繊維が数カ所に分割
されて集束した状態になっているものを△印、補強繊維
の約50%以上が単繊維状に分散された状態になってい
るものを○印として判定した。
<Evaluation of Impregnation of Resin into Fiber Bundle> The cross-section of the fiber-reinforced thermoplastic resin material was observed with an electron microscope (or optical microscope) for dispersibility of the fiber in the resin, and the reinforcing fiber was bundled. If the whole is in a focused state ×
The mark indicates that the reinforcing fibers are not bundled, but the reinforcing fibers are divided and bundled in several places, and the mark indicates that about 50% or more of the reinforcing fibers are dispersed in a single fiber form. Was judged as a circle.

【0028】<被覆樹脂表面の凹凸観察>繊維強化熱可
塑性樹脂材料を切断し、その切断面を電子顕微鏡で20
ケ所以上観察し、樹脂表面の凹凸状況を観察、測定し倍
率を考慮して平均凹凸量を算出する。
<Observation of irregularities on the surface of the coated resin> The fiber reinforced thermoplastic resin material is cut, and the cut surface is observed with an electron microscope.
After observing at least one place, the unevenness of the resin surface is observed and measured, and the average unevenness amount is calculated in consideration of the magnification.

【0029】<引抜き強力の評価>RFL処理された繊
維強化熱可塑性樹脂材料をU字型に1cmの深さだけ未
加硫のゴム中に埋め込んで加硫処理し、上記引張試験機
にて常温にて材料を引き抜き、その際の強力を測定し
た。
<Evaluation of drawing strength> RFL-treated fiber reinforced thermoplastic resin material is embedded in unvulcanized rubber in a U-shape to a depth of 1 cm and vulcanized, and then subjected to vulcanization at room temperature with the above tensile tester. The material was pulled out and the strength at that time was measured.

【0030】[0030]

【実施例1】本発明の製造方法の実施にあたって、今回
は、1500デニール/1000フィラメントからなる
パラ系アラミド繊維(テクノーラ:帝人株式会社製)4
本を片側40t/mで予め撚り合わた繊維束を用い、3
50℃に加熱された予熱ヒーター中に通し、15秒間熱
処理を行った後に、内径0.9mmφ、長さ20mmの
導入孔よりポリマー溜に導き、ここでスクリューから押
し出された290℃の溶融熱可塑性樹脂を該繊維中に含
浸せしめ(付与圧力30kg/cm2 )、さらに290
℃に加熱された内径1.0mm、長さ5mmの成形ノズ
ルで成形を行った後に冷却し、続いて樹脂表面凹凸形成
処理を施して補強繊維含有率68.5%の繊維強化熱可
塑性樹脂材料を得た。尚、この時の引き取り速度は10
m/分であった。又、被覆用熱可塑性樹脂にはポリアミ
ド66((株)旭化成)を用いた。また、得られた繊維
強化熱可塑性樹脂材料について、破断強力、破断伸度を
測定した結果は表1に示す通りであった。更に得られた
該繊維強化熱可塑性材料をゴムとの接着性を向上させる
為に、界面接着強化用の液濃度18.3%の主成分がV
P配合ラッテクスからなる前処理剤中に浸漬し、続いて
100℃で24秒間乾燥した後、195℃で48秒間キ
ュアーして補強繊維含有率が70%である接着処理され
た繊維強化熱可塑性材料を得た。この得られた材料を未
加硫のゴムシートに押し込んで42kg/cm2 の圧力
下で180℃×30分間プレス処理機を用いて加硫し
た。この加硫後のサンプルについて該接着処理繊維強化
熱可塑性材料とゴムとの剥離強力を測定した。結果を併
せて表1、表2に示した。
Example 1 In carrying out the production method of the present invention, this time, a para-aramid fiber composed of 1500 denier / 1000 filaments (Technora: manufactured by Teijin Ltd.) 4
Using a fiber bundle in which a book is pre-twisted at 40 t / m on one side, 3
After passing through a preheater heated to 50 ° C and performing heat treatment for 15 seconds, it was introduced into a polymer reservoir through an introduction hole with an inner diameter of 0.9mmφ and a length of 20mm, and the molten thermoplastic at 290 ° C extruded from the screw here. Resin is impregnated in the fiber (applying pressure 30 kg / cm 2 ) and further 290
A fiber-reinforced thermoplastic resin material having a reinforcing fiber content of 68.5% after being molded by a molding nozzle having an inner diameter of 1.0 mm and a length of 5 mm heated to 0 ° C. and then subjected to resin surface unevenness forming treatment. Got The pick-up speed at this time is 10
It was m / min. Polyamide 66 (Asahi Kasei Co., Ltd.) was used as the coating thermoplastic resin. The results of measuring the breaking strength and the breaking elongation of the obtained fiber-reinforced thermoplastic resin material are shown in Table 1. Further, in order to improve the adhesiveness of the obtained fiber reinforced thermoplastic material with rubber, the main component having a liquid concentration of 18.3% for interfacial adhesion reinforcement is V
An adhesive-treated fiber-reinforced thermoplastic material having a reinforcing fiber content of 70% after being dipped in a pretreatment agent containing P-containing latex and subsequently dried at 100 ° C. for 24 seconds and then cured at 195 ° C. for 48 seconds. Got The obtained material was pressed into an unvulcanized rubber sheet and vulcanized under a pressure of 42 kg / cm 2 at 180 ° C. for 30 minutes using a press processor. The peel strength between the adhesive-treated fiber-reinforced thermoplastic material and rubber was measured for this vulcanized sample. The results are also shown in Tables 1 and 2.

【0031】[0031]

【実施例2】繊維束被覆樹脂表面の凹凸量を約20μm
になるように形成した以外は実施例1と同一に実施し
て、繊維強化熱可塑性樹脂材料を得、これについて実施
例1と同様に特性を評価し、その結果を表1、表2に示
した。
[Example 2] The unevenness of the resin surface coated with the fiber bundle was set to about 20 μm.
The same procedure as in Example 1 was carried out to obtain a fiber-reinforced thermoplastic resin material, and the properties of this material were evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2. It was

【0032】[0032]

【実施例3】繊維束被覆樹脂表面の凹凸量を約40μm
になるように形成した以外は実施例1と同一に実施し
て、繊維強化熱可塑性樹脂材料を得、これについて実施
例1と同様に特性を評価し、その結果を表1、表2に示
した。
[Embodiment 3] The amount of irregularities on the surface of the resin coated with the fiber bundle is about 40 μm.
The same procedure as in Example 1 was carried out to obtain a fiber-reinforced thermoplastic resin material, and the properties of this material were evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2. It was

【0033】[0033]

【実施例4】樹脂被覆する際の付与圧力を55kg/c
2 に変更した以外は実施例1と同一に実施して、繊維
強化熱可塑性樹脂材料を得、これについて実施例1と同
様に特性を評価し、その結果を表1、表2に示した。
[Embodiment 4] The applied pressure during resin coating is 55 kg / c.
A fiber reinforced thermoplastic resin material was obtained in the same manner as in Example 1 except that m 2 was changed, and the properties of this material were evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2. .

【0034】[0034]

【実施例5】再成形用ノズルを使用しない以外は実施例
1と同一に実施して、繊維強化熱可塑性樹脂材料を得、
これについて実施例1と同様に特性を評価し、その結果
を表1、表2に示した。
[Example 5] The same procedure as in Example 1 was carried out except that a remolding nozzle was not used to obtain a fiber-reinforced thermoplastic resin material.
The properties of this were evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

【0035】[0035]

【実施例6】再成形用ノズルを使用しない以外は実施例
4と同一に実施して、繊維強化熱可塑性樹脂材料を得、
これについて実施例4と同様に特性を評価し、その結果
を表1、表2に示した。
[Example 6] The same procedure as in Example 4 was carried out except that a remolding nozzle was not used to obtain a fiber-reinforced thermoplastic resin material.
The properties of this were evaluated in the same manner as in Example 4, and the results are shown in Tables 1 and 2.

【0036】[0036]

【実施例7】予熱処理温度を120℃、被覆樹脂をNy
6に変更した以外は実施例1と同一に実施して、繊維強
化熱可塑性樹脂材料を得、これについて実施例1と同様
に特性を評価し、その結果を表1、表2に示した。
Example 7: Preheat treatment temperature is 120 ° C., coating resin is Ny
A fiber reinforced thermoplastic resin material was obtained in the same manner as in Example 1 except that the value was changed to 6, and the characteristics of this material were evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

【0037】[0037]

【実施例8】予熱処理温度を180℃に変更した以外は
実施例7と同一に実施して、繊維強化熱可塑性樹脂材料
を得、これについて実施例7と同様に特性を評価し、そ
の結果を表1、表2に示した。
[Example 8] The same procedure as in Example 7 was carried out except that the preheat treatment temperature was changed to 180 ° C to obtain a fiber-reinforced thermoplastic resin material, the characteristics of which were evaluated in the same manner as in Example 7, and the results were obtained. Are shown in Tables 1 and 2.

【0038】[0038]

【実施例9】予熱処理温度を230℃に変更した以外は
実施例7と同一に実施して、繊維強化熱可塑性樹脂材料
を得、これについて実施例7と同様に特性を評価し、そ
の結果を表1、表2に示した。
[Example 9] The same procedure as in Example 7 was carried out except that the preheat treatment temperature was changed to 230 ° C to obtain a fiber-reinforced thermoplastic resin material, the characteristics of which were evaluated in the same manner as in Example 7, and the results were obtained. Are shown in Tables 1 and 2.

【0039】[0039]

【実施例10】予熱処理温度を280℃に変更した以外
は実施例7と同一に実施して、繊維強化熱可塑性樹脂材
料を得、これについて実施例7と同様に特性を評価し、
その結果を表1、表2に示した。
[Example 10] A fiber-reinforced thermoplastic resin material was obtained in the same manner as in Example 7 except that the preheat treatment temperature was changed to 280 ° C, and the properties thereof were evaluated in the same manner as in Example 7,
The results are shown in Tables 1 and 2.

【0040】[0040]

【実施例11】再成形用ノズルを使用しない以外は実施
例10と同一に実施して、繊維強化熱可塑性樹脂材料を
得、これについて実施例10と同様に特性を評価し、そ
の結果を表1、表2に示した。
Example 11 A fiber reinforced thermoplastic resin material was obtained in the same manner as in Example 10 except that the remolding nozzle was not used, and the characteristics of this fiber reinforced thermoplastic resin material were evaluated in the same manner as in Example 10 and the results are shown in Table 1. 1, shown in Table 2.

【0041】[0041]

【実施例12】予熱処理温度を350℃に変更した以外
は実施例7と同一に実施して、繊維強化熱可塑性樹脂材
料を得、これについて実施例7と同様に特性を評価し、
その結果を表1、表2に示した。
Example 12 The same procedure as in Example 7 was carried out except that the preheat treatment temperature was changed to 350 ° C. to obtain a fiber reinforced thermoplastic resin material, the characteristics of which were evaluated in the same manner as in Example 7,
The results are shown in Tables 1 and 2.

【0042】[0042]

【比較例1】実施例1に於いて、繊維束被覆樹脂表面の
凹凸量を平均1μmになるように形成した以外は実施例
1と同一に実施して目的とするサンプルを得、このサン
プルについて実施例1と同様に物性を評価し、その結果
を表3、表4に示した。
[Comparative Example 1] A target sample was obtained in the same manner as in Example 1 except that the irregularities on the surface of the fiber-bundle coating resin were formed to have an average of 1 μm. The physical properties were evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

【0043】[0043]

【比較例2】実施例1に於いて、繊維束被覆樹脂表面の
凹凸量を平均60μmになるように形成した以外は実施
例1と同一に実施して目的とするサンプルを得、このサ
ンプルについて実施例1と同様に物性を評価し、その結
果を表3、表4に示した。
[Comparative Example 2] A target sample was obtained in the same manner as in Example 1 except that the unevenness of the surface of the resin covering the fiber bundle was formed to be 60 μm on average. The physical properties were evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

【0044】[0044]

【比較例3】実施例1に於いて、繊維束表面被覆樹脂に
対する付与圧力を18kg/cm2に変更した以外は実
施例1と同一に実施して目的とするサンプルを得、この
サンプルについて実施例1と同様に物性を評価し、その
結果を表3、表4に示した。
Comparative Example 3 A target sample was obtained in the same manner as in Example 1 except that the pressure applied to the fiber bundle surface coating resin was changed to 18 kg / cm 2 , and this sample was used. The physical properties were evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

【0045】[0045]

【比較例4】再成形用ノズルを使用しない以外は比較例
3と同一に実施して目的とするサンプルを得、このサン
プルについて比較例3と同様に物性を評価しその結果を
表3、表4に示した。
Comparative Example 4 A target sample was obtained in the same manner as in Comparative Example 3 except that the remolding nozzle was not used. The physical properties of this sample were evaluated in the same manner as in Comparative Example 3 and the results are shown in Table 3 and Table 3. Shown in FIG.

【0046】[0046]

【比較例5】実施例7に於いて、熱処理温度を80℃で
行う事以外は実施例7と同一に実施して目的とするサン
プルを得、このサンプルについて実施例7と同様に物性
を評価し、その結果を表3、表4に示した。
Comparative Example 5 A target sample was obtained in the same manner as in Example 7 except that the heat treatment temperature was 80 ° C., and the physical properties of this sample were evaluated in the same manner as in Example 7. The results are shown in Tables 3 and 4.

【0047】[0047]

【比較例6】実施例7に於いて、熱処理温度を500℃
で行う事以外は実施例7と同一に実施して目的とするサ
ンプルを得、このサンプルについて実施例7と同様に物
性を評価し、その結果を表3、表4に示した。
[Comparative Example 6] In Example 7, the heat treatment temperature was 500 ° C.
A target sample was obtained in the same manner as in Example 7 except that the above was performed, and the physical properties of this sample were evaluated in the same manner as in Example 7. The results are shown in Tables 3 and 4.

【0048】[0048]

【比較例7】実施例7に於いて、熱処理温度を500℃
で行う事、再成形用ノズルを使用しない事以外は実施例
7と同一に実施して目的とするサンプルを得、このサン
プルについて実施例7と同様に物性を評価し、その結果
を表3、表4に示した。
[Comparative Example 7] In Example 7, the heat treatment temperature was 500 ° C.
In the same manner as in Example 7, except that the remolding nozzle is not used, and a target sample is obtained. The physical properties of this sample are evaluated in the same manner as in Example 7, and the results are shown in Table 3. The results are shown in Table 4.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【表3】 [Table 3]

【0052】[0052]

【表4】 [Table 4]

【0053】表1、表3から本発明の繊維強化熱可塑性
樹脂材料はいずれも比較例に比べて樹脂含浸性、引張強
力、接着性等の点でバランスのとれた性能を有している
ことが明確である。
As shown in Tables 1 and 3, the fiber-reinforced thermoplastic resin material of the present invention has a well-balanced performance in resin impregnation property, tensile strength, adhesiveness, etc. as compared with the comparative examples. Is clear.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による繊維強化熱可塑性樹脂材料の製造
装置の一例を示す概略図。
FIG. 1 is a schematic view showing an example of an apparatus for producing a fiber-reinforced thermoplastic resin material according to the present invention.

【図2】導入側ダイの側断面図。FIG. 2 is a side sectional view of an introduction die.

【図3】導出側ダイの側断面図。FIG. 3 is a side sectional view of a lead-out die.

【図4】成形ノズルの側断面図の説明図。FIG. 4 is an explanatory view of a side sectional view of a molding nozzle.

【符号の説明】[Explanation of symbols]

1 補強用繊維 2 ボビン 3 案内ガイド 4 前側張力制御装置 5 予熱ヒーター 6 案内ガイド 7 導入側ダイ 8 樹脂溜まり 9 導出側ダイ 10 スロート 11 スクリュー 12 ダイヘッド 13 成形ノズル 14 案内ガイドローラー 15 冷却バス 16 樹脂表面凹凸形成装置 17 後側張力制御装置 18 引き取りロール 19 巻き取り機 20 補強用繊維導入孔 21 補強用繊維導出孔 22 成形孔 1 Reinforcing Fiber 2 Bobbin 3 Guide Guide 4 Front Tension Control Device 5 Preheating Heater 6 Guide Guide 7 Introduction Die 8 Resin Reservoir 9 Derivation Side Die 10 Throat 11 Screw 12 Die Head 13 Molding Nozzle 14 Guide Guide Roller 15 Cooling Bath 16 Resin Surface Concavo-convex forming device 17 Rear tension control device 18 Take-up roll 19 Winding machine 20 Reinforcing fiber introduction hole 21 Reinforcing fiber outlet hole 22 Forming hole

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 補強用繊維束を熱可塑性樹脂で被覆する
方法に於いて、補強用繊維束を予め、100℃以上の温
度で熱処理を行う工程、この工程と連続して該補強用繊
維を被覆する工程、続いて冷却する工程、及び被覆され
た該熱可塑性樹脂の表面に凹凸を形成する工程を有する
事を特徴とする繊維強化熱可塑性樹脂材料の製造方法。
1. A method of coating a reinforcing fiber bundle with a thermoplastic resin, wherein the reinforcing fiber bundle is heat-treated at a temperature of 100 ° C. or higher in advance, and the reinforcing fiber is continuously treated with this step. A method for producing a fiber-reinforced thermoplastic resin material, which comprises a coating step, a subsequent cooling step, and a step of forming irregularities on the surface of the coated thermoplastic resin.
【請求項2】 該熱可塑性樹脂で被覆された繊維束を該
熱可塑性樹脂の溶融温度以上の温度で、再成形用ノズル
により再成形後、冷却する事を特徴とする請求項1記載
の繊維強化熱可塑性樹脂材料の製造方法。
2. The fiber according to claim 1, wherein the fiber bundle coated with the thermoplastic resin is reshaped at a temperature above the melting temperature of the thermoplastic resin by a remolding nozzle and then cooled. A method for producing a reinforced thermoplastic resin material.
【請求項3】 溶融した熱可塑性樹脂で覆うにあたり2
5kg/cm2 以上の圧力を該樹脂含浸時に付与する請
求項1及び請求項2記載の繊維強化熱可塑性樹脂材料の
製造方法。
3. Covering with a molten thermoplastic resin 2
The method for producing a fiber-reinforced thermoplastic resin material according to claim 1 or 2 , wherein a pressure of 5 kg / cm 2 or more is applied during impregnation of the resin.
【請求項4】 補強用繊維束を熱可塑性樹脂で被覆する
前に、予め、熱可塑性樹脂の溶融温度以上の高温で熱処
理する工程を含む請求項1,2,3記載の繊維強化熱可
塑性樹脂材料の製造方法。
4. The fiber-reinforced thermoplastic resin according to claim 1, further comprising a step of heat-treating at a high temperature equal to or higher than a melting temperature of the thermoplastic resin before coating the reinforcing fiber bundle with the thermoplastic resin. Material manufacturing method.
【請求項5】 繊維束被覆熱可塑性樹脂表面に3〜50
μm範囲内の微細な凹凸が形成されてなる繊維強化熱可
塑性樹脂材料の製造方法。
5. A fiber bundle-covered thermoplastic resin surface with 3 to 50
A method for producing a fiber reinforced thermoplastic resin material, wherein fine irregularities within a μm range are formed.
JP401395A 1995-01-13 1995-01-13 Method for producing fiber reinforced thermoplastic resin material Expired - Fee Related JP3569018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP401395A JP3569018B2 (en) 1995-01-13 1995-01-13 Method for producing fiber reinforced thermoplastic resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP401395A JP3569018B2 (en) 1995-01-13 1995-01-13 Method for producing fiber reinforced thermoplastic resin material

Publications (2)

Publication Number Publication Date
JPH08187728A true JPH08187728A (en) 1996-07-23
JP3569018B2 JP3569018B2 (en) 2004-09-22

Family

ID=11573095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP401395A Expired - Fee Related JP3569018B2 (en) 1995-01-13 1995-01-13 Method for producing fiber reinforced thermoplastic resin material

Country Status (1)

Country Link
JP (1) JP3569018B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111999A (en) * 2004-10-14 2006-04-27 Teijin Techno Products Ltd Fibrous product, and method for producing the same
KR101476086B1 (en) * 2011-03-23 2014-12-23 가부시키가이샤 고베 세이코쇼 Production method and production device for long fiber-reinforced resin strand

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111999A (en) * 2004-10-14 2006-04-27 Teijin Techno Products Ltd Fibrous product, and method for producing the same
KR101476086B1 (en) * 2011-03-23 2014-12-23 가부시키가이샤 고베 세이코쇼 Production method and production device for long fiber-reinforced resin strand

Also Published As

Publication number Publication date
JP3569018B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
CN103501986B (en) The pultrusion method that continuous lod heat is moulded rod and manufactured for it
US5068142A (en) Fiber-reinforced polymeric resin composite material and process for producing same
JPH07251437A (en) Method and apparatus for producing long fiber reinforced thermoplastic composite material
JP2017531077A (en) Hybrid sheet molding compound material
CN109423703B (en) Modification of continuous carbon fibers during precursor formation of composite materials with enhanced moldability
JP4938281B2 (en) Polymer bonded fiber agglomerates
CA2980235C (en) Process and device for the production of a fibre-composite material
JP2020528845A (en) Fiber reinforced molding compound and its formation and usage
US11851538B1 (en) Process to manufacture carbon fiber intermediate products in-line with carbon fiber production
CN107249838A (en) Method and apparatus for producing fibrous composite
KR100317864B1 (en) Manufacturing method of fiber reinforced thermoformable composite
JPH0631821A (en) Method for producing thermoplastic composite material
CA2333126C (en) Continuous-strand pellets and method and device for preparing continuous-strand pellets
Kim et al. High-performance continuous carbon fiber composite filament via solution process
JP3569018B2 (en) Method for producing fiber reinforced thermoplastic resin material
JPH07310287A (en) Production of fiber-reinforced thermoplastic resin
JPH06254857A (en) Manufacture of fiber reinforced thermoplastic resin composition and apparatus for making the same
JP2862613B2 (en) Resin impregnated coated fiber
JP3040865B2 (en) Long fiber reinforced thermoplastic resin pellets
JP5860798B2 (en) Method for producing phenoxy resin yarn
JP3266933B2 (en) Method for producing fiber-reinforced thermoplastic resin molding material
JPH031907A (en) Manufacturing method of fiber reinforced composite material
JPH04244809A (en) Manufacture of fiber-reinforced thermoplastic resin composition
KR0127866B1 (en) Long Fiber Reinforced Thermoplastic Pellets and Manufacturing Method Thereof
JPH1016103A (en) Method for producing composite material and mat-like composite material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

A131 Notification of reasons for refusal

Effective date: 20040316

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Effective date: 20040617

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees