[go: up one dir, main page]

JPH08177922A - Energy absorbing body of hybridized fiber reinforced compound material - Google Patents

Energy absorbing body of hybridized fiber reinforced compound material

Info

Publication number
JPH08177922A
JPH08177922A JP33670494A JP33670494A JPH08177922A JP H08177922 A JPH08177922 A JP H08177922A JP 33670494 A JP33670494 A JP 33670494A JP 33670494 A JP33670494 A JP 33670494A JP H08177922 A JPH08177922 A JP H08177922A
Authority
JP
Japan
Prior art keywords
fiber
energy absorber
reinforced composite
energy
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33670494A
Other languages
Japanese (ja)
Inventor
Mine Son
峰 孫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP33670494A priority Critical patent/JPH08177922A/en
Publication of JPH08177922A publication Critical patent/JPH08177922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vibration Dampers (AREA)

Abstract

PURPOSE: To avoid sudden type load fluctuation in the early stage of deformation of an energy absorbing body and increase total energy absorbing amount as well as to reduce a G value at the time of collision by multiply arranging and/or laminating different kinds of fiber materials along the thickness direction and/or the axis direction. CONSTITUTION: In the early stage of collision, only a ±θ(90 deg.) fiber part 3 acts and a G value can be made small by the action of a low load because of the existence of a taper part 2. Action is then followed by a low strength glass fiber part GF4 and the displacement of the load in an L1 range is nearly regularized. When the displacement comes to an intermediate part, a high strength carbon fiber part CF5 acts and the load of building-up energy absorbing amount increases. The extent of increase varies by the content rate of GF5 and CF5 and the length of L2 -L1 . Because action is followed by a high strength CF5 part, the load in the range of L-L2 further increases and the energy absorbing amount is increased. Thus, reduction of the G value and increase of energy absorbing amount in the early stage of collision can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、衝撃力を受ける部位に
配置され、少なくとも2水準の衝突速度に対応出来、初
期の減速度(G値)が小さく、かつ全体のエネルギ吸収
量の大きいハイブリッド化繊維強化複合材料のエネルギ
吸収体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a hybrid which is arranged at a portion which receives an impact force, can cope with at least two levels of collision speed, has a small initial deceleration (G value), and has a large total energy absorption amount. The present invention relates to an energy absorber of a synthetic fiber reinforced composite material.

【0002】[0002]

【従来の技術】例えば、自動車の車体の前後部等の衝撃
力を受ける部位には衝撃時において変位し、かつ圧縮破
壊(以下、圧潰という)してエネルギを吸収するエネル
ギ吸収体が設けられていることが多い。図20は最も一
般的に使用されている繊維強化複合材料円筒(以下、F
RP円筒という)8を示す。このFRP円筒8は図示の
ように内径d,外径Dおよび肉厚tの中空円筒体からな
り、その衝撃力を受ける先端部には面取り加工により下
り傾斜のテーパ部2aが形成される。なお、このFRP
円筒8に関しては「Energy Absorptio
n in Composite Tubes,J.Co
mp. Mat.Vol.16,(Nov.198
2),P521」に紹介されている。図21に示すよう
に、このFRP円筒8に衝撃力が作用すると、衝撃力を
受ける側の先端部に図示のように圧潰変形9が生じてエ
ネルギを吸収する。図22はこの場合のエネルギ吸収状
態を示すものである。すなわち、図22において、横軸
にFRP円筒8の軸線方向の変位δをとり縦軸にFRP
円筒8に作用する荷重Pをとると吸収エネルギEは図示
のハッチングで示される。また、この場合、図示のよう
に衝突直後に最大荷重Pmaxが生じ、以下、図21の
圧潰変形9によりほとんど一定の荷重変化(平均荷重P
meanに近い値)で変位する。従って、FRP円筒8
の場合はPmean/Pmaxの値が比較的大きく、吸
収エネルギEの値が大きい特徴を有している。この特徴
から前記したようにFRP円筒8が自動車等の衝突時に
おけるエネルギ吸収体として広く使用されている。
2. Description of the Related Art For example, an energy absorbing member which is displaced at the time of impact and absorbs energy by being compressed and destroyed (hereinafter, referred to as crushing) is provided in a front and rear portion of an automobile body. Often FIG. 20 shows the most commonly used fiber-reinforced composite cylinder (hereinafter referred to as F
RP cylinder) 8 is shown. The FRP cylinder 8 is formed of a hollow cylindrical body having an inner diameter d, an outer diameter D and a wall thickness t as shown in the drawing, and a tip end portion which receives the impact force thereof is formed with a taper portion 2a having a downward slope by chamfering. In addition, this FRP
For the cylinder 8, see "Energy Absorbtio.
n in Composite Tubes, J. Am. Co
mp. Mat. Vol. 16, (Nov. 198).
2), P521 ”. As shown in FIG. 21, when an impact force is applied to the FRP cylinder 8, a crush deformation 9 is generated at the tip end on the side receiving the impact force to absorb energy. FIG. 22 shows the energy absorption state in this case. That is, in FIG. 22, the horizontal axis represents the displacement δ of the FRP cylinder 8 in the axial direction, and the vertical axis represents the FRP.
When the load P acting on the cylinder 8 is taken, the absorbed energy E is shown by hatching in the figure. Further, in this case, the maximum load Pmax is generated immediately after the collision as shown in the figure, and thereafter, a substantially constant load change (average load Pmax due to crush deformation 9 in FIG. 21).
It is displaced at a value close to mean). Therefore, the FRP cylinder 8
In the case of, the value of Pmean / Pmax is relatively large and the value of absorbed energy E is large. Due to this feature, as described above, the FRP cylinder 8 is widely used as an energy absorber at the time of collision of an automobile or the like.

【0003】一方、FRP円筒に関する公知技術とし
て、例えば、特開平6−123322号公報および特開
平6−123323号公報が上げられる。前者の「エネ
ルギ吸収部材」は有底中空円筒体からなり、その肉厚が
先端部から有底側に向かって変化し、先端側が最も肉薄
状に形成されることを特徴とするものである。また、後
者の「エネルギ吸収部材」は前者と同じく有底中空円筒
体からなるが、肉厚が少なくとも有底側に向かって2段
に増厚に変化する形状に形成される点に特徴を有するも
のである。これ等のエネルギ吸収体はいずれも衝突変形
時において突発的な大きな荷重が発生せず、しかもその
後のエネルギ吸収効率の高い特徴を有するものであり、
特に後者は少なくとも2水準の衝突速度に対応するエネ
ルギ吸収特性を有し、エアバックの作動センサのチュー
ナとしても機能し得る特徴を有するものである。
On the other hand, known techniques relating to FRP cylinders include, for example, JP-A-6-123322 and JP-A-6-123323. The former "energy absorbing member" is composed of a hollow cylindrical body with a bottom, the thickness of which changes from the tip toward the bottom, and the tip side is formed to be the thinnest. Further, the latter "energy absorbing member" is composed of a hollow cylindrical body with a bottom as in the former, but is characterized in that the wall thickness is formed so as to increase in two steps toward at least the bottomed side. It is a thing. All of these energy absorbers do not generate a sudden large load at the time of collision deformation, and are characterized by high energy absorption efficiency thereafter.
In particular, the latter has an energy absorption characteristic corresponding to at least two levels of collision speed, and has a characteristic that it can also function as a tuner of an airbag operation sensor.

【0004】[0004]

【発明が解決しようとする課題】エネルギ吸収体として
は、衝突の際における乗員の損傷を少なくするために衝
突のエネルギを吸収すると共に乗員に加わる初期の減速
度(G値)を小さくすることがまず必要である。また、
全体として衝突のエネルギを十分に吸収すべくエネルギ
吸収率の高いものが必要になる。前記のG値を小さくす
るためには、図22に示す荷重Pmaxのような急激な
荷重が衝突の初期に生じることを避ける必要があり、か
つ変位が進むと共に除々に荷重が増加して吸収エネルギ
を増加するように変形することが必要である。また、自
動車等においては乗員の保護のためにエアバックが配設
されているが、このエアバックを作動する作動指令を発
する作動センサのチューナの機能をエネルギ吸収体にも
たせるべく、エネルギ吸収体に少なくとも2水準以上の
衝突速度に対応するエネルギ吸収形態をもたせるように
することも必要である。この必要性から判断すると前記
した図20乃至図22のFRP円筒8では以上の要請を
満足しない。また、前記の公知技術の場合には以上の要
請を一応満足するものであるが、特開平6−12332
2号公報のエネルギ吸収部材は肉厚がテーパ状のため構
造物の間への取り付けが難しく、更に短繊維の繊維材料
のみを用いているためエネルギ吸収量が少ないという問
題点がある。また、特開平6−123323号公報のエ
ネルギ吸収部材の場合には2水準の速度対応を図るため
肉厚が段階状に変化する。そのため、前者と同じく構造
物の間への取り付けが難しく、更に短繊維の繊維材料の
みを用いているためエネルギ吸収量が少ないという問題
点がある。
As an energy absorber, in order to reduce damage to the occupant during a collision, the energy of the collision is absorbed and the initial deceleration (G value) applied to the occupant is reduced. First of all, it is necessary. Also,
As a whole, a material having a high energy absorption rate is required to sufficiently absorb the energy of collision. In order to reduce the G value, it is necessary to avoid a sudden load such as the load Pmax shown in FIG. 22 from occurring in the initial stage of the collision, and the load gradually increases as the displacement progresses and the absorbed energy increases. It is necessary to transform so as to increase. Further, in an automobile or the like, an airbag is provided for protection of an occupant, but the energy absorber is provided in order to allow the energy absorber to function as a tuner of an operation sensor that issues an operation command to operate the airbag. It is also necessary to have an energy absorption mode corresponding to collision speeds of at least two levels or more. Judging from this necessity, the FRP cylinder 8 of FIGS. 20 to 22 does not satisfy the above requirements. Further, in the case of the above-mentioned known technique, the above request is met for the time being.
The energy absorbing member of Japanese Patent Laid-Open No. 2 has a problem in that it is difficult to mount it between structures due to its tapered wall thickness, and the amount of energy absorbed is small because only short fiber materials are used. Further, in the case of the energy absorbing member disclosed in Japanese Patent Laid-Open No. 6-123323, the wall thickness changes stepwise in order to achieve two levels of speed correspondence. Therefore, there is a problem that it is difficult to mount it between the structures as in the former case, and the energy absorption amount is small because only the short fiber material is used.

【0005】本発明は、以上の事情に鑑みて創案された
ものであり、衝突時におけるG値を減少させると共に、
その後多量のエネルギを吸収しエネルギ吸収効率を向上
することが出来、少なくとも2水準の衝突速度に対応す
るエネルギ吸収によりエアバックの作動センサのチュー
ナとして機能し得るハイブリッド化繊維強化複合材料の
エネルギ吸収体を提供することを目的とする。
The present invention was devised in view of the above circumstances and reduces the G value at the time of collision and
Thereafter, a large amount of energy can be absorbed to improve the energy absorption efficiency, and the energy absorption body of the hybridized fiber reinforced composite material that can function as a tuner of an airbag operation sensor by absorbing energy corresponding to at least two levels of collision speed. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】本発明は、以上の目的を
達成するために、繊維強化複合材料からなり衝撃のエネ
ルギを吸収するエネルギ吸収体であって、前記繊維強化
複合材料が、肉厚方向及び/又は軸線方向に沿って異な
る種類の繊維材料を多重に配列及び/又は積層してハイ
ブリッド化したものからなり、前記繊維材料が、軸線方
向に対してθ角度だけ正負方向に繊維が傾斜して配列さ
れる±θ繊維と、θ角度が90°の90°繊維と、短繊
維強化複合材料と、長繊維強化複合材料と、ガラス繊維
と、カーボン繊維等の適宜な組み合わせ群からなるハイ
ブリッド化繊維強化複合材料のエネルギ吸収体を構成す
るものである。更に具体的には、前記エネルギ吸収体
が、その圧潰開始端側から他端側に向かって順に強度の
高い複数の繊維材料を配設した層を有したり、前記エネ
ルギ吸収体内に、そのエネルギ吸収体の軸線に沿って圧
潰開始端側から他端側に向かって、比較的強度の高い繊
維材料が連続的に増大する部分及び/又は比較的強度の
低い繊維材料が連続的に減少する部分を設けたり、前記
エネルギ吸収体の圧潰開始端側の端部が面取りされたり
するものである。
In order to achieve the above object, the present invention is an energy absorber made of a fiber reinforced composite material for absorbing impact energy, wherein the fiber reinforced composite material is thick. And / or stacking different types of fibrous materials in multiple directions along the axial direction and / or the axial direction, and hybridizing the fibrous materials. A hybrid consisting of an appropriate combination group of ± θ fibers arranged in parallel, 90 ° fibers with an θ angle of 90 °, short fiber reinforced composite material, long fiber reinforced composite material, glass fiber, carbon fiber, etc. It constitutes an energy absorber of a synthetic fiber reinforced composite material. More specifically, the energy absorber has a layer in which a plurality of high-strength fiber materials are arranged in order from the crush start end side to the other end side, or the energy absorber has the energy A portion in which the relatively high strength fiber material continuously increases and / or a portion in which the relatively low strength fiber material continuously decreases from the crush start end side to the other end side along the axis of the absorber. Is provided, or the end of the energy absorber on the side where the crush starts is chamfered.

【0007】[0007]

【作用】本発明のエネルギ吸収体は一種類の繊維材料の
みから構成されるものではなく、多種のものを肉厚方向
及び/又は軸線方向に配列及び/又は積層したものから
なる。これにより、所望の荷重−変位変化を得ることが
出来る。そのため所望のエネルギ吸収効率を有するエネ
ルギ吸収体を形成することが可能である。また、衝突初
期におけるG値の減少のために前記の多種類の繊維材料
の使用と共に先端部をテーパ状に形成して対応すること
が出来る。また、使用する繊維材料の内容とその配列お
よび積層形態により2水準の衝突速度に対応するエネル
ギ吸収を行うことが出来、エアバックの作動センサのチ
ューナとして機能することが出来る。また、本発明のエ
ネルギ吸収体は軸線方向に沿って肉厚が一定で、かつ外
内径がストレート形状のため前記した公知技術のように
構造物の間への取り付けが難しいという問題点はない。
The energy absorber of the present invention is not composed of only one kind of fiber material, but is composed of various kinds arranged and / or laminated in the thickness direction and / or axial direction. Thereby, a desired load-displacement change can be obtained. Therefore, it is possible to form an energy absorber having a desired energy absorption efficiency. Further, in order to reduce the G value at the initial stage of the collision, it is possible to cope with the use of the above-mentioned various kinds of fiber materials and the tapered tip portion. Further, energy absorption corresponding to two levels of collision speed can be performed depending on the content of the fibrous material to be used, the arrangement thereof, and the laminated form, and it can function as a tuner of an airbag operation sensor. Further, since the energy absorber of the present invention has a constant thickness along the axial direction and the outer and inner diameters are straight, there is no problem that it is difficult to mount the energy absorber between structures as in the above-mentioned known technique.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。図1は本発明の最も一般的な形態のエネルギ吸収体
を示す軸断面図、図2はその外観形状を示す略斜視図、
図3は図1のエネルギ吸収体の荷重−変位線図、図4乃
至図10は軸線方向に沿って繊維材料の肉厚が連続的に
変化しない本発明の他の実施例を示す部分軸断面図、図
11,図12,図14乃至図19は繊維材料の肉厚が軸
線方向に沿って連続的に変化する本発明のその他の実施
例を示す部分軸断面図、図13は図11に示したエネル
ギ吸収体の荷重−変位線図等を示すものである。
Embodiments of the present invention will be described below with reference to the drawings. 1 is an axial sectional view showing an energy absorber of the most general form of the present invention, FIG. 2 is a schematic perspective view showing its external shape,
FIG. 3 is a load-displacement diagram of the energy absorber of FIG. 1, and FIGS. 4 to 10 are partial axial sectional views showing another embodiment of the present invention in which the wall thickness of the fiber material does not continuously change along the axial direction. FIG. 11, FIG. 12, FIG. 12, and FIG. 14 to FIG. 19 are partial axial sectional views showing another embodiment of the present invention in which the wall thickness of the fibrous material continuously changes along the axial direction, and FIG. It is what shows the load-displacement diagram etc. of the energy absorber shown.

【0009】図1に示すように、このエネルギ吸収体1
は肉厚が一定で外内径が軸線方向に沿って一定の中空円
筒体からなり、衝撃力を受ける先端側には下り傾斜のテ
ーパ部2が形成される。このエネルギ吸収体1は±θ繊
維部(又は90°繊維部)3と、ガラス繊維部(以下、
GFと表示する)4と、カーボン繊維部(以下、CFと
表示する)5とからなる。なお、これ等の区別がよくわ
かるように図では±θ(90°)繊維部3は□印で示
し、GF4(90°)は○印,CF5(90°)は●で
それぞれ表示する。±θ(90°)繊維部3は図2に示
すように、繊維方向が軸線方向に対して正負方向のθ角
度又は90°で配列される繊維強化複合材料からなり、
例えばフィラメントワインディング製のものからなる。
また、GF4およびCF5も一般的なガラスおよびカー
ボン繊維からなり、軸線に対し90°配向角を有するも
のであった方がよいが、特にその内容を限定するもので
はない。なお、CF5はGF4に較べて強度が高い。こ
のエネルギ吸収体1は図示のように±θ(90°)繊維
部3が最も内側に配列され、外側の軸線方向の上方側に
はGF4が配列され、中間にはGF4とCF5が並設さ
れ、下方側にはCF5が配列される。従って、このエネ
ルギ吸収体1の上方部(図のL1 の範囲)は±θ(90
°)繊維部3とGF4からなり、中間部(図のL2 −L
1 の範囲)は±θ(90°)繊維部3とGF4およびC
F5からなり、下方部(図のL−L2 の範囲)は±θ
(90°)繊維部3とCF5とからなる。以上のよう
に、本実施例のエネルギ吸収体1はハイブリッド化され
た配列と積層構造からなる。また、図1では先端部にテ
ーパ部2があり、±θ(90°)繊維部3とGF4とは
テーパ部2の範囲で傾斜面に沿って肉厚を増大してい
る。以上の構造のハイブリッド化されたエネルギ吸収体
1の衝突時におけるエネルギ吸収状態を図3の荷重−変
位線図により示す。図3において曲線Aは本実施例のエ
ネルギ吸収体1の荷重−変位線図であり、曲線Bは図1
の中間部(L2 −L1 の範囲)および下方部(L−L2
の範囲)がすべてGF4からなる場合であり、曲線Cは
±θ(90°)繊維部3だけからなる場合である。曲線
B,Cは前記の従来技術の図22と近似する変化をする
が、本実施例のエネルギ吸収体1は曲線Aのように少な
くとも2水準の衝突速度に対応する変化を示し、かつ変
位が進むことによりエネルギ吸収効率が増加する形態を
示す。これは衝突の初期では±θ(90°)繊維部3の
みが作用し、かつテーパ部2があるため低い荷重が作用
し、G値を小さくすることが出来るためである。引き続
き強度の低いGF4が作用しL1 範囲では荷重はほぼ一
定で変位する。変位が中間部にかかると強度の高いCF
5が作用し荷重は立ち上がりエネルギ吸収量が増加す
る。この増加度合いはGF4とCF5の含有割合と、
(L2 −L1 )の長さによって変化する。次に、強度の
高いCF5の部分が作用するため、図示のように荷重は
更に上昇しエネルギ吸収量が増加する。以上により、衝
突初期のG値の低減と、エネルギ吸収量の増大化が図
れ、かつ段階状に荷重が変化しているためエアバックの
作動センサのチューナとして機能することが出来る。本
実施例において±θ(90°)繊維部3とGF4,CF
5の配列,積層の度合いを種々変化させることにより各
種の荷重−変位線図が得られ、所望のエネルギ吸収形態
およびエネルギ吸収量を得ることが出来る。
As shown in FIG. 1, this energy absorber 1
Is a hollow cylindrical body having a constant wall thickness and a constant outer and inner diameter along the axial direction, and a tapered portion 2 having a downward slope is formed on the tip end side that receives an impact force. This energy absorber 1 includes a ± θ fiber portion (or 90 ° fiber portion) 3 and a glass fiber portion (hereinafter,
It is composed of a GF) 4 and a carbon fiber portion (hereinafter referred to as CF) 5. In order to clearly distinguish these, ± θ (90 °) fiber portion 3 is indicated by □, GF4 (90 °) is indicated by ◯, and CF5 (90 °) is indicated by ● in the figure. As shown in FIG. 2, the ± θ (90 °) fiber portion 3 is made of a fiber-reinforced composite material in which the fiber direction is arranged at a θ angle of 90 degrees or positive and negative directions with respect to the axial direction,
For example, it is made of filament winding.
Further, GF4 and CF5 are also preferably made of general glass and carbon fibers and have an orientation angle of 90 ° with respect to the axis, but the content thereof is not particularly limited. Note that CF5 has higher strength than GF4. In this energy absorber 1, ± θ (90 °) fiber portions 3 are arranged on the innermost side as shown in the drawing, GF4 is arranged on the upper side in the axial direction on the outer side, and GF4 and CF5 are arranged in parallel in the middle. , CF5 is arranged on the lower side. Therefore, the upper part of the energy absorber 1 (range of L 1 in the figure) is ± θ (90
°) Composed of fiber part 3 and GF4, middle part (L 2 -L in the figure)
1 range) is ± θ (90 °) fiber part 3 and GF4 and C
It consists of F5, and the lower part (range of L-L 2 in the figure) is ± θ
It consists of (90 °) fiber part 3 and CF5. As described above, the energy absorber 1 according to the present embodiment has the hybridized array and the laminated structure. Further, in FIG. 1, there is a taper portion 2 at the tip portion, and the thickness of the ± θ (90 °) fiber portion 3 and GF4 increases along the inclined surface in the range of the taper portion 2. The energy absorption state at the time of collision of the hybridized energy absorber 1 having the above structure is shown by the load-displacement diagram of FIG. In FIG. 3, a curve A is a load-displacement diagram of the energy absorber 1 of this embodiment, and a curve B is shown in FIG.
An intermediate portion of the (L 2 range of -L 1) and lower part (L-L 2
The range C) is composed entirely of GF4, and the curve C is composed of only ± θ (90 °) fiber portions 3. The curves B and C have changes similar to those of FIG. 22 of the prior art described above, but the energy absorber 1 of the present embodiment shows changes corresponding to at least two levels of collision speed as shown by the curve A, and the displacement is The form in which the energy absorption efficiency is increased by advancing is shown. This is because at the initial stage of the collision, only the fiber portion 3 of ± θ (90 °) acts, and since the taper portion 2 exists, a low load acts and the G value can be reduced. GF4 having a low strength continues to act, and the load is almost constant and displaced in the L 1 range. CF with high strength when displaced in the middle
5, the load rises and the amount of energy absorbed increases. The degree of this increase depends on the content ratio of GF4 and CF5,
It changes depending on the length of (L 2 −L 1 ). Next, since the CF5 portion having high strength acts, the load further increases and the energy absorption amount increases as shown in the figure. As described above, the G value at the initial stage of the collision can be reduced, the energy absorption amount can be increased, and the load can be changed stepwise, so that it can function as a tuner of the airbag operation sensor. In this embodiment, ± θ (90 °) fiber portion 3 and GF4, CF
Various load-displacement diagrams can be obtained by varying the arrangement of 5 and the degree of stacking, and a desired energy absorption form and energy absorption amount can be obtained.

【0010】図4以下は他の実施例を示す。図4の実施
例のエネルギ吸収体1aは図1の中間部(L2 −L1
範囲)のGF4とCF5との積層順序を変えたものであ
り、図1のものとほぼ同様な効果を有する。
4 and other figures show another embodiment. The energy absorber 1a of the embodiment shown in FIG. 4 is obtained by changing the stacking order of GF4 and CF5 in the intermediate portion (range of L 2 -L 1 ) of FIG. 1 and has substantially the same effect as that of FIG. Have.

【0011】図5は図1の±θ(90°)繊維部3の替
わりに短繊維強化複合材料6を用いたエネルギ吸収体1
bを示す。短繊維強化複合材料6は短繊維を散布させて
なる繊維強化複合材料からなり、例えば、SMC(シー
トモルディングコンパウンド)や射出成型によって製作
されるものである。
FIG. 5 shows an energy absorber 1 using a short fiber reinforced composite material 6 instead of the ± θ (90 °) fiber portion 3 of FIG.
b is shown. The short fiber reinforced composite material 6 is made of a fiber reinforced composite material in which short fibers are dispersed, and is manufactured by, for example, SMC (sheet molding compound) or injection molding.

【0012】図6は図1の±θ(90°)繊維部3の替
わりに長繊維強化複合材料7(例えば、織物強化複合材
料)を用いたエネルギ吸収体1cを示す。シートワイン
ディング製法等により形成される。
FIG. 6 shows an energy absorber 1c using a long fiber reinforced composite material 7 (for example, woven fabric reinforced composite material) instead of the ± θ (90 °) fiber portion 3 of FIG. It is formed by a sheet winding method or the like.

【0013】図7は更に別の実施例を示すもので、この
エネルギ吸収体1dは中空円筒体の外側の部分に±θ
(90°)繊維部3を設け、内側の部分の上方部(L1
の範囲)に強度の低いGF4を用い、中間部(L2 −L
1 の範囲)にGF4とCF5を並設させ、下方部(L−
2 の範囲)にCF5を配設したものである。
FIG. 7 shows still another embodiment. This energy absorber 1d is ± θ on the outside of the hollow cylinder.
(90 °) The fiber part 3 is provided, and the upper part (L 1
In the middle part (L 2 -L)
GF4 and CF5 are installed side by side in the range ( 1 ) and the lower part (L-
CF5 is arranged in the range of L 2 .

【0014】図8はやや複雑な構成内容からなる他の実
施例のエネルギ吸収体1eを示す。このエネルギ吸収体
1eは肉厚部の中心に±θ(90°)繊維部3を配設し
たものである。内側にはL1 の範囲にGF4を配設し、
2 −L1 の中間部にGF4とCF5を並設し、下方部
(L−L2 の範囲)にCF5を配設する。また、外側の
1 の範囲にGF4を、中間部(L2 −L1 の範囲)に
GF4とCF5を、下方部(L−L2 の範囲)にCF5
をそれぞれ配設したものである。
FIG. 8 shows an energy absorber 1e of another embodiment having a slightly complicated construction. This energy absorber 1e has ± θ (90 °) fiber portions 3 arranged at the center of the thick portion. Inside, GF4 is arranged in the range of L 1 ,
L 2 -L 1 of the intermediate portion GF4 and juxtaposed to CF5, disposing CF5 the lower portion (the range of L-L 2). Further, GF4 is in the outer L 1 range, GF4 and CF5 are in the middle part (L 2 -L 1 range), and CF5 is in the lower part (L-L 2 range).
Are arranged respectively.

【0015】図9のエネルギ吸収体1fは中空円筒体の
内側および外側の両方に±θ(90°)繊維部3を配設
したものである。その肉厚部の中央にはL1 の範囲にG
F4を配設し、中間部(L2 −L1 の範囲)にGF4と
CF5を、下方部(L−L2の範囲)にCF5をそれぞ
れ配設したものである。
The energy absorber 1f shown in FIG. 9 is one in which ± θ (90 °) fiber portions 3 are arranged both inside and outside the hollow cylindrical body. G in the range of L 1 in the center of the thick part
Disposed to F4, the intermediate section (L 2 -L 1 range) to GF4 and CF5, is lower portions (L-L 2 range) in a CF5 those disposed respectively.

【0016】図10は±θ(90°)繊維部3を使用し
ないエネルギ吸収体1gを示す。上方部(L1 の範囲)
はGF4が配設され、中間部(L2 −L1 の範囲)はG
F4とCF5を並設し、下方部(L−L2 の範囲)には
CF5をそれぞれ配設する。
FIG. 10 shows an energy absorber 1g which does not use the ± θ (90 °) fiber portion 3. Upper part (range of L 1 )
Is provided with GF4, and the middle part (range of L 2 −L 1 ) is G
Juxtaposed the F4 and CF5, the lower portion (the range of L-L 2) to dispose the CF5 respectively.

【0017】以上に、各種形式のエネルギ吸収体1乃至
1gを説明したが、勿論これ等に限定するものではな
く、上方部から下方側に向かって強度が次第に増加する
形態のものであればその配列,積層の形態は任意のもの
でよい。また、各部は一体成型で形成してもよく二次成
型によってもよい。また、GF4,CF5はフィラメン
トワインディング法により製造されるものでもその他の
製法によるものでもよい。
Although the various types of energy absorbers 1 to 1g have been described above, of course, the present invention is not limited to these, and any type of energy absorber whose strength gradually increases from the upper part to the lower part can be used. The arrangement and stacking form may be arbitrary. Also, each part may be formed by integral molding or secondary molding. Further, GF4 and CF5 may be manufactured by the filament winding method or other manufacturing methods.

【0018】図11乃至図19はエネルギ吸収体を構成
する繊維材料の少なくとも1つが軸線方向に沿ってその
肉厚を連続的に変化させるものからなるエネルギ吸収体
の各種の実施例を示す。図11のエネルギ吸収体1h
は、中空円筒体の内側に±θ(90°)繊維部3を配設
し、肉厚の中央にCF5を配設し、外側にGF4を配設
したものである。なお、先端部にはテーパ部2が形成さ
れる。図示のように中央のCF5はテーパ部2の位置に
おいて肉厚がほぼゼロの状態で介設され、軸線方向に沿
って下方に進むにつれて肉厚を増加させる形態で配設さ
れる。逆に、GF4はテーパ部2の位置で最大の肉厚を
有し、下方に進むにつれて肉厚が小になり、最下面では
ほぼゼロになるように配設される。勿論、肉厚部の全体
の肉厚は一定である。以上の構成により先端部の強度が
低く、下方に進むにつれて強度が高くなるように配設さ
れる。
11 to 19 show various embodiments of the energy absorber in which at least one of the fiber materials constituting the energy absorber is such that its wall thickness continuously changes along the axial direction. Energy absorber 1h of FIG.
Is a structure in which the ± θ (90 °) fiber portion 3 is arranged inside the hollow cylindrical body, CF5 is arranged in the center of the wall thickness, and GF4 is arranged outside. The tapered portion 2 is formed at the tip. As shown in the figure, the CF5 at the center is provided with a thickness of almost zero at the position of the tapered portion 2, and is arranged in such a manner that the thickness increases as it goes downward along the axial direction. On the contrary, GF4 has the maximum wall thickness at the position of the tapered portion 2, the wall thickness becomes smaller as it goes downward, and it is arranged so that it becomes almost zero at the lowermost surface. Of course, the entire thickness of the thick portion is constant. With the above structure, the strength of the tip portion is low, and the strength is increased as it goes downward.

【0019】図13は図11のエネルギ吸収体1hのエ
ネルギ吸収形態を示す荷重−変位線図である。なお、図
中、曲線Aは図11の場合を示し、曲線Bは図11の中
央のCF5の部分もGF4で形成されている場合であ
り、曲線Cは図11のGF4およびCF5の部分はなく
±θ(90°)繊維部3だけより形成されているエネル
ギ吸収体の場合を示す。曲線B,Cの場合は図22の従
来技術のものとほぼ近似するが、曲線Aの場合には大き
なエネルギ吸収を得ることが出来る。この場合、荷重−
変位曲線は終始緩やかに変化し急激な変化はなく最大荷
重は変位の最後に表われる。これにより、乗員のG値が
減少し、大きなエネルギ吸収を確保することが出来る。
FIG. 13 is a load-displacement diagram showing the energy absorption form of the energy absorber 1h of FIG. In the figure, the curve A shows the case of FIG. 11, the curve B shows the case where the CF5 part in the center of FIG. 11 is also formed of GF4, and the curve C does not have the parts of GF4 and CF5 of FIG. The case of an energy absorber formed of only ± θ (90 °) fiber portions 3 is shown. The curves B and C are almost similar to those of the prior art shown in FIG. 22, but the curve A can obtain a large energy absorption. In this case, the load −
The displacement curve changes gradually from beginning to end, and there is no sudden change, and the maximum load appears at the end of displacement. As a result, the G value of the occupant is reduced, and large energy absorption can be secured.

【0020】図12は図11のテーパ部2を除いたエネ
ルギ吸収体1iを示す。前記したように強度が軸線方向
に沿って連続的に変化しているためテーパ部2がなくて
も圧潰が起こり、多量のエネルギを吸収することが出来
る。
FIG. 12 shows the energy absorber 1i excluding the taper portion 2 of FIG. As described above, since the strength continuously changes along the axial direction, crushing occurs even without the tapered portion 2, and a large amount of energy can be absorbed.

【0021】図14のエネルギ吸収体1jは内側に±θ
(90°)繊維部3を設け、中央にGF4、外側にCF
5を配設したものである。中央のGF4はテーパ部2の
上方側で最大の肉厚を有し、下端ではほぼゼロになる。
一方、CF5はテーパ部2で肉厚がほぼゼロになり、下
端では最大の肉厚となるように配設される。また、図1
4の場合にもテーパ部2を形成しないエネルギ吸収体と
してもよい。
The energy absorber 1j shown in FIG.
(90 °) Fiber part 3 is provided, GF4 is in the center and CF is on the outside
5 is provided. The central GF4 has the maximum wall thickness on the upper side of the taper portion 2 and becomes almost zero at the lower end.
On the other hand, CF5 is arranged such that the taper portion 2 has a thickness of almost zero and the CF5 has a maximum thickness at the lower end. Also, FIG.
Also in the case of 4, the energy absorber without the tapered portion 2 may be used.

【0022】図15は図11の±θ(90°)繊維部3
の替わりに短繊維強化複合材料6を用いた場合のエネル
ギ吸収体1kを示す。
FIG. 15 shows the ± θ (90 °) fiber portion 3 of FIG.
The energy absorber 1k in the case of using the short fiber reinforced composite material 6 instead of is shown.

【0023】図16は図11の±θ(90°)繊維部3
の替わりに長繊維強化複合材料7(例えば、織布強化複
合材料)を用いたエネルギ吸収体1mを示す。
FIG. 16 shows the ± θ (90 °) fiber portion 3 of FIG.
An energy absorber 1m using a long fiber reinforced composite material 7 (for example, a woven fabric reinforced composite material) instead of is shown.

【0024】図17は±θ(90°)繊維部3を中空円
筒体の外側に配設したエネルギ吸収体1nを示す。この
場合、内側にはGF4が配設され、中央にはCF5がそ
れぞれ配設される。GF4は図示のようにテーパ部2側
の先端部で肉厚が最も厚く、下端でほぼゼロになるよう
に配設され、CF5は逆にテーパ部2で肉厚がほぼゼロ
で下端に最大の肉厚を有するように配設される。
FIG. 17 shows an energy absorber 1n in which the ± θ (90 °) fiber portions 3 are arranged outside the hollow cylindrical body. In this case, GF4 is arranged inside and CF5 is arranged in the center. As shown in the figure, GF4 is arranged such that the tip end portion on the taper portion 2 side has the thickest wall thickness and the bottom end portion has almost zero thickness. It is arranged to have a wall thickness.

【0025】図18はやや複雑な構成からなるエネルギ
吸収体1pを示す。このものは、中央に±θ(90°)
繊維部3を有し、内側にはGF4とCF5を互いに逆方
向に肉厚が連続的に変化するように重合して配設され、
外側にもGF4とCF5とが互いに逆方向に肉厚が連続
的に変化して配設されるものからなる。なお、この場
合、内外側ともGF4はテーパ部2側に最大の肉厚部が
形成される。図14に示した実施例のエネルギ吸収体1
jから本実施例のエネルギ吸収体1pまではすべて衝撃
力を受ける先端側にテーパ部2が形成されているが、図
11と図12の場合と同様にテーパ部2のないものも勿
論採用される。
FIG. 18 shows an energy absorber 1p having a slightly complicated structure. This one has ± θ (90 °) in the center
The fiber part 3 is provided, and GF4 and CF5 are superposed on the inside so that the wall thickness continuously changes in mutually opposite directions.
Also on the outer side, GF4 and CF5 are arranged such that their wall thicknesses continuously change in opposite directions. In this case, GF4 has the largest thickness portion on the tapered portion 2 side both on the inside and the outside. The energy absorber 1 of the embodiment shown in FIG.
From j to the energy absorber 1p of this embodiment, the taper portion 2 is formed on the tip end side that receives the impact force, but of course, the taper portion 2 having no taper portion 2 is also used as in the case of FIGS. 11 and 12. It

【0026】図19は中空円筒体の内外側に±θ(90
°)繊維部3が配設され中央にGF4とCF5が配設さ
れるエネルギ吸収体1qを示す。この場合先端部にはテ
ーパ部はないがあってもよい。また、図示のようにGF
4は上方部に最大の肉厚を有し下端ではほぼゼロにな
り、CF5は逆に下端部で最大の肉厚を有するように配
設される。
FIG. 19 shows ± θ (90) inside and outside the hollow cylinder.
°) An energy absorber 1q in which the fiber portion 3 is arranged and GF4 and CF5 are arranged in the center. In this case, the tip may have no tapered portion. Also, as shown in the figure, GF
4 has the maximum wall thickness in the upper part and becomes almost zero at the lower end, and CF5 is arranged so as to have the maximum wall thickness in the lower end part.

【0027】以上の各種の実施例を説明したが、前記し
た実施例と同様に上方部より下方部側に向かって強度が
増すように配設されるものであれば、前記実施例に限定
するものではない。
Although various embodiments have been described above, the embodiment is limited to the above embodiments as long as the strength is increased from the upper part toward the lower part like the above-mentioned embodiments. Not a thing.

【0028】[0028]

【発明の効果】本発明によれば、次のような顕著な効果
を奏する。 1)各種の繊維材料を肉厚方向および軸線方向に配列及
び/又は積層してハイブリッド化された繊維層を形成す
ることにより所望の曲線に基づくエネルギ吸収機能を形
成することが出来、衝突側の強度を低くし、基端側に向
かって強度を増加するように繊維を配設することにより
衝突時におけるG値の低減と全体としてのエネルギ吸収
量を増大することが出来る。 2)各種繊維の配列及び/又は積層構造を工夫すること
により少なくとも2水準の衝突速度に対応し得る荷重変
位曲線を形成することが出来る。これによりエアバック
の作動センサのチューナとしての機能を持たせることが
出来る。 3)衝撃力の作用する先端側にテーパ部を形成すること
により、衝突時におけるG値をより低減させることが出
来る。 4)GFやCFの肉厚を連続的に変化させることにより
荷重変化を緩やかにすることが出来る。これにより乗員
に与える衝撃力の緩和が図れる。 5)一体成型や2次成形およびフィラメントワインディ
ング製法やSMCの公知技術により簡単に製作し得るも
ので、比較的容易に、かつ安価に実施出来る。
According to the present invention, the following remarkable effects are obtained. 1) By arranging and / or laminating various fiber materials in the thickness direction and the axial direction to form a hybridized fiber layer, an energy absorbing function based on a desired curve can be formed, and a collision side can be formed. By arranging the fibers so that the strength is lowered and the strength is increased toward the base end side, it is possible to reduce the G value at the time of collision and increase the energy absorption amount as a whole. 2) By devising the arrangement and / or laminated structure of various fibers, it is possible to form a load displacement curve that can correspond to at least two levels of collision speed. As a result, it is possible to provide a function as a tuner of the airbag operation sensor. 3) By forming a taper portion on the tip side where impact force acts, the G value at the time of collision can be further reduced. 4) The load change can be moderated by continuously changing the wall thickness of GF and CF. As a result, the impact force applied to the occupant can be mitigated. 5) It can be easily manufactured by known techniques such as integral molding, secondary molding, filament winding manufacturing method, and SMC, and can be carried out relatively easily and at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】±θ(90°)繊維部を内側に配設した本発明
の一実施例のエネルギ吸収体軸断面図。
FIG. 1 is an axial sectional view of an energy absorber according to an embodiment of the present invention in which a ± θ (90 °) fiber portion is disposed inside.

【図2】図1の外観を示す略斜視図。FIG. 2 is a schematic perspective view showing the appearance of FIG.

【図3】図1のエネルギ吸収体の荷重−変位線図。FIG. 3 is a load-displacement diagram of the energy absorber of FIG.

【図4】本発明の他の実施例の部分軸断面図。FIG. 4 is a partial axial sectional view of another embodiment of the present invention.

【図5】内側に短繊維複合材料を用いた本発明の別の実
施例の部分軸断面図。
FIG. 5 is a partial axial sectional view of another embodiment of the present invention in which a short fiber composite material is used on the inside.

【図6】内側に長繊維複合材料を用い本発明の他の実施
例の部分軸断面図。
FIG. 6 is a partial axial sectional view of another embodiment of the present invention in which a long fiber composite material is used for the inside.

【図7】±θ(90°)繊維部を外側に配設した本発明
の他の実施例の部分軸断面図。
FIG. 7 is a partial axial sectional view of another embodiment of the present invention in which ± θ (90 °) fiber portions are arranged outside.

【図8】±θ(90°)繊維部を肉厚の中央に配設した
本発明の他の実施例の部分軸断面図。
FIG. 8 is a partial axial sectional view of another embodiment of the present invention in which a ± θ (90 °) fiber portion is arranged in the center of the wall thickness.

【図9】±θ(90°)繊維部を内外側に配設した本発
明の他の実施例の部分軸断面図。
FIG. 9 is a partial axial cross-sectional view of another embodiment of the present invention in which ± θ (90 °) fiber portions are arranged inside and outside.

【図10】GFおよびCFのみからなる本発明の別の実
施例の部分軸断面図。
FIG. 10 is a partial axial sectional view of another embodiment of the present invention consisting of GF and CF only.

【図11】内側に±θ(90°)繊維部が配設されGF
およびCFの肉厚が軸線方向に沿って連続的に変化する
本発明の実施例の部分軸断面図。
FIG. 11: GF in which ± θ (90 °) fiber portion is arranged inside
And a partial axial cross-sectional view of an embodiment of the present invention in which the wall thickness of CF continuously changes along the axial direction.

【図12】図11の衝撃力を受ける側のテーパ部を除去
した実施例の部分軸断面図。
12 is a partial axial cross-sectional view of an embodiment in which the taper portion on the side receiving the impact force in FIG. 11 is removed.

【図13】図11のエネルギ吸収体の荷重−変位線図。13 is a load-displacement diagram of the energy absorber of FIG.

【図14】図11のGFとCFの配列を逆にした本発明
の他の実施例の部分軸断面図。
14 is a partial axial sectional view of another embodiment of the present invention in which the arrangements of GF and CF in FIG. 11 are reversed.

【図15】内側に短繊維複合材料を配設しGFおよびC
Fの肉厚が軸線方向に沿って連続的に変化する本発明の
他の実施例の部分軸断面図。
FIG. 15: GF and C with a short fiber composite material disposed inside
The partial axial sectional view of the other Example of this invention which the thickness of F changes continuously along an axial direction.

【図16】図15の短繊維複合材料の替わりに内側に長
繊維複合材料を用いた本発明の他の実施例の部分軸断面
図。
16 is a partial axial sectional view of another embodiment of the present invention in which a long fiber composite material is used inside instead of the short fiber composite material of FIG.

【図17】外側に±θ(90°)繊維部を配設しGF,
CFの肉厚が連続的に変化する本発明の他の実施例の部
分軸断面図。
FIG. 17: GF with ± θ (90 °) fiber portion arranged outside
FIG. 6 is a partial axial sectional view of another embodiment of the present invention in which the thickness of CF continuously changes.

【図18】中央に±θ(90°)繊維部を配設し、内外
側にGFとCFの肉厚の連続的に変化する繊維層を設け
た本発明の他の実施例の部分軸断面図。
FIG. 18 is a partial axial cross-section of another embodiment of the present invention in which a ± θ (90 °) fiber portion is arranged in the center and a fiber layer whose wall thickness of GF and CF is continuously variable is provided inside and outside. Fig.

【図19】内外側に±θ(90°)繊維部を有し、中央
に肉厚が連続的に変化するGF,CFの繊維層を配設
し、かつテーパ部のない本発明の他の実施例の部分軸断
面図。
FIG. 19 shows another embodiment of the present invention in which fiber layers of GF and CF having a ± θ (90 °) fiber portion on the inner and outer sides and a continuously changing wall thickness are arranged in the center, and having no taper portion. The partial axial sectional view of an Example.

【図20】FRP円筒の軸断面図。FIG. 20 is an axial sectional view of an FRP cylinder.

【図21】図20のFRP円筒の圧潰変形状態を示す軸
断面図。
FIG. 21 is an axial cross-sectional view showing a collapsed deformation state of the FRP cylinder of FIG.

【図22】図20のFRP円筒のエネルギ吸収量を示す
荷重−変位線図。
22 is a load-displacement diagram showing the energy absorption amount of the FRP cylinder of FIG.

【符号の説明】[Explanation of symbols]

1 エネルギ吸収体 1a エネルギ吸収体 1b エネルギ吸収体 1c エネルギ吸収体 1d エネルギ吸収体 1e エネルギ吸収体 1f エネルギ吸収体 1g エネルギ吸収体 1h エネルギ吸収体 1i エネルギ吸収体 1j エネルギ吸収体 1k エネルギ吸収体 1m エネルギ吸収体 1n エネルギ吸収体 1p エネルギ吸収体 1q エネルギ吸収体 2 テーパ部 2a テーパ部 3 ±θ(90°)繊維部 4 ガラス繊維部(GF) 5 カーボン繊維部(CF) 6 短繊維強化複合材料 7 長繊維強化複合材料 8 FRP円筒(繊維強化複合材料円筒) 9 圧潰変形 1 Energy Absorber 1a Energy Absorber 1b Energy Absorber 1c Energy Absorber 1d Energy Absorber 1e Energy Absorber 1f Energy Absorber 1g Energy Absorber 1h Energy Absorber 1i Energy Absorber 1j Energy Absorber 1k Energy Absorber 1m Energy Absorber 1n Energy absorber 1p Energy absorber 1q Energy absorber 2 Tapered part 2a Tapered part 3 ± θ (90 °) Fiber part 4 Glass fiber part (GF) 5 Carbon fiber part (CF) 6 Short fiber reinforced composite material 7 Long fiber reinforced composite material 8 FRP cylinder (fiber reinforced composite material cylinder) 9 Crush deformation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 繊維強化複合材料からなり衝撃のエネル
ギを吸収するエネルギ吸収体であって、前記繊維強化複
合材料が、肉厚方向及び/又は軸線方向に沿って異なる
種類の繊維材料を多重に配列及び/又は積層してハイブ
リッド化したものからなり、前記繊維材料が、軸線方向
に対してθ角度だけ正負方向に繊維が傾斜して配列され
る±θ繊維と、θ角度が90°の90°繊維と、短繊維
強化複合材料と、長繊維強化複合材料と、ガラス繊維
と、カーボン繊維等の適宜な組み合わせ群からなること
を特徴とするハイブリッド化繊維強化複合材料のエネル
ギ吸収体。
1. An energy absorber made of a fiber-reinforced composite material for absorbing energy of impact, wherein the fiber-reinforced composite material comprises a plurality of different kinds of fiber materials along a thickness direction and / or an axial direction. The fiber material is a hybrid material formed by arranging and / or laminating, and the fiber material is ± θ fibers in which the fibers are arranged in the positive and negative directions by an angle of θ with respect to the axial direction, and 90 of the θ angle of 90 °. An energy absorber for a hybrid fiber-reinforced composite material, which comprises an appropriate combination of fibers, short fiber-reinforced composite materials, long fiber-reinforced composite materials, glass fibers, carbon fibers and the like.
【請求項2】 前記エネルギ吸収体が、その圧潰開始端
側から他端側に向かって順に強度の高い複数の繊維材料
を配設した層を有することを特徴とする請求項1のハイ
ブリッド化繊維強化複合材料のエネルギ吸収体。
2. The hybridized fiber according to claim 1, wherein the energy absorber has a layer in which a plurality of fibrous materials having high strength are arranged in order from the crush start end side to the other end side. Energy absorber for reinforced composite materials.
【請求項3】 前記エネルギ吸収体内に、そのエネルギ
吸収体の軸線に沿って圧潰開始端側から他端側に向かっ
て、比較的強度の高い繊維材料が連続的に増大する部分
及び/又は比較的強度の低い繊維材料が連続的に減少す
る部分を設けたことを特徴とする請求項1のハイブリッ
ド化繊維強化複合材料のエネルギ吸収体。
3. A portion and / or comparison in which the fibrous material having relatively high strength continuously increases in the energy absorber from the crush start end side to the other end side along the axis of the energy absorber. The energy absorber of the hybridized fiber-reinforced composite material according to claim 1, wherein the fiber material having low dynamic strength is provided with a continuously decreasing portion.
【請求項4】 前記エネルギ吸収体の圧潰開始端側の端
部が面取りされていることを特徴とする請求項1乃至請
求項3のハイブリッド化繊維強化複合材料のエネルギ吸
収体。
4. The energy absorber of the hybridized fiber-reinforced composite material according to claim 1, wherein an end portion of the energy absorber on the crush start end side is chamfered.
JP33670494A 1994-12-26 1994-12-26 Energy absorbing body of hybridized fiber reinforced compound material Pending JPH08177922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33670494A JPH08177922A (en) 1994-12-26 1994-12-26 Energy absorbing body of hybridized fiber reinforced compound material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33670494A JPH08177922A (en) 1994-12-26 1994-12-26 Energy absorbing body of hybridized fiber reinforced compound material

Publications (1)

Publication Number Publication Date
JPH08177922A true JPH08177922A (en) 1996-07-12

Family

ID=18301938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33670494A Pending JPH08177922A (en) 1994-12-26 1994-12-26 Energy absorbing body of hybridized fiber reinforced compound material

Country Status (1)

Country Link
JP (1) JPH08177922A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000608A1 (en) * 1997-06-27 1999-01-07 Nippon Petrochemicals Co., Ltd. Impact energy absorbing member
EP0908643A3 (en) * 1997-10-08 2000-12-20 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Energy absorbing member
EP1553323A2 (en) * 2004-01-06 2005-07-13 Kabushiki Kaisha Toyota Jidoshokki Energy absorber and method for manufacturing the same
JP2007168122A (en) * 2005-12-19 2007-07-05 Toyota Motor Corp Fiber reinforced plastic structure
JP2008232369A (en) * 2007-03-23 2008-10-02 Univ Nihon Load control attachment and collision energy absorbing device
JP2009002368A (en) * 2007-06-19 2009-01-08 Mazda Motor Corp Energy absorbing member
FR2958226A1 (en) * 2010-04-06 2011-10-07 Akka Ingenierie Produit CHASSIS FOR ELECTRIC VEHICLE
WO2013136018A1 (en) * 2012-03-14 2013-09-19 Centre Technique Des Industries Mecaniques Energy absorption buffer
JP2014024391A (en) * 2012-07-25 2014-02-06 Honda Motor Co Ltd Vehicle body front structure
CN104417469A (en) * 2013-09-11 2015-03-18 富士重工业株式会社 Impact absorber
KR101537861B1 (en) * 2013-11-25 2015-07-17 롯데케미칼 주식회사 Manufacturing method of crash box for vehicle
JP2016114094A (en) * 2014-12-11 2016-06-23 株式会社豊田自動織機 Energy absorption member
DE102016203790A1 (en) 2015-03-10 2016-09-15 Honda Motor Co., Ltd. Energy absorber and bumper structure body
JP2017227278A (en) * 2016-06-23 2017-12-28 株式会社Subaru Energy absorption structure
CN108725497A (en) * 2018-06-04 2018-11-02 哈尔滨理工大学 A kind of multiple tube of axial strength gradual change
JP2019039468A (en) * 2017-08-23 2019-03-14 三菱重工業株式会社 Shock absorption member, buffer, process of manufacture cask and buffer
JP2019077128A (en) * 2017-10-26 2019-05-23 三菱重工業株式会社 Impact absorption member, buffer, cask and manufacturing method of buffer
WO2020105531A1 (en) * 2018-11-20 2020-05-28 株式会社豊田自動織機 Shock absorbing structure
WO2020218039A1 (en) * 2019-04-26 2020-10-29 株式会社豊田自動織機 Shock absorbing structure
DE102020134896A1 (en) 2020-01-15 2021-07-15 Mazda Motor Corporation SHOCK ABSORBING ELEMENT
WO2023182397A1 (en) * 2022-03-24 2023-09-28 三井化学株式会社 Shock-absorbing material and method for manufacturing same

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0922876A1 (en) * 1997-06-27 1999-06-16 Nippon Petrochemicals Company, Limited Impact energy absorbing member
EP0922876A4 (en) * 1997-06-27 2003-06-04 Nippon Petrochemicals Co Ltd Impact energy absorbing member
WO1999000608A1 (en) * 1997-06-27 1999-01-07 Nippon Petrochemicals Co., Ltd. Impact energy absorbing member
EP0908643A3 (en) * 1997-10-08 2000-12-20 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Energy absorbing member
US7842378B2 (en) 2004-01-06 2010-11-30 Kabushiki Kaisha Toyota Jidoshokki Energy absorber and method for manufacturing the same
EP1553323A2 (en) * 2004-01-06 2005-07-13 Kabushiki Kaisha Toyota Jidoshokki Energy absorber and method for manufacturing the same
EP1553323A3 (en) * 2004-01-06 2005-10-12 Kabushiki Kaisha Toyota Jidoshokki Energy absorber and method for manufacturing the same
JP2007168122A (en) * 2005-12-19 2007-07-05 Toyota Motor Corp Fiber reinforced plastic structure
JP2008232369A (en) * 2007-03-23 2008-10-02 Univ Nihon Load control attachment and collision energy absorbing device
JP2009002368A (en) * 2007-06-19 2009-01-08 Mazda Motor Corp Energy absorbing member
FR2958226A1 (en) * 2010-04-06 2011-10-07 Akka Ingenierie Produit CHASSIS FOR ELECTRIC VEHICLE
WO2013136018A1 (en) * 2012-03-14 2013-09-19 Centre Technique Des Industries Mecaniques Energy absorption buffer
FR2988150A1 (en) * 2012-03-14 2013-09-20 Ct Tech Des Ind Mecaniques ABSORPTION BOX OF ENERGY
JP2014024391A (en) * 2012-07-25 2014-02-06 Honda Motor Co Ltd Vehicle body front structure
CN104417469A (en) * 2013-09-11 2015-03-18 富士重工业株式会社 Impact absorber
JP2015055271A (en) * 2013-09-11 2015-03-23 富士重工業株式会社 Impact absorption device
US9598035B2 (en) 2013-09-11 2017-03-21 Fuji Jukogyo Kabushiki Kaisha Impact absorber
DE102014217033B4 (en) 2013-09-11 2023-03-23 Subaru Corporation impact cushion
KR101537861B1 (en) * 2013-11-25 2015-07-17 롯데케미칼 주식회사 Manufacturing method of crash box for vehicle
JP2016114094A (en) * 2014-12-11 2016-06-23 株式会社豊田自動織機 Energy absorption member
DE102016203790A1 (en) 2015-03-10 2016-09-15 Honda Motor Co., Ltd. Energy absorber and bumper structure body
US9731671B2 (en) 2015-03-10 2017-08-15 Honda Motor Co., Ltd. Energy absorber and bumper structural body
DE102016203790B4 (en) * 2015-03-10 2017-11-09 Honda Motor Co., Ltd. Energy absorber and bumper structure body
JP2017227278A (en) * 2016-06-23 2017-12-28 株式会社Subaru Energy absorption structure
JP2019039468A (en) * 2017-08-23 2019-03-14 三菱重工業株式会社 Shock absorption member, buffer, process of manufacture cask and buffer
JP2019077128A (en) * 2017-10-26 2019-05-23 三菱重工業株式会社 Impact absorption member, buffer, cask and manufacturing method of buffer
CN108725497A (en) * 2018-06-04 2018-11-02 哈尔滨理工大学 A kind of multiple tube of axial strength gradual change
WO2020105531A1 (en) * 2018-11-20 2020-05-28 株式会社豊田自動織機 Shock absorbing structure
WO2020218039A1 (en) * 2019-04-26 2020-10-29 株式会社豊田自動織機 Shock absorbing structure
DE102020134896A1 (en) 2020-01-15 2021-07-15 Mazda Motor Corporation SHOCK ABSORBING ELEMENT
US11618399B2 (en) 2020-01-15 2023-04-04 Mazda Motor Corporation Shock absorbing member
WO2023182397A1 (en) * 2022-03-24 2023-09-28 三井化学株式会社 Shock-absorbing material and method for manufacturing same

Similar Documents

Publication Publication Date Title
JPH08177922A (en) Energy absorbing body of hybridized fiber reinforced compound material
US5997077A (en) Deformable structure for protection of vehicle occupants
EP1553323B1 (en) Energy absorber and method for manufacturing the same
US5419416A (en) Energy absorber having a fiber-reinforced composite structure
US5914163A (en) Reduced crush initiation force composite tube
US5813718A (en) Guard beam for automotive door structure
US7766386B2 (en) Energy absorbing padding for automotive applications
US8376275B2 (en) Energy absorbing structure for aircraft
EP1628857B1 (en) Bumper energy absorber and method of fabricating and assembling the same
US20040201252A1 (en) Fiber composite crash structure
US9598035B2 (en) Impact absorber
EP1714834A1 (en) Impact absorbing device of vehicle
JP6808744B2 (en) How to make energy absorbing member and energy absorbing member
CZ295416B6 (en) Absorbing body, use thereof and combination of such absorbing body and vehicle body parts
JP3246041B2 (en) Energy absorbing material
EP1357016B1 (en) Side member for use in vehicle frame and method of manufacturing the same
WO2017128496A1 (en) Thin-walled energy-absorbing cylinder and buckling mode control method thereof
CN1629012A (en) Modular structure for energy absorption in head impacts on vehicle interiors
US4577736A (en) Tubular member, especially for a safety steering column for motor vehicles
JP3837818B2 (en) FRP thick energy absorber
ITRM930126A1 (en) IMPROVEMENT IN VEHICLE SEATS.
US20030072900A1 (en) Impact energy absorbing structure
JPH08170674A (en) Energy absorber provided with local reinforcing jig
JP4133840B2 (en) Energy absorber
KR20210148695A (en) Light Weight Cowl cross bar for vehicle