JPH0817711B2 - Method for separating and concentrating fermentation products - Google Patents
Method for separating and concentrating fermentation productsInfo
- Publication number
- JPH0817711B2 JPH0817711B2 JP61168107A JP16810786A JPH0817711B2 JP H0817711 B2 JPH0817711 B2 JP H0817711B2 JP 61168107 A JP61168107 A JP 61168107A JP 16810786 A JP16810786 A JP 16810786A JP H0817711 B2 JPH0817711 B2 JP H0817711B2
- Authority
- JP
- Japan
- Prior art keywords
- fermentation
- liquid
- separation
- membrane
- ethanol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、疎水性非多孔質膜を利用して、醗酵液中の
有用な低沸点醗酵生成物を効率よく分離濃縮する方法に
関する。この方法は、例えば連続醗酵に際して、醗酵の
阻害物質である醗酵生成物を効率的に系外に取り出しな
がら醗酵を継続するのに有効に利用できる。TECHNICAL FIELD The present invention relates to a method for efficiently separating and concentrating a useful low boiling point fermentation product in a fermentation liquor by utilizing a hydrophobic non-porous membrane. This method can be effectively used, for example, in continuous fermentation to continue fermentation while efficiently extracting the fermentation product, which is an inhibitor of fermentation, out of the system.
従来、醗酵液中の低沸点醗酵生成物の分離濃縮法とし
ては、醗酵液中の酵母等を除去した後に蒸留する方法が
一般的に行なわれているが、最近醗酵液を逆浸透膜を利
用して濃縮したり、膜を利用した浸透気化法等の分離濃
縮法の研究も行なわれている。Conventionally, as a method of separating and concentrating the low boiling point fermentation product in the fermentation liquid, a method of distilling after removing yeast and the like in the fermentation liquid is generally carried out, but recently, the fermentation liquid is utilized with a reverse osmosis membrane. Are also being studied, and research is being conducted on separation and concentration methods such as pervaporation using membranes.
醗酵においては、醗酵を連続的に行なうと醗酵生成物
が系内にたまり、これが醗酵の阻害物質として働き、醗
酵が続けられなくなる。これを回避した連続醗酵方法と
しては親水性限外濾過膜を用い、該膜により醗酵槽中の
醗酵液より醗酵生成物を分離しながら醗酵を連続的に行
なう方法が知られている。In the fermentation, when the fermentation is continuously carried out, the fermentation product accumulates in the system, which acts as an inhibitor of the fermentation and the fermentation cannot be continued. As a continuous fermentation method which avoids this, there is known a method in which a hydrophilic ultrafiltration membrane is used and the fermentation is continuously performed while the fermentation product is separated from the fermentation liquid in the fermentation tank by the membrane.
しかしながら、醗酵液中の低沸点醗酵生成物を分離濃
縮するには、従来の蒸留法では酵母等の除去工程の後
に、低濃度の液から蒸留して濃縮しなければならず、設
備が複雑な上に大きくなり、エネルギー消費量も大きい
欠点があった。また逆浸透膜法では、実用上の濃縮可能
な濃度限界が低く、例えばエタノールの場合で濃縮液と
して約15%が限界であり、濃縮度が十分ではない。浸透
気化法では水を選択的に透過させることにより結果的に
低沸点醗酵生成物の濃縮を行なうため、浸透気化法を行
なう前に酵母の除去工程を必要とする上に、多量の水の
分離のためのエネルギー的損失も大きい。However, in order to separate and concentrate the low-boiling-point fermentation product in the fermentation liquid, in the conventional distillation method, after the removal step of yeast and the like, it is necessary to distill and concentrate from a low-concentration liquid, and the equipment is complicated. It had the drawback of becoming larger and consuming a lot of energy. In the reverse osmosis membrane method, the concentration limit for practical concentration is low, and for example, in the case of ethanol, the concentration is about 15%, which is not sufficient. In the pervaporation method, the low boiling point fermentation product is concentrated as a result of selective permeation of water, so a yeast removal step is required before the pervaporation method, and a large amount of water is separated. The energy loss for is also large.
また、限外濾過膜を用いた連続醗酵方法においては、
水と低沸点醗酵生成物を系外に出す際に醗酵用の原料、
例えばグルコースや無機塩類も系外に出てしまい、醗酵
生成物とこれらを分離しなければならないし、通常こう
して分けられたものは醗酵生成物以外は捨ててしまうた
め経済的にも不利となると同時に醗酵槽内にこれら醗酵
原料と無機塩類を失われた分だけ補充してやらねばなら
ないという問題点を有している。Further, in the continuous fermentation method using the ultrafiltration membrane,
Raw material for fermentation when water and low-boiling fermentation products are taken out of the system,
For example, glucose and inorganic salts also come out of the system, and the fermentation products must be separated from each other, and those separated in this way are usually economically disadvantageous because they are discarded except for the fermentation products. There is a problem in that the fermentation raw material and inorganic salts must be replenished in the fermentation tank only by the amount lost.
本発明者らは、上記方法の欠点を改良すべく鋭意研究
を重ねた結果、疎水性多孔質膜が醗酵液自身は通過させ
ないが、蒸気は通過させるという性能を利用して、疎水
性多孔質膜の片面を醗酵液と接し、反対面側を減圧に保
つことによって醗酵液中の低沸点醗酵生成物を醗酵液よ
り分離濃縮する方法を先に特願昭60-39408号で提案し
た。この方法は効率的に低沸点醗酵生成物を分離濃縮す
ることができるものの、例えばこの方法を連続発酵に応
用する場合のように長時間継続して実施すると、分離膜
の細孔が徐々に親水化され、醗酵液の漏れが生ずるおそ
れがあるという欠点のあることが判明した。そこで本発
明者らは分離膜の透過性能が低下することなく醗酵生成
物を長時間継続して分離濃縮することのできる方法の開
発につき検討した結果、本発明を完成するに至った。The present inventors have conducted intensive studies to improve the drawbacks of the above method, and the fermented liquid itself does not allow the hydrophobic porous membrane to pass through the fermented liquid, but it utilizes the ability to pass steam through the hydrophobic porous membrane. Japanese Patent Application No. 60-39408 proposed a method for separating and concentrating a low boiling point fermentation product in the fermentation solution by contacting one side of the membrane with the fermentation solution and keeping the opposite side under reduced pressure. Although this method can efficiently separate and concentrate low-boiling fermentation products, if the method is continuously carried out for a long time as in the case of applying this method to continuous fermentation, the pores of the separation membrane gradually become hydrophilic. It has been found that there is a drawback that the fermentation liquid may leak out. Therefore, the present inventors have completed the present invention as a result of investigating the development of a method capable of continuously separating and concentrating a fermentation product for a long time without deteriorating the permeation performance of the separation membrane.
すなわち、本発明の醗酵生成物の分離濃縮方法は、疎
水性非多孔質膜の片面を醗酵液と接し、該非多孔質膜の
醗酵液と接していない面側を減圧に保つ工程を有するこ
とを特徴とする。That is, the method for separating and concentrating the fermentation product of the present invention has a step of contacting one side of the hydrophobic non-porous membrane with the fermentation solution, and maintaining a reduced pressure on the side not contacting the fermentation solution of the non-porous membrane. Characterize.
本発明において、分離濃縮対象となる醗酵液として
は、分離濃縮時の温度における低沸点醗酵生成物と水と
の気液平衡関係において、低沸点醗酵生成物の蒸気組成
が平衡にある液組成よりも高いもの、あるいは疎水性非
多孔質膜に関して水よりも低沸点醗酵生成物のほうが大
きなガス透過速度を有するものであればどのような醗酵
液でも良い。特にエタノール醗酵液、アセトン・ブタノ
ール醗酵液等が有効に使用できる。In the present invention, as the fermentation liquid to be separated and concentrated, in the vapor-liquid equilibrium relationship between the low boiling point fermentation product and water at the temperature during the separation and concentration, the vapor composition of the low boiling point fermentation product is more than the liquid composition in equilibrium. Any fermentation liquid may be used as long as it has a higher gas permeation rate than the fermentation product having a lower boiling point than that of water with respect to the hydrophobic non-porous membrane. In particular, ethanol fermentation liquid, acetone-butanol fermentation liquid, etc. can be effectively used.
本発明の方法において用いる疎水性非多孔質膜として
は、蒸気透過速度は膜厚に反比例して大きくなるので、
強度や分離特性が許容する範囲で薄いものを使用するの
がよく、膜厚が80μm以下のものが適当である。膜の材
質としては、疎水性のものであれば各種のものが使用で
き、例えばシリコンゴム、ポリカーボネート、ポリオレ
フィン、ポリフッ化オレフィン等が代表的なものとして
例示される。また、膜を構成する素材が親水性である場
合でも、膜の表面が疎水化されているものであれば用い
ることができる。膜の形態は平膜でも良いが、中空糸が
膜面積を大きくとれ、分離濃縮装置をコンパクト化で
き、その保守管理も容易になるので好ましい。For the hydrophobic non-porous membrane used in the method of the present invention, since the vapor permeation rate increases in inverse proportion to the membrane thickness,
It is preferable to use a thin film as long as the strength and the separation characteristics allow, and a film thickness of 80 μm or less is suitable. As the material of the film, various kinds of materials can be used as long as they are hydrophobic, and silicon rubber, polycarbonate, polyolefin, polyfluorinated olefin and the like are exemplified as typical ones. Further, even when the material forming the membrane is hydrophilic, any material having a hydrophobic surface can be used. The form of the membrane may be a flat membrane, but it is preferable because the hollow fiber can have a large membrane area, the separation and concentration device can be made compact, and the maintenance and management thereof can be facilitated.
なお、ここでいう非多孔質膜とは、必ずしも分離膜の
全てが非多孔質膜(均質膜)で構成されている必要はな
く、非多孔質膜が補強膜としての多孔質膜で片面を支持
あるいは両面からサンドイッチされたような複合膜であ
ってもよい。疎水性の非多孔質膜を使用することによ
り、低沸点醗酵生成物と水の混合蒸気のみが膜が透過す
ると同時に、膜の耐バクテリア性が優れているので細菌
類による膜の劣化が殆ど生じない。Note that the non-porous membrane here does not necessarily mean that all of the separation membranes are composed of non-porous membranes (homogeneous membranes). It may be a composite membrane that is supported or sandwiched from both sides. By using a hydrophobic non-porous membrane, only the mixed vapor of low boiling point fermentation products and water permeates the membrane, and at the same time, the bacteria resistance of the membrane is excellent, so that deterioration of the membrane due to bacteria almost occurs. Absent.
本発明を実施する際の減圧度は、減圧度が高ければ高
いほど分離速度が速く好都合であるが、通常0.5気圧以
下で十分であり、特に高真空度に保つ必要はない。ま
た、操作時の温度としては、高い方が蒸気圧が高まり分
離速度が速くなるので好都合であるが、使用される膜の
耐熱温度、エネルギー効率、対象となる醗酵液の組成等
を勘案して決定すればよい。醗酵液を連続して醗酵させ
ながら、同時に低沸点醗酵生成物を分離濃縮する場合に
は、酵母の耐熱性や最適醗酵温度によっても操作時の温
度は規制される。As for the degree of reduced pressure when carrying out the present invention, the higher the degree of reduced pressure, the faster the separation rate and the more convenient it is. However, 0.5 atm or less is usually sufficient, and it is not necessary to maintain a particularly high degree of vacuum. Further, as the temperature during operation, the higher the temperature, the higher the vapor pressure and the faster the separation rate, which is convenient, but considering the heat-resistant temperature of the membrane used, energy efficiency, the composition of the target fermentation liquid, etc. Just decide. When the low boiling point fermentation product is separated and concentrated at the same time while continuously fermenting the fermentation broth, the temperature during the operation is regulated by the heat resistance of yeast and the optimum fermentation temperature.
本発明の方法は、非多孔質膜の醗酵液と接していない
面側を減圧を保つ操作を必須とするが、この減圧側は単
に減圧を保つことによって、低沸点醗酵生成物の蒸気と
水蒸気との混合蒸気を回収してもよいが、不活性ガスを
回収すべき混合蒸気のキャリアーガスとして流しつつ減
圧としてもよい。不活性ガスを流すことにより、非多孔
質膜を透過した混合蒸気を膜面から強制的に除去できる
ので透過効率をより高めることが可能となる。The method of the present invention requires an operation of maintaining a reduced pressure on the surface side of the non-porous membrane that is not in contact with the fermentation liquid, but this reduced pressure side simply maintains the reduced pressure, and thus the low boiling point fermentation product vapor and steam. The mixed vapor of the above may be recovered, but the pressure may be reduced while flowing an inert gas as the carrier gas of the mixed steam to be recovered. By flowing the inert gas, the mixed vapor that has permeated the non-porous membrane can be forcibly removed from the membrane surface, so that the permeation efficiency can be further enhanced.
キャリアーガスとして使用できる不活性ガスとして
は、低沸点醗酵生成物と反応しないガスであればよく、
例えば窒素、炭酸ガス、滅菌空気等が挙げられる。The inert gas that can be used as the carrier gas may be any gas that does not react with the low-boiling fermentation product,
For example, nitrogen, carbon dioxide, sterilized air, etc. may be mentioned.
連続発酵に本発明の分離濃縮方法を適用する場合に
は、送液ポンプにより発酵槽内の液体の一部を連続的に
抜き出し、疎水性非多孔質膜を内蔵した分離濃縮器に送
り、分離濃縮器で発酵生成物と水とを発酵生成物が濃縮
された混合蒸気の状態で分離し、分離濃縮器で分離され
なかった液体は再び発酵槽に戻す。本発明の方法では、
分離濃縮器では発酵液中の無機塩類と発酵原料は全く分
離されないので、発酵により消費された分だけの発酵原
料のみを系に補充してやればよい。このような操作方法
を採用した場合には、液の抜き取り、返送により系が撹
拌されるので別に撹拌装置を設けなくてもよい。When the separation and concentration method of the present invention is applied to continuous fermentation, a part of the liquid in the fermenter is continuously extracted by a liquid feeding pump and sent to a separation and concentration device having a hydrophobic non-porous membrane for separation. The fermentation product and water are separated by a concentrator in a mixed vapor state in which the fermentation product is concentrated, and the liquid not separated by the separation concentrator is returned to the fermentation tank. In the method of the present invention,
Since the inorganic salt and the fermentation raw material in the fermentation liquor are not separated at all in the separation / concentrator, it is sufficient to replenish the system with only the fermentation raw material consumed by fermentation. When such an operation method is adopted, the system is agitated by extracting and returning the liquid, and thus it is not necessary to provide a stirring device separately.
ポンプで発酵液を分離濃縮器へ送液する代わりに発酵
槽の中に分離濃縮器を浸漬して疎水性非多孔質膜の一方
の面に発酵液が接触するようにして操作してもよい。こ
の場合には、発酵槽内を撹拌する手段が必要となる。Instead of pumping the fermented liquid to the separation / concentrator, the separation / concentrator may be immersed in the fermenter so that the fermented liquid contacts one surface of the hydrophobic non-porous membrane. . In this case, a means for stirring the inside of the fermenter is required.
以下、本発明の方法を図面を用いて説明する。第1図
は本発明の方法の一実施例を示すフローチャートであ
る。分離濃縮の対象となる醗酵液を貯えた醗酵液貯槽1
は、醗酵液の温度を所定の温度に保つために恒温水槽2
内に配設されている。醗酵液貯槽1内の醗酵液は、循環
ポンプ3により非多孔質膜中空糸を内蔵した分離濃縮器
4へ導かれ、ここで非多孔質膜中空糸を介して発酵生成
物と水が発酵生成物を濃縮した状態で分離除去された
後、醗酵液貯槽1へ戻される。分離濃縮器4内の非多孔
質膜の醗酵液とは接しない側は、減圧に保たれるが、こ
の例では、窒素ホンベ5から流量計6を介して窒素をキ
ャリアーガスとして分離濃縮器4へ供給し、このキャリ
アーガスと、濃縮された低沸点発酵生成物の蒸気および
水蒸気との混合ガスとが真空ポンプ7によりコールドト
ラップ8へと吸引される。濃縮された低沸点発酵生成物
の蒸気および水蒸気は、低温に保持されたコールドトラ
ップ8で液化され捕捉される。9は減圧度測定用のマノ
メーターである。分離濃縮器4としては例えば第2図あ
るいは第3図に示す構造の非多孔質中空糸12を内蔵した
中空糸モジュールが用いられる。Hereinafter, the method of the present invention will be described with reference to the drawings. FIG. 1 is a flow chart showing an embodiment of the method of the present invention. Fermentation liquid storage tank 1 containing the fermentation liquid to be separated and concentrated
Is a constant temperature water tank 2 for maintaining the temperature of the fermentation liquid at a predetermined temperature.
It is arranged inside. The fermentation liquid in the fermentation liquid storage tank 1 is guided by a circulation pump 3 to a separation / concentrator 4 containing a non-porous membrane hollow fiber, where a fermentation product and water are fermented and produced via the non-porous membrane hollow fiber. After the substances are separated and removed in a concentrated state, they are returned to the fermentation liquid storage tank 1. The side of the non-porous membrane in the separation / concentrator 4 that is not in contact with the fermentation liquid is kept at a reduced pressure. The carrier gas and a mixed gas of the concentrated low-boiling fermentation product steam and steam are sucked into the cold trap 8 by the vacuum pump 7. The vapor and steam of the concentrated low boiling point fermentation product are liquefied and captured by the cold trap 8 kept at a low temperature. 9 is a manometer for measuring the degree of reduced pressure. As the separation / concentrator 4, for example, a hollow fiber module containing a non-porous hollow fiber 12 having a structure shown in FIG. 2 or 3 is used.
非多孔質中空糸12としてはシリコンゴム製の非多孔質
中空糸を用い、醗酵液としてエタノール発酵液を用いた
場合のエタノール分離濃縮法を例にとり更に説明する
と、分離濃縮器4の発酵液入口10より供給された発酵液
は、中空糸12の外面と接触しながら分離濃縮器4の内部
を流れて発酵液出口11より排出され発酵液貯槽1に戻
る。The non-porous hollow fiber 12 made of silicon rubber is used as the non-porous hollow fiber 12, and the ethanol separation / concentration method in the case of using the ethanol fermentation liquid as the fermentation liquid is further explained. The fermented liquid supplied from 10 flows through the inside of the separation / concentrator 4 while coming into contact with the outer surface of the hollow fiber 12, is discharged from the fermented liquid outlet 11, and returns to the fermented liquid storage tank 1.
発酵液は液体のままでは中空糸12の壁部(分離膜)を
通過できないが、エタノールと水とは蒸気の形で減圧と
なっている中空糸12の内部へ流れる。この時、水−エタ
ノールの気液平衡関係から、分離膜面を流れる蒸気は、
発酵液のエタノール濃度よりもエタノールが濃縮された
組成となる。更にシリコンゴム膜内の蒸気透過速度は、
水蒸気よりもエタノール蒸気のほうが大きいので、これ
により、エタノールがより濃縮された組成として分離膜
を透過する。したがって、分離膜として多孔質膜を使用
する場合に比較するとより濃縮されたエタノールの混合
蒸気が回収される。キャリアーガス入口13から中空糸12
の内部へ窒素ガス等のキャリアーガスを送って蒸気出口
14から真空ポンプ7で吸引すればこの蒸気はキャリアー
ガスと共に蒸気出口14より出る。キャリアーガスを使用
する場合は中空糸内部の圧力は0.5気圧以下であること
が好ましく、250mmHg以下であることが好ましい。キャ
リアーガスを使用しない場合は100mmHg以下であること
が好ましい。分離濃縮器として第3図に示した構造のモ
ジュールを用い、キャリアーガスを使用しないで発酵液
からの混合蒸気のみを真空ポンプ7で吸引してもよい。
この混合蒸気を第1図に示したように例えば−40℃に冷
却されたコールドトラップ8で液化してもよく、液化し
ないでエタノール蒸留塔へこの蒸気を供給してもよい。The fermentation liquor cannot pass through the wall (separation membrane) of the hollow fiber 12 as a liquid, but ethanol and water flow into the hollow fiber 12 in the form of vapor in a reduced pressure. At this time, the vapor flowing on the separation membrane surface is
The composition has a concentration of ethanol that is higher than the concentration of ethanol in the fermentation broth. Furthermore, the vapor transmission rate in the silicone rubber membrane is
Since ethanol vapor is larger than water vapor, this causes ethanol to permeate the separation membrane as a more concentrated composition. Therefore, as compared with the case of using a porous membrane as the separation membrane, a more concentrated mixed vapor of ethanol is recovered. Hollow fiber 12 from carrier gas inlet 13
Carrier gas such as nitrogen gas is sent to the inside of the steam outlet
If sucked from 14 by the vacuum pump 7, this steam will come out from the steam outlet 14 together with the carrier gas. When a carrier gas is used, the pressure inside the hollow fiber is preferably 0.5 atm or less, and more preferably 250 mmHg or less. When the carrier gas is not used, it is preferably 100 mmHg or less. It is also possible to use the module having the structure shown in FIG. 3 as the separation / concentrator, and to suck only the mixed vapor from the fermentation liquid with the vacuum pump 7 without using a carrier gas.
This mixed vapor may be liquefied in the cold trap 8 cooled to, for example, −40 ° C. as shown in FIG. 1, or may be supplied to the ethanol distillation column without being liquefied.
連続発酵を行なう場合は通常の発酵槽に本発明の分離
濃縮方法で用いる装置を取り付けて行なえばよい。この
場合酵母に影響を与えない範囲であれば発酵槽の温度と
分離濃縮器内の温度を異なるものにしてもよい。When carrying out continuous fermentation, an ordinary fermentation tank may be equipped with the device used in the separation and concentration method of the present invention. In this case, the temperature in the fermenter and the temperature in the separation / concentrator may be different as long as they do not affect the yeast.
以下に実施例により本発明を更に詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples.
実施例1 膜厚80μm、内径200μm、有効長160mmのシリコンゴ
ム製の中空糸を用い、有効表面積が0.3m2の第2図に示
すような構造の分離濃縮器を作成した。この分離濃縮器
を用いて第1図に示す構成の装置を組み立て、エタノー
ルの連続発酵を行なうと同時に醗酵液から発酵生成物で
あるエタノールの濃縮分離を行った。Example 1 Using a hollow fiber made of silicon rubber having a film thickness of 80 μm, an inner diameter of 200 μm, and an effective length of 160 mm, a separation condenser having a structure as shown in FIG. 2 having an effective surface area of 0.3 m 2 was prepared. An apparatus having the configuration shown in Fig. 1 was assembled using this separation / concentrator, and continuous fermentation of ethanol was performed, and at the same time, ethanol, which was a fermentation product, was concentrated and separated from the fermentation liquid.
まず最初は、分離濃縮器を作動させずに、発酵槽にグ
ルコース2重量%、アルコール酵母2.5重量%、クエン
酸0.3%、塩化アンモニウム0.2重量%、リン酸カリウム
0.5重量%、硫酸マグネシウム0.01重量%、塩化ナトリ
ウム0.1重量%、塩化カルシウム0.001重量%からなる組
成の液1を仕込み、通常の条件で48時間醗酵させたと
ころ、醗酵液中のエタノール含有量は10重量%となっ
た。First of all, without operating the separation / concentrator, 2% by weight of glucose, 2.5% by weight of alcohol yeast, 0.3% of citric acid, 0.2% by weight of ammonium chloride and potassium phosphate were put in the fermenter.
When liquid 1 having a composition of 0.5% by weight, 0.01% by weight of magnesium sulfate, 0.1% by weight of sodium chloride and 0.001% by weight of calcium chloride was charged and fermented under normal conditions for 48 hours, the content of ethanol in the fermentation liquid was 10%. It became weight%.
48時間経過後から10時間にわたり、発酵槽から醗酵液
を循環ポンプにより0.3l/分の流量で連続的に抜き出
し、発酵液入口から分離濃縮器内へ供給し、中空糸の外
面と接触した後、発酵液出口から排出して発酵液貯槽へ
戻した。中空糸の内部は、真空ポンプにより減圧にされ
(マノメーター部で20mmHg)、キャリアーガスとして窒
素を約150Nml/分の流量で流し、中空糸の内部へ透過し
たエタノールの混合蒸気を−40℃のコールドトラップで
捕捉した。After the lapse of 48 hours, the fermentation liquor was continuously withdrawn from the fermenter at a flow rate of 0.3 l / min from the fermenter at a flow rate of 0.3 l / min, fed into the separation / concentrator from the fermentation liquor inlet, and contacted with the outer surface of the hollow fiber It was discharged from the fermented liquid outlet and returned to the fermented liquid storage tank. The inside of the hollow fiber was decompressed by a vacuum pump (20 mmHg in the manometer part), nitrogen was flowed as a carrier gas at a flow rate of about 150 Nml / min, and the ethanol mixed vapor permeated into the hollow fiber was cold at -40 ° C. Caught in a trap.
コールドトラップでの液体の捕捉速度は、平均して27
g/hrであり、液体中には酵母やグルコース、無機塩類は
一切含まれておらず、エタノールの濃度は68〜76重量%
であり、極めて高濃度のエタノールを取り出すことがで
きた。The average liquid capture rate in the cold trap is 27
It is g / hr, the liquid does not contain yeast, glucose and inorganic salts at all, and the concentration of ethanol is 68-76% by weight.
Therefore, it was possible to take out an extremely high concentration of ethanol.
なお、発酵槽には、コールドトラップでのエタノール
水溶液の採取量に見あう量のグルコース水溶液を連続的
に添加した。An amount of glucose aqueous solution corresponding to the amount of ethanol aqueous solution collected in the cold trap was continuously added to the fermenter.
実施例2 実施例1で用いたと同様な装置を使用して、アセトン
・ブタノール醗酵液から低沸点醗酵生成物の分離濃縮を
約20時間実施した。醗酵液の醗酵生成物の組成はアセト
ン0.4重量%、ブタノール0.8重量%、エタノール0.1重
量%であり、恒温水槽温度25℃、分離濃縮器の減圧側の
真空度5mmHg、キャリアーガス(窒素)流量100Nml/分の
条件で実施した。コールドトラップ(温度−40℃)での
採取量は平均22g/hrであり、採取された液の組成はアセ
トン2重量%、ブタノール8重量%、エタノール20重量
%の水溶液であり、この水溶液には酵母や無機塩等は含
まれていなかった。Example 2 Using the same apparatus as used in Example 1, the low boiling point fermentation product was separated and concentrated from the acetone-butanol fermentation liquid for about 20 hours. The composition of the fermentation product of the fermentation liquid is 0.4% by weight of acetone, 0.8% by weight of butanol and 0.1% by weight of ethanol, the temperature of the constant temperature water bath is 25 ° C, the vacuum degree on the decompression side of the separation condenser is 5 mmHg, and the carrier gas (nitrogen) flow rate is 100 Nml. It was carried out under the condition of / min. The average amount collected in a cold trap (temperature -40 ° C) was 22 g / hr, and the composition of the collected liquid was an aqueous solution containing 2% by weight of acetone, 8% by weight of butanol, and 20% by weight of ethanol. Yeast and inorganic salts were not included.
本発明の分離濃縮方法によれば醗酵液から直接酵母や
醗酵原料、無機塩類を含まず、且つ、醗酵液よりも著し
く濃縮された低沸点醗酵生成物を回収することができる
ので、酵母液あるいはこれから酵母等固形物を除いた水
溶液から直接蒸留する場合に比べてエネルギーコストを
小さくすることが可能である。また、本発明の方法を連
続醗酵に適用すると、酵母の取り扱いに関しては従来の
方式、例えば懸濁バッチ方式がそのまま使用でき、酵母
を発酵層内に固定化する作業やそのための装置、例えば
バイオリアクターを必要とせずに、連続的に低沸点醗酵
生成物が系から除去され、低沸点醗酵生成物の濃度を低
く保つことができるので、発酵が阻害されることなく連
続的に醗酵を行なうことができる。According to the separation-concentration method of the present invention, yeast or fermentation raw materials directly from the fermentation broth, does not contain inorganic salts, and since it is possible to recover a low-boiling fermentation product significantly concentrated than the fermentation broth, yeast solution or From this, it is possible to reduce the energy cost as compared with the case of directly distilling from an aqueous solution from which solid substances such as yeast have been removed. Further, when the method of the present invention is applied to continuous fermentation, a conventional method for handling yeast, for example, a suspension batch method can be used as it is, an operation for immobilizing yeast in the fermentation layer and an apparatus therefor, for example, a bioreactor. The low-boiling fermentation product can be continuously removed from the system without the need for, and the concentration of the low-boiling fermentation product can be kept low, so that fermentation can be carried out continuously without inhibiting fermentation. it can.
第1図は本発明の分離濃縮方法の一実施態様を示すフロ
ーチャートであり、第2図および第3図は非多孔質中空
糸膜を内蔵した分離濃縮器の例を示す模式断面図であ
る。 1:醗酵液貯液槽(連続醗酵の場合は醗酵槽)、2:恒温水
槽、3:循環ポンプ、4:分離濃縮器、5:窒素ボンベ 6:流量計、7:真空ポンプ 8:コールドトラップ、9:マノメーター 10:醗酵液入口、11:醗酵液出口 12:非多孔質中空糸、13:キャリアーガス入口 14:蒸気出口FIG. 1 is a flow chart showing an embodiment of the separation and concentration method of the present invention, and FIGS. 2 and 3 are schematic cross-sectional views showing an example of a separation and concentration device containing a non-porous hollow fiber membrane. 1: Fermentation liquid storage tank (fermentation tank in the case of continuous fermentation), 2: Constant temperature water tank, 3: Circulation pump, 4: Separation concentrator, 5: Nitrogen cylinder 6: Flow meter, 7: Vacuum pump 8: Cold trap , 9: Manometer 10: Fermentation solution inlet, 11: Fermentation solution outlet 12: Non-porous hollow fiber, 13: Carrier gas inlet 14: Steam outlet
───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉本 幸信 東京都中央区京橋2丁目3番19号 三菱レ イヨン・エンジニアリング株式会社内 (56)参考文献 特開 昭61−199788(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukinobu Sugimoto 2-3-19 Kyobashi, Chuo-ku, Tokyo Mitsubishi Rayon Engineering Co., Ltd. (56) References JP-A-61-199788 (JP, A)
Claims (3)
該非多孔質膜の醗酵液と接していない面側を減圧に保つ
工程を有することを特徴とする醗酵生成物の分離濃縮方
法。1. A hydrophobic non-porous membrane is contacted on one side with a fermentation solution,
A method for separating and concentrating a fermentation product, comprising a step of maintaining a reduced pressure on a surface side of the non-porous membrane which is not in contact with the fermentation liquid.
槽から抜き出され醗酵槽へ戻される循環する醗酵液であ
る特許請求の範囲第1項記載の醗酵生成物の分離濃縮方
法。2. The method for separating and concentrating a fermentation product according to claim 1, wherein the fermentation liquid in contact with the hydrophobic non-porous membrane is a circulating fermentation liquid that is withdrawn from the fermentation tank and returned to the fermentation tank. .
醗酵槽内の醗酵液である特許請求の範囲第1項記載の醗
酵生成物の分離濃縮方法。3. The method for separating and concentrating a fermentation product according to claim 1, wherein the fermentation liquid in contact with the hydrophobic non-porous membrane is a fermentation liquid in a continuous fermentation tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61168107A JPH0817711B2 (en) | 1986-07-18 | 1986-07-18 | Method for separating and concentrating fermentation products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61168107A JPH0817711B2 (en) | 1986-07-18 | 1986-07-18 | Method for separating and concentrating fermentation products |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6324890A JPS6324890A (en) | 1988-02-02 |
JPH0817711B2 true JPH0817711B2 (en) | 1996-02-28 |
Family
ID=15861976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61168107A Expired - Lifetime JPH0817711B2 (en) | 1986-07-18 | 1986-07-18 | Method for separating and concentrating fermentation products |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0817711B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02249810A (en) * | 1989-03-23 | 1990-10-05 | Sumitomo Heavy Ind Ltd | Lug shifting prevention device for cylindrical belt conveyor |
EP0742835A1 (en) * | 1994-02-10 | 1996-11-20 | Stefan Grass | Process for extracting ethanol from a biomass |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61199788A (en) * | 1985-02-28 | 1986-09-04 | Mitsubishi Rayon Co Ltd | Separation and concentration of fermentation product, and method for continuous fermentation |
-
1986
- 1986-07-18 JP JP61168107A patent/JPH0817711B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6324890A (en) | 1988-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tomaszewska | Membrane distillation-examples of applications in technology and environmental protection | |
US5221479A (en) | Filtration system | |
US4822737A (en) | Process for producing ethanol by fermentation | |
Lipnizki et al. | Use of pervaporation‐bioreactor hybrid processes in biotechnology | |
JPS63162003A (en) | Separation of mixed solution | |
US20090117631A1 (en) | Alcohol extraction process for biofuel production | |
EP0258884B1 (en) | Method for separating and concentrating an organic component from an aqueous solution containing same | |
JP2019146514A (en) | Continuous culture method and continuous culture apparatus | |
JPH08252434A (en) | High-concentration alcohol production method | |
JPH01101879A (en) | Method for separating useful substance which is produced by bioengineering from culture solution | |
JP5130811B2 (en) | Process for producing 1,3-propanediol by continuous fermentation | |
EP0241577B1 (en) | Method for separating and concentrating an organic component having a low-boiling point from an aqueous solution | |
JP2765032B2 (en) | Method for producing concentrated solution of volatile organic liquid aqueous solution | |
JPH0817711B2 (en) | Method for separating and concentrating fermentation products | |
WO2009148522A1 (en) | Integrated membrane separation-bioreactor for selective removal of organic products and by-products | |
US5130026A (en) | Process and apparatus for removing ammonium from aqueous liquids | |
JPH10323543A (en) | Method for separating product in microbial reaction | |
JPH0365152B2 (en) | ||
JPH0389922A (en) | Separation of dissolving volatile substance from volatile substance dissolving solution by distillation | |
JPS6135805A (en) | Continuous treatment of alcohol fermentation solution | |
FR2583060A1 (en) | Production of butanol and acetone by fermentation, with recycling of the biomass by ultrafiltration | |
FR2616354A1 (en) | Process and apparatus for continuous extraction of ethanol contained in an aqueous phase | |
JPS61224994A (en) | Continuous alcohol fermentation device | |
JP2513942B2 (en) | Reactor using immobilized biocatalyst | |
JP2009034049A (en) | Method for producing valuable material using membrane bioreactor |