JPH08179513A - Aligner - Google Patents
AlignerInfo
- Publication number
- JPH08179513A JPH08179513A JP6320039A JP32003994A JPH08179513A JP H08179513 A JPH08179513 A JP H08179513A JP 6320039 A JP6320039 A JP 6320039A JP 32003994 A JP32003994 A JP 32003994A JP H08179513 A JPH08179513 A JP H08179513A
- Authority
- JP
- Japan
- Prior art keywords
- illuminance
- light
- mask
- exposure
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体素子の製造過程
において、半導体素子の微細回路パターンを投影露光す
る露光装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus which projects and exposes a fine circuit pattern of a semiconductor element in the process of manufacturing the semiconductor element.
【0002】[0002]
【従来の技術】近年、半導体素子回路はますます微細化
の一途をたどっており、半導体露光装置に対する高解像
力化、深度拡大の要求は更に大きいものとなってきてい
る。ステップアンドリピート方式の縮小投影露光装置
(ステッパ)、ミラープロジェクションアライナ、スキ
ャン方式の露光装置等の様々な形態の露光装置が存在す
るが、どの露光装置に対しても、ウエハ面等の被露光基
板面上に照度の場所むら(照度むら)があると、マスク
あるいはレチクル(以下レチクルとのみ記す)上のパタ
ーン線幅が同じであっても、ウエハ面上では照度むらに
より線幅が変わってしまう。半導体素子の製造には、厳
しい線幅管理が要求されるので、照度むらの値を小さく
抑える事は非常に重要である。2. Description of the Related Art In recent years, semiconductor device circuits have become more and more miniaturized, and the demands for higher resolution and wider depth for semiconductor exposure apparatuses have become even greater. Step-and-repeat type reduction projection exposure apparatus
There are various types of exposure equipment such as (stepper), mirror projection aligner, scan type exposure equipment, etc., but for any exposure equipment, the unevenness of the illuminance on the surface of the exposed substrate such as the wafer surface (illuminance Even if the pattern line width on the mask or reticle (hereinafter referred to as the reticle) is the same, the line width changes on the wafer surface due to the illuminance unevenness. Strict line width management is required for the manufacture of semiconductor devices, so it is very important to reduce the value of uneven illuminance.
【0003】ステッパを例に取ると、従来の照度むら測
定は、次のような手順で行なわれている。Taking a stepper as an example, conventional illuminance unevenness measurement is performed in the following procedure.
【0004】1.レチクルを光路から取り除く。1. Remove the reticle from the light path.
【0005】2.全照明領域よりも小さな領域の照度を
測定できる照度計でウエハ面上をスキャンさせ、照度を
測定する。[0005] 2. The illuminance is measured by scanning the wafer surface with an illuminometer that can measure the illuminance of an area smaller than the entire illumination area.
【0006】3.照度むらの値を計算する。3. Calculate the value of uneven illuminance.
【0007】しかし、上記のような手順の後に照度むら
補正を行っても、実際の露光時には光路中にレチクルが
挿入されるため、レチクルの遮光部(Cr面)に入射し
た光が反射し、照明光学系への戻り光が発生してしま
う。この戻り光は再度照明光学系の光学部材に反射し、
レチクルを照射することとなる。この時に、レチクルを
透過し、ウエハ面に達した光はフレア光と呼ばれ、上記
手順の後に補正した照度むらを再び悪化させてしまうと
いった問題点を抱えている。However, even if the uneven illuminance is corrected after the above procedure, since the reticle is inserted in the optical path during the actual exposure, the light incident on the light shielding portion (Cr surface) of the reticle is reflected, Return light to the illumination optical system is generated. This return light is reflected again on the optical member of the illumination optical system,
The reticle will be illuminated. At this time, the light that has passed through the reticle and has reached the wafer surface is called flare light, and there is a problem in that the illuminance unevenness corrected after the above procedure is exacerbated again.
【0008】[0008]
【発明が解決しようとしている課題】このフレア光によ
る照度むらを予測し、それを補正する様々な方法が考え
られるが、従来知られている方法では、煩雑な手順を踏
むため時間がかかっていた。Various methods of predicting and correcting the illuminance unevenness due to the flare light are conceivable, but the conventionally known method takes time because of complicated steps. .
【0009】そこで、本発明は、簡便且つ短時間に、レ
チクルの転写パターンに応じて生じる照度むらを検出す
る手段を有する露光装置と、この露光装置に用いられる
照度むら検出方法の提供を目的とする。また本発明は、
本発明の露光装置および照度むら検出方法を用いた半導
体素子の製造方法も目的とする。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an exposure apparatus having a means for detecting uneven illuminance generated according to a transfer pattern of a reticle in a simple and short time, and an uneven illuminance detection method used in this exposure apparatus. To do. The present invention also provides
Another object of the present invention is a method of manufacturing a semiconductor device using the exposure apparatus and the uneven illuminance detection method of the present invention.
【0010】[0010]
【課題を解決するための手段および作用】上記目的を達
成するため、本願第1発明は、被露光面の複数の測定点
の照度を測定する照度測定手段を有する露光装置におい
て、転写パターンが形成されたマスクの少なくとも1ケ
所に露光光を透過する光透過部を設け、前記マスクを前
記露光光の光路中の所定の位置に載置し、前記転写パタ
ーン部と前記光透過部を露光光により同時に照明し、前
記光透過部を透過した前記露光光の照度を前記被露光面
の複数の測定点で測定し、その結果得られた測定値によ
り、前記マスクが前記露光光の光路中に存在する時の照
度むらを検出することを特徴とする。これにより、従来
の煩雑な手順を踏む必要がなくなるため、簡便且つ短時
間でフレア光による照度むらの検出が可能になる。In order to achieve the above object, the first invention of the present application is, in an exposure apparatus having an illuminance measuring means for measuring the illuminance of a plurality of measurement points on an exposed surface, a transfer pattern is formed. A light-transmitting portion that transmits exposure light is provided at at least one location of the exposed mask, the mask is placed at a predetermined position in the optical path of the exposure light, and the transfer pattern portion and the light-transmitting portion are exposed by the exposure light. Simultaneously illuminating, measuring the illuminance of the exposure light transmitted through the light transmitting portion at a plurality of measurement points on the surface to be exposed, the measurement value obtained as a result, the mask is present in the optical path of the exposure light. It is characterized in that the illuminance unevenness when detecting is detected. As a result, since it is not necessary to go through the complicated procedure of the related art, it becomes possible to easily detect the illuminance unevenness due to the flare light in a short time.
【0011】本願第2発明は、転写パターンが形成され
たマスクの少なくとも1ケ所に露光光を透過する光透過
部を設け、前記マスクを前記露光光の光路中の所定の位
置に載置し、前記転写パターン部と前記光透過部を露光
光により同時に照明し、前記光透過部を透過した前記露
光光の照度を前記被露光面の複数の測定点で測定し、そ
の結果得られた測定値により、前記マスクが前記露光光
の光路中に存在する時の照度むらを検出することを特徴
とする照度むら検出方法である。これにより、従来の煩
雑な手順を踏む必要がなくなるため、簡便且つ短時間で
フレア光による照度むらの検出が可能になる。In the second invention of the present application, a light transmitting portion for transmitting exposure light is provided at least at one position of the mask on which the transfer pattern is formed, and the mask is placed at a predetermined position in the optical path of the exposure light. Simultaneously illuminating the transfer pattern portion and the light transmitting portion with exposure light, measuring the illuminance of the exposure light transmitted through the light transmitting portion at a plurality of measurement points on the exposed surface, and a measurement value obtained as a result. The uneven illuminance detection method detects the uneven illuminance when the mask is present in the optical path of the exposure light. As a result, since it is not necessary to go through the complicated procedure of the related art, it becomes possible to easily detect the illuminance unevenness due to the flare light in a short time.
【0012】本願第3発明は、本願第1発明の露光装
置、または本願第2発明の照度分布補正方法を用いた半
導体素子の製造方法である。この方法により、半導体素
子を正確に製造することができる。A third invention of the present application is a method of manufacturing a semiconductor device using the exposure apparatus of the first invention of the present application or the illuminance distribution correction method of the second invention of the present application. By this method, the semiconductor element can be manufactured accurately.
【0013】[0013]
【実施例】以下に、照度むら検出および補正に関する実
施例を説明する。[Embodiment] An embodiment relating to detection and correction of illuminance unevenness will be described below.
【0014】図1は、本発明の特徴を最もよく表すステ
ッパの概略図である。FIG. 1 is a schematic diagram of a stepper that best illustrates the features of the present invention.
【0015】1は高圧水銀ランプ等の紫外線を発する光
源である。光源は101、102、103の各アクチュ
エータにより、図のx,y,z方向に自在に動かせるよ
うになっている。Reference numeral 1 is a light source that emits ultraviolet rays, such as a high pressure mercury lamp. The light source can be freely moved in the x, y, and z directions in the drawing by the actuators 101, 102, and 103.
【0016】2は楕円鏡である。2aはその第1焦点で
あり、第1焦点2a近傍に光源1の発光部1aが置かれ
ている。楕円鏡2により第1焦点2a近傍に置かれた発
光部1aの像1bが、その第2焦点2b近傍に結ばれ
る。Reference numeral 2 is an elliptical mirror. Reference numeral 2a is the first focal point, and the light emitting portion 1a of the light source 1 is placed near the first focal point 2a. The image 1b of the light emitting portion 1a placed near the first focal point 2a by the elliptical mirror 2 is formed near the second focal point 2b.
【0017】3は紫外線を反射し、赤外線を透過するコ
ールドミラーである。4は露光時間を決めるシャッター
である。5はコンデンサーレンズであり、第2焦点2b
からの光をけられないようにフライアイレンズ等のオプ
ティカルインテグレータ6に入射させている。A cold mirror 3 reflects ultraviolet rays and transmits infrared rays. A shutter 4 determines the exposure time. A condenser lens 5 has a second focal point 2b.
The light from is made incident on an optical integrator 6 such as a fly-eye lens so as not to be blocked.
【0018】7は開口絞りであり、アクチュエーター7
pにより照度むら補正絞り7aに切り替えられるように
なっている。照度むら補正絞り7aはコーティングの角
度特性を利用し光軸に対して対称な照度むらを変化させ
るものである。即ち、オプティカルインテグレータ射出
部6bとレチクル14の位置は、光学的には瞳と像の関
係であるので、オプティカルインテグレータ射出部6b
での光線の角度は、レチクル14での位置に対応してい
る。従って、光軸に対して小さな角度で入射する光線よ
りも、大きな角度で入射する光線の透過率を低くする
と、レチクル14の位置においては中心よりも周辺の照
度が下がることになる。Reference numeral 7 denotes an aperture stop, which is an actuator 7
The illuminance unevenness correction diaphragm 7a can be switched by p. The illuminance unevenness correction diaphragm 7a changes the illuminance unevenness symmetrical with respect to the optical axis by utilizing the angle characteristic of the coating. That is, since the positions of the optical integrator emitting unit 6b and the reticle 14 are optically in the relationship between the pupil and the image, the optical integrator emitting unit 6b is not included.
The angle of the light ray at corresponds to the position on the reticle 14. Therefore, if the transmittance of a light ray incident at a large angle is made lower than that of a light ray incident at a small angle with respect to the optical axis, the illuminance at the periphery of the reticle 14 becomes lower than that at the center.
【0019】8はコンデンサーレンズであり、照明方法
を切り替えると光軸に対して対称な照度むらが変化する
ので、その照度むらを取るためのズームレンズとなって
いる。Reference numeral 8 denotes a condenser lens, which is a zoom lens for eliminating the uneven illuminance because the illuminance unevenness symmetrical with respect to the optical axis changes when the illumination method is switched.
【0020】9はハーフミラーで、ほどんどの光は透過
するが、数パーセントの光が反射され、光測定器10で
照度が測定される。この測定器からの照度の情報は計算
機24に送られ、照度むらの演算に用いられる。Reference numeral 9 denotes a half mirror, which transmits most of the light but reflects a few percent of the light, and the illuminance is measured by the light measuring device 10. The information on the illuminance from this measuring device is sent to the calculator 24 and used for calculating the illuminance unevenness.
【0021】11は反射鏡であり、13は結像レンズで
ある。12は視野絞りであるマスキングブレードであ
り、種々の露光に応じて照明光をマスキングする。マス
キングブレード12とレチクル14はコンデンサーレン
ズ13により共役な関係に保たれているので、マスキン
グブレード12により、レチクル14を照明する範囲を
自由に変えることが出来る。Reference numeral 11 is a reflecting mirror, and 13 is an image forming lens. A masking blade 12 is a field stop, which masks the illumination light according to various exposures. Since the masking blade 12 and the reticle 14 are held in a conjugate relationship by the condenser lens 13, the masking blade 12 can freely change the illumination range of the reticle 14.
【0022】15はレチクルステージである。16はレ
チクル出し入れする駆動装置である。17はレチクルチ
ェンジャーで、複数のレチクルを収納することが出来
る。レチクル14の像は投影光学系18によりウエハ2
0に投影される。Reference numeral 15 is a reticle stage. Reference numeral 16 is a drive device for taking in and out the reticle. A reticle changer 17 can store a plurality of reticles. The image of the reticle 14 is projected onto the wafer 2 by the projection optical system 18.
Projected to 0.
【0023】投影光学系はレンズのみで構成される屈折
光学系であってもよいし、反射面を含む反射屈折光学系
であってもよい。21はウエハチャック、22はウエハ
ステージである。The projection optical system may be a dioptric optical system composed of only lenses, or may be a catadioptric optical system including a reflecting surface. Reference numeral 21 is a wafer chuck, and 22 is a wafer stage.
【0024】23はウエハ面における照度を測るための
照度測定器であり、ウエハステージ22と共に動くこと
が出来る。従って、ウエハ17上の全ての露光領域につ
いての照度を測定できる。Reference numeral 23 denotes an illuminance measuring device for measuring the illuminance on the wafer surface, which can move together with the wafer stage 22. Therefore, it is possible to measure the illuminance for all the exposure areas on the wafer 17.
【0025】図2はレチクル14の模式図であり、本実
施例において最も特徴的な部分である。斜線部は回路パ
ターン部であり、回路パターン部の外側の四隅にP1 ,
P2,P3 ,P4 の光透過部分 (照度測定ポイント) が
設けられていることを特徴としている。回路パターンの
外側であっても露光光によって照明される領域に光透過
部分を選ぶのはいうまでもない。本実施例では円形の光
透過部としたが、その形状は問わない。また、その位置
は回路パターン部以外ならどこでも良く、その数も4カ
所とは限らず、いくつであってもよい。FIG. 2 is a schematic view of the reticle 14, which is the most characteristic part of this embodiment. The shaded area is the circuit pattern area, and P 1 ,
It is characterized in that the light transmitting portions (illuminance measuring points) of P 2 , P 3 and P 4 are provided. It goes without saying that the light-transmitting portion is selected in the area illuminated by the exposure light even outside the circuit pattern. In this embodiment, the circular light transmitting portion is used, but the shape is not limited. Further, the position thereof may be anywhere other than the circuit pattern portion, and the number thereof is not limited to four and may be any number.
【0026】このような、レチクル14を用いた場合の
照度むら補正手順を示したのが図3である。FIG. 3 shows a procedure for correcting the uneven illuminance when the reticle 14 is used.
【0027】図3の各ステップについて説明する。この
時、すでに実レチクルの無い状態では照度むらの補正は
完了しているものとする。Each step of FIG. 3 will be described. At this time, it is assumed that the correction of the illuminance unevenness has been completed without the actual reticle.
【0028】ステップ1 回路パターンの描かれた実レ
チクルを光路に挿入する。Step 1 An actual reticle with a circuit pattern drawn is inserted into the optical path.
【0029】ステップ2 測定用光透過部P1 〜P4 の
照度I1 〜I4 を測定する。[0029] measuring the illuminance I 1 ~I 4 Step 2 measuring light transmitting portion P 1 to P 4.
【0030】ステップ3 演算部で、I1 =I2 =I3
=I4 となるかをある許容値をもって判定する。YES
の場合終了し、NOの場合は、In (n=1,2,3,
4)の量的関係から、照度むら補正部材の選定とその駆
動量及び方向を算出する。Step 3 In the calculation section, I 1 = I 2 = I 3
= I 4 is determined with a certain allowable value. Yes
In case of NO, in case of NO, I n (n = 1, 2, 3,
From the quantitative relationship of 4), the illuminance unevenness correcting member is selected and its driving amount and direction are calculated.
【0031】ステップ4 演算部の命令に従い照度むら
補正部材を駆動し、ステップ2に戻る。Step 4 The illuminance unevenness correcting member is driven in accordance with the instruction from the arithmetic unit, and the process returns to Step 2.
【0032】ステップ4の照度むら補正部材としては、
光軸に対称な照度むらを補正するズームレンズ8、対
称、非対称、双方の照度むらを補正できる照度むら補正
板7a、アクチュエータ101,102で位置を調整す
ることによって非対称な照度むら、また、アクチュエー
タ103で位置を調整することによって対称な照度むら
を補正できるランプ1等がある。As the illuminance unevenness correcting member in step 4,
A zoom lens 8 for correcting uneven illuminance symmetrical with respect to the optical axis, an uneven illuminance correction plate 7a capable of correcting both symmetric and asymmetric illuminance unevenness, and asymmetrical uneven illuminance by adjusting positions with actuators 101 and 102, and an actuator. There is a lamp 1 or the like that can correct symmetrical illuminance unevenness by adjusting the position at 103.
【0033】図4(A)は、レチクル無しで照度むらが
無くなるよう調整した状態を表している。図4の縦軸は
照度、横軸はウエハ中心を原点とした座標である。図3
の各ステップはこの状態を前提に行われる。FIG. 4A shows a state in which the illuminance is adjusted without using the reticle so as to eliminate the unevenness. The vertical axis of FIG. 4 is the illuminance, and the horizontal axis is the coordinates with the center of the wafer as the origin. FIG.
Each step of is performed on the premise of this state.
【0034】図4(B)は、(A)の状態にレチクルを
挿入した時の照度分布を表している。この図からフレア
光によって照度むらが生じることが分かる。図3のステ
ップ1の照度分布が、この状態である。FIG. 4B shows an illuminance distribution when the reticle is inserted in the state of FIG. From this figure, it can be seen that the flare light causes uneven illuminance. The illuminance distribution in step 1 of FIG. 3 shows this state.
【0035】図4(C)は、光透過部P1 ,P2 ,P
3 ,P4 に対応する基板面上の位置で照度を測定し、こ
の測定値から判断された照度むらを補正した後の照度分
布を示している。図3の各ステップを終えた状態は、こ
の照度分布となっている。本実施例では4点の照度のみ
を測定し、照度むらを判断しているため、全面の照度均
一性は(A)の場合に比べてやや劣るが(B)に比べれ
ば格段に改善される。フレア光による照度むらは滑らか
な分布をしているため、少ない測定点(この場合4点)
により得た照度分布でも、各測定点の照度が等しくなる
よう補正するだけで、かなりの照度むらを改善できる。FIG. 4C shows the light transmitting portions P 1 , P 2 , P.
3 shows the illuminance distribution after measuring the illuminance at the positions on the substrate surface corresponding to P 3 and P 4 and correcting the illuminance unevenness determined from the measured values. This illuminance distribution is obtained when each step in FIG. 3 is completed. In this embodiment, since the illuminance unevenness is determined by measuring only the illuminance at four points, the illuminance uniformity on the entire surface is slightly inferior to the case of (A), but is significantly improved as compared to (B). . Irregularity of illuminance due to flare light has a smooth distribution, so few measurement points (4 points in this case)
Even in the illuminance distribution obtained by, the illuminance unevenness can be considerably improved only by correcting the illuminance at each measurement point to be equal.
【0036】次に照度むら補正に関する第2の実施例に
ついて説明する。Next, a second embodiment relating to uneven illuminance correction will be described.
【0037】本実施例では、図5に示すレチクルを使用
する。このレチクルは、実施例1のレチクルにおけるP
1 〜P4 に相当する部分に、複数の透過部P1 ′,P
1 ″〜P4 ′,P4 ″を有することを特徴としている。
この場合、ステップ3の処理が実施例1とは異なってく
る。In this embodiment, the reticle shown in FIG. 5 is used. This reticle is P in the reticle of the first embodiment.
1 to P 4 , a plurality of transmissive parts P 1 ′, P
It is characterized by having 1 ″ to P 4 ′ and P 4 ″.
In this case, the process of step 3 is different from that of the first embodiment.
【0038】In ′とIn ″を測定した後、In ′とI
n ″の値から、傾きan を算出する。そして、I1 ′=
I2 ′=I3 ′=I4 ′かつa1 =a2 =a3 =a4 =
1となるかを一定の許容値を設けて判定する。照度むら
が許容値を越えていれば第1の実施例と同様な照度むら
補正手段によって照度むらを補正する。[0038] 'After measuring the I n "and, I n' I n and I
The slope a n is calculated from the value of n ″, and I 1 ′ =
I 2 ′ = I 3 ′ = I 4 ′ and a 1 = a 2 = a 3 = a 4 =
Whether or not it becomes 1 is determined by providing a certain allowable value. If the uneven illuminance exceeds the allowable value, the uneven illuminance correction means similar to the first embodiment corrects the uneven illuminance.
【0039】この方法では、第1の実施例よりも厳密な
照度むらの演算が可能となるため、より厳密に照度むら
を補正できる。According to this method, the illuminance unevenness can be calculated more strictly than in the first embodiment, so that the illuminance unevenness can be corrected more strictly.
【0040】次に照度むら補正に関する第3の実施例に
ついて説明する。Next, a third embodiment relating to correction of uneven illuminance will be described.
【0041】本実施例でも、図5に示すレチクルを使用
するが、ステップ3の処理が実施例1、2とは異なって
くる。This embodiment also uses the reticle shown in FIG. 5, but the process of step 3 is different from that of the first and second embodiments.
【0042】In ′とIn ″を測定した後、対角上に並
ぶ4点、In ′,In+2 ′, In ″,In+2 ″(n=
1,2)の値から、補間関数f13 ,f24を算出する。After measuring I n ′ and I n ″, four points diagonally aligned, I n ′, I n + 2 ′, I n ″, I n + 2 ″ (n =
Interpolation functions f 13 and f 24 are calculated from the values of 1 and 2).
【0043】例えば、多項式で補間するとすれば、本実
施例ではサンプリング点が4点なので3次の多項式で近
似し、 f(x)=a0 +a1 x+a2 x2 +a3 x3 のxにIn ′,In+2 ′, In ″,In+2 ″(n=1,
2)をそれぞれ代入し、これを解くことにより、a0 〜
a3 を決定し、f13,f24求める。そして、f13=f24
=定数となるかを、一定の許容値を設けて判定する。照
度むらが許容値を越えていれば第1、第2の実施例と同
様な照度むら補正手段によって照度むらを補正する。補
間関数は前述の多項式による補間に限らず、Lagur
ange補間、Spline補間、三角関数による補
間、最小自乗法による近似補間等でもよい。For example, if interpolation is performed with a polynomial, since there are four sampling points in the present embodiment, approximation with a third-order polynomial is performed, and f (x) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 becomes x. I n ′, I n + 2 ′, I n ″, I n + 2 ″ (n = 1,
By substituting each of 2) and solving it, a 0 ~
Determine a 3 and obtain f 13 and f 24 . And f 13 = f 24
= Whether or not it is a constant is determined by setting a certain allowable value. If the illuminance unevenness exceeds the allowable value, the illuminance unevenness correction means similar to those in the first and second embodiments corrects the illuminance unevenness. The interpolation function is not limited to the above-described polynomial interpolation,
It may be an angle interpolation, a Spline interpolation, an interpolation by a trigonometric function, an approximate interpolation by a least square method, or the like.
【0044】この方法では、第2の実施例よりも更に厳
密な照度むらの演算が可能となるため、第2の実施例よ
りも更に厳密に照度むらを補正できる。また、この時、
光透過部の対角線に沿った並びは4点以上でもよい。そ
の場合、当然補間精度は更に向上する。With this method, the illuminance unevenness can be calculated more strictly than in the second embodiment, so that the illuminance unevenness can be corrected more strictly than in the second embodiment. Also at this time,
Four or more points may be arranged along the diagonal line of the light transmitting portion. In that case, naturally, the interpolation accuracy is further improved.
【0045】以上はレチクルの転写パターン周辺部に照
度測定用の光透過部を設けた実施例のみを示したが、転
写パターンによってはレチクル中央部に光透過部を設け
ることが可能なものも考えられる。このようなレチクル
で前述の実施例のような照度分布測定を行った場合、前
述の3つの実施例よりも更に厳密な測定ができるのは言
うまでもない。Although only the embodiment in which the light transmitting portion for measuring the illuminance is provided in the peripheral portion of the transfer pattern of the reticle has been described above, there is a possibility that the light transmitting portion can be provided in the central portion of the reticle depending on the transfer pattern. To be Needless to say, when the illuminance distribution measurement as in the above-described embodiments is performed with such a reticle, more strict measurement can be performed than in the above-described three embodiments.
【0046】次に図1の投影露光装置を利用した半導体
素子の製造方法の実施例を説明する。図6は半導体装置
(ICやLSI等の半導体チップ、液晶パネルやCC
D)の製造フローを示す。ステップ61(回路設計)で
は半導体装置の回路設計を行う。ステップ62(マスク
制作)では設計した回路パターンを形成したマスク(レ
チクル14)を制作する。一方、ステップ63(ウエハ
製造)ではシリコン等の材料を用いてウエハ(ウエハ2
0)を製造する。ステップ64(ウエハプロセス)は前
工程と呼ばれ、上記用意したマスクとウエハとを用い
て、リソグラフィー技術によってウエハ上に実際の回路
を形成する。次のステップ65(組み立て)は後工程と
呼ばれ、ステップ64によって作成されたウエハを用い
てチップ化する工程であり、アッセンブリ工程(ダイシ
ング、ボンディング)、パッケージング工程(チップ封
入)等の工程を含む。ステップ66(検査)ではステッ
プ65で作成された半導体装置の動作確認テスト、耐久
性テスト等の検査を行う。こうした工程を経て半導体装
置が完成し、これが出荷(ステップ67)される。Next, an embodiment of a method of manufacturing a semiconductor device using the projection exposure apparatus of FIG. 1 will be described. 6 shows a semiconductor device (semiconductor chip such as IC or LSI, liquid crystal panel or CC
The manufacturing flow of D) is shown. In step 61 (circuit design), the circuit of the semiconductor device is designed. In step 62 (mask production), a mask (reticle 14) on which the designed circuit pattern is formed is produced. On the other hand, in step 63 (wafer manufacturing), a wafer (wafer 2
0) is produced. Step 64 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by the lithography technique using the mask and the wafer prepared above. The next step 65 (assembly) is called a post-process, and is a process of forming a chip using the wafer created in step 64, and includes an assembly process (dicing, bonding), a packaging process (chip encapsulation), and the like. Including. In step 66 (inspection), the semiconductor device manufactured in step 65 undergoes inspections such as an operation confirmation test and a durability test. Through these steps, the semiconductor device is completed and shipped (step 67).
【0047】図7は上記ウエハプロセスの詳細なフロー
を示す。ステップ71(酸化)ではウエハ(ウエハ2
0)の表面を酸化させる。ステップ72(CVD)では
ウエハの表面に絶縁膜を形成する。ステップ73(電極
形成)ではウエハ上にイオンを打ち込む。ステップ75
(レジスト処理)ではウエハにレジスト(感材)を塗布
する。ステップ76(露光)では上記投影露光装置によ
ってマスク(レチクル14)の回路パターンの像でウエ
ハを露光する。ステップ77(現像)では露光したウエ
ハを現像する。ステップ78(エッチング)では現像し
たレジスト以外の部分を削り取る。ステップ79(レジ
スト剥離)ではエッチングが済んで不要となったレジス
トを取り除く。これらステップを繰り返し行うことによ
りウエハ上に回路パターンが形成される。FIG. 7 shows a detailed flow of the wafer process. In step 71 (oxidation), the wafer (wafer 2
The surface of 0) is oxidized. In step 72 (CVD), an insulating film is formed on the surface of the wafer. In step 73 (electrode formation), ions are implanted on the wafer. Step 75
In (resist processing), a resist (sensitive material) is applied to the wafer. In step 76 (exposure), the projection exposure apparatus exposes the wafer with the image of the circuit pattern of the mask (reticle 14). In step 77 (developing), the exposed wafer is developed. In step 78 (etching), parts other than the developed resist are scraped off. In step 79 (resist stripping), the resist that is no longer needed after etching is removed. By repeating these steps, a circuit pattern is formed on the wafer.
【0048】本実施例の製造方法を用いれば、従来は難
しかった高集積度の半導体素子を製造することが可能に
なる。By using the manufacturing method of this embodiment, it becomes possible to manufacture a highly integrated semiconductor device, which has been difficult in the past.
【0049】[0049]
【発明の効果】本発明によれば、所望の回路パターンが
描かれた実レチクルを置いた状態で、照度むらの検出お
よび補正が可能となり、高精度な露光が可能となる。According to the present invention, it is possible to detect and correct illuminance unevenness in a state where an actual reticle on which a desired circuit pattern is drawn is placed, and it is possible to perform highly accurate exposure.
【図1】本発明のステッパの図である。FIG. 1 is a diagram of a stepper of the present invention.
【図2】第1の実施例に用いるレチクルを示した図であ
る。FIG. 2 is a diagram showing a reticle used in the first embodiment.
【図3】照度むらの補正手順を表すフローチャートであ
る。FIG. 3 is a flowchart showing a procedure for correcting uneven illuminance.
【図4】図3の各ステップにおける照度分布を示した図
である。FIG. 4 is a diagram showing an illuminance distribution in each step of FIG.
【図5】第1,第2の実施例に用いるレチクルの図であ
る。FIG. 5 is a diagram of a reticle used in the first and second embodiments.
【図6】半導体デバイスの製造工程を示す図である。FIG. 6 is a diagram showing a manufacturing process of a semiconductor device.
【図7】図6の工程中のウエハプロセスの詳細を示す図
である。FIG. 7 is a diagram showing details of the wafer process during the process of FIG. 6;
1 光源 14 レチクル 18 投影レンズ 20 ウエハ 23 照度測定器 24 演算部 101〜103 アクチュエータ DESCRIPTION OF SYMBOLS 1 Light source 14 Reticle 18 Projection lens 20 Wafer 23 Illuminance measuring instrument 24 Arithmetic unit 101-103 Actuator
Claims (7)
る照度測定手段を有する露光装置において、転写パター
ンが形成されたマスクの少なくとも1ケ所に露光光を透
過する光透過部を設け、前記マスクを前記露光光の光路
中の所定の位置に載置し、前記転写パターン部と前記光
透過部を露光光により同時に照明し、前記光透過部を透
過した前記露光光の照度を前記被露光面の複数の測定点
で測定し、その結果得られた測定値により、前記マスク
の転写パターンに対応する被露光面上の照度むらを検出
することを特徴とする露光装置。1. An exposure apparatus having an illuminance measuring means for measuring the illuminance at a plurality of measurement points on an exposed surface, wherein at least one location of a mask on which a transfer pattern is formed is provided with a light transmitting section for transmitting exposure light. The mask is placed at a predetermined position in the optical path of the exposure light, the transfer pattern portion and the light transmission portion are simultaneously illuminated by the exposure light, and the illuminance of the exposure light transmitted through the light transmission portion is controlled by the exposure light. An exposure apparatus which measures unevenness on the surface to be exposed corresponding to the transfer pattern of the mask, by measuring at a plurality of measurement points on the exposure surface, and measuring values obtained as a result.
ることを特徴とする請求項1記載の露光装置。2. The exposure apparatus according to claim 1, further comprising a correction unit that corrects the uneven illuminance.
くとも1ケ所に露光光を透過する光透過部を設け、前記
マスクを前記露光光の光路中の所定の位置に載置し、前
記転写パターン部と前記光透過部を露光光により同時に
照明し、前記光透過部を透過した前記露光光の照度を前
記被露光面の複数の測定点で測定し、その結果得られた
測定値により、前記マスクの転写パターンに対応する被
露光面上の照度むらを検出することを特徴とする照度む
ら検出方法。3. A transfer pattern portion is provided with a light transmitting portion which transmits exposure light at least at one location of a mask having a transfer pattern formed thereon, and the mask is placed at a predetermined position in an optical path of the exposure light. And simultaneously illuminating the light transmitting portion with exposure light, measuring the illuminance of the exposure light transmitted through the light transmitting portion at a plurality of measurement points on the exposed surface, and by the measurement values obtained as a result, the mask Unevenness detection method for detecting unevenness in illuminance on the surface to be exposed corresponding to the transfer pattern.
パターンの外側に位置することを特徴とするマスク。4. The mask, wherein the light transmitting portion for measuring the illuminance is located outside the transfer pattern.
在し、光軸に軸対称に位置することを特徴とする請求項
3記載のマスク。5. The mask according to claim 3, wherein there are a plurality of light transmitting portions for measuring the uneven illuminance, and the light transmitting portions are located symmetrically with respect to the optical axis.
を中心とする径方向に複数有することを特徴とする請求
項4記載のマスク。6. The mask according to claim 4, wherein a plurality of light transmitting portions for measuring unevenness in illuminance are provided in a radial direction centered on an optical axis.
求項3記載の照度分布補正方法、または請求項4乃至6
記載のマスクを用いた半導体素子の製造方法。7. An exposure apparatus according to any one of claims 1 and 2, an illuminance distribution correction method according to claim 3, or any one of claims 4 to 6.
A method for manufacturing a semiconductor device using the described mask.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6320039A JPH08179513A (en) | 1994-12-22 | 1994-12-22 | Aligner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6320039A JPH08179513A (en) | 1994-12-22 | 1994-12-22 | Aligner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08179513A true JPH08179513A (en) | 1996-07-12 |
Family
ID=18117065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6320039A Withdrawn JPH08179513A (en) | 1994-12-22 | 1994-12-22 | Aligner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08179513A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11317348A (en) * | 1998-04-30 | 1999-11-16 | Canon Inc | Projection aligner and method for manufacturing device using the same |
JP2000277413A (en) * | 1999-03-24 | 2000-10-06 | Canon Inc | Exposure amount control method, aligner and device manufacturing method |
JP2000294480A (en) * | 1999-04-01 | 2000-10-20 | Canon Inc | Method for controlling exposure, exposure system, and manufacture of device |
WO2002009163A1 (en) * | 2000-07-26 | 2002-01-31 | Nikon Corporation | Flare measuring method and flare measuring device, exposure method and exposure system, method of adjusting exposure system |
WO2006035925A1 (en) * | 2004-09-30 | 2006-04-06 | Nikon Corporation | Measurement method, exposure method, and device manufacturing method |
JP2006135325A (en) * | 2004-11-03 | 2006-05-25 | Asml Netherlands Bv | Lithography apparatus and method of manufacturing device |
-
1994
- 1994-12-22 JP JP6320039A patent/JPH08179513A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11317348A (en) * | 1998-04-30 | 1999-11-16 | Canon Inc | Projection aligner and method for manufacturing device using the same |
JP2000277413A (en) * | 1999-03-24 | 2000-10-06 | Canon Inc | Exposure amount control method, aligner and device manufacturing method |
JP2000294480A (en) * | 1999-04-01 | 2000-10-20 | Canon Inc | Method for controlling exposure, exposure system, and manufacture of device |
WO2002009163A1 (en) * | 2000-07-26 | 2002-01-31 | Nikon Corporation | Flare measuring method and flare measuring device, exposure method and exposure system, method of adjusting exposure system |
WO2006035925A1 (en) * | 2004-09-30 | 2006-04-06 | Nikon Corporation | Measurement method, exposure method, and device manufacturing method |
JPWO2006035925A1 (en) * | 2004-09-30 | 2008-05-15 | 株式会社ニコン | Measuring method, exposure method, and device manufacturing method |
US7791718B2 (en) | 2004-09-30 | 2010-09-07 | Nikon Corporation | Measurement method, exposure method, and device manufacturing method |
JP4539877B2 (en) * | 2004-09-30 | 2010-09-08 | 株式会社ニコン | Measuring method, exposure method, and device manufacturing method |
JP2006135325A (en) * | 2004-11-03 | 2006-05-25 | Asml Netherlands Bv | Lithography apparatus and method of manufacturing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3610175B2 (en) | Projection exposure apparatus and semiconductor device manufacturing method using the same | |
KR101267144B1 (en) | Sensor calibration method, exposure method, exposure device, device fabrication method, and reflection type mask | |
JP2002289494A (en) | Measuring method and projection aligner using the same | |
JP3254916B2 (en) | Method for detecting coma of projection optical system | |
US6699628B2 (en) | Aligning method for a scanning projection exposure apparatus | |
US7209215B2 (en) | Exposure apparatus and method | |
JP2008263194A (en) | Exposure apparatus, exposure method, and method for manufacturing electronic device | |
JP3599629B2 (en) | Illumination optical system and exposure apparatus using the illumination optical system | |
JP2002071514A (en) | Inspection apparatus, exposure apparatus provided with the inspection apparatus and production method of micro device | |
JP3200244B2 (en) | Scanning exposure equipment | |
KR100955116B1 (en) | Aberration measurement method and coma aberration measurement method | |
JPH08179513A (en) | Aligner | |
JPH09270374A (en) | Illumination measuring method | |
JP2001085321A (en) | Aligner and exposure method, and method for manufacturing microdevice | |
JP4835921B2 (en) | Measuring method, exposure method, device manufacturing method, and mask | |
JP2000114164A (en) | Scanning projection aligner and manufacture of device using the same | |
US20040135981A1 (en) | Exposure apparatus and method | |
JPH0729816A (en) | Projection aligner and fabrication of semiconductor element employing it | |
JP2006080444A (en) | Measurement apparatus, test reticle, aligner, and device manufacturing method | |
JP2003178968A (en) | Method of measuring aberration and projection exposure system | |
JP2001358059A (en) | Method for evaluating exposure apparatus and exposure apparatus | |
JP5006711B2 (en) | Exposure apparatus, exposure method, and device manufacturing method | |
JPH09213618A (en) | Projection exposure system and manufacture of device using the same | |
JP2006120660A (en) | Position correction method and device, exposing device, and device manufacturing method | |
JP3245026B2 (en) | Exposure method, exposure apparatus, and device manufacturing method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020305 |