[go: up one dir, main page]

JPH08169798A - Quartz glass crucible for pulling silicon single crystal - Google Patents

Quartz glass crucible for pulling silicon single crystal

Info

Publication number
JPH08169798A
JPH08169798A JP7903295A JP7903295A JPH08169798A JP H08169798 A JPH08169798 A JP H08169798A JP 7903295 A JP7903295 A JP 7903295A JP 7903295 A JP7903295 A JP 7903295A JP H08169798 A JPH08169798 A JP H08169798A
Authority
JP
Japan
Prior art keywords
powder
crucible
layer
ppm
synthetic silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7903295A
Other languages
Japanese (ja)
Other versions
JP2811290B2 (en
Inventor
Mitsuo Matsumura
光男 松村
Hiroshi Matsui
宏 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13678596&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH08169798(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP7079032A priority Critical patent/JP2811290B2/en
Publication of JPH08169798A publication Critical patent/JPH08169798A/en
Application granted granted Critical
Publication of JP2811290B2 publication Critical patent/JP2811290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】 (修正有) 【目的】 シリコン単結晶引き上げを安定して行うこと
ができる石英ガラスルツボを提供する。 【構成】 外層部はNa、K、Liの含有量がそれぞれ
0.3ppm以下であり、Al含有量が5ppm以上である多気
泡石英ガラス層であり、内層部は高純度非晶質合成シリ
カ粉を溶融してなるOH基の含有量が200ppm以下の
透明シリカガラス層である石英ガラスルツボ。その製造
方法は、回転している型内に結晶質天然石英粉または該
天然石英粉と合成シリカ粉との混合物を供給してルツボ
形状の粉体層を形成し、粉体層の内面から加熱して粉体
層を溶融させ、多気泡のルツボ基体を形成し基体内に高
温雰囲気を形成し、OH基含有量が170ppm以下の高
純度非晶質合成シリカ粉を供給し部分的に溶融させなが
ら基体を内面に付着させ、基体の内面に所定厚さの透明
合成シリカガラス層を形成する。
(57) [Summary] (Modified) [Objective] To provide a quartz glass crucible capable of stably pulling a silicon single crystal. [Structure] The outer layer contains Na, K, and Li respectively.
A transparent silica glass having a content of OH groups of 200 ppm or less, which is a multi-foam quartz glass layer having an Al content of 5 ppm or more and having an Al content of 5 ppm or more, and the high purity amorphous synthetic silica powder is melted in the inner layer portion. Layered quartz glass crucible. The manufacturing method is such that crystalline natural quartz powder or a mixture of the natural quartz powder and synthetic silica powder is supplied into a rotating mold to form a crucible-shaped powder layer, and heating is performed from the inner surface of the powder layer. Then, the powder layer is melted to form a multi-bubble crucible substrate, a high-temperature atmosphere is formed in the substrate, and a high-purity amorphous synthetic silica powder having an OH group content of 170 ppm or less is supplied and partially melted. While adhering the substrate to the inner surface, a transparent synthetic silica glass layer having a predetermined thickness is formed on the inner surface of the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシリコン単結晶引き上げ
用石英ガラスルツボに関する。とくに、本発明は、外層
及び内層を有するシリコン単結晶引き上げ用の石英ガラ
スルツボに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quartz glass crucible for pulling a silicon single crystal. In particular, the present invention relates to a quartz glass crucible for pulling a silicon single crystal having an outer layer and an inner layer.

【0002】[0002]

【従来の技術】従来、チョコラルスキー法によるシリコ
ン単結晶の製造に際し、シリコン融液を収容する容器と
して石英ガラスルツボが使用されている。このシリコン
単結晶引き上げ用石英ガラスルツボは、一般に天然に産
出される水晶あるいは石英を粉砕し、次いで精製して得
た精製石英粉体を原料としてアーク加熱回転成型法によ
り製造されている。
2. Description of the Related Art Conventionally, a quartz glass crucible has been used as a container for containing a silicon melt in the production of a silicon single crystal by the Czochralski method. This quartz glass crucible for pulling up a silicon single crystal is generally manufactured by an arc heating rotary molding method using a purified quartz powder obtained by crushing naturally occurring quartz or quartz and then refining it.

【0003】この方法により製造される石英ガラスルツ
ボは、回転している型内にルツボ状に形成された原料粉
体層を内側からアーク放電加熱によって熔融成形したも
のであるので、平滑な内表面を有し、層中に細かな気泡
を高密度で含有する半透明の外観を呈したものである。
このいわゆる多気泡層は外部加熱源からのルツボ内部へ
の熱伝達を均一にする働きを有するが、シリコン単結晶
引き上げのための石英ガラスルツボにおいては、この多
気泡層の構造を有することと内面が平滑に形成されてい
ることがシリコン単結晶の引き上げを安定化させるため
に極めて重要である。
The quartz glass crucible manufactured by this method has a smooth inner surface because the raw material powder layer formed in a crucible shape in the rotating mold is melt-molded by arc discharge heating from the inside. And has a semi-transparent appearance in which fine bubbles are contained at a high density in the layer.
This so-called multi-bubble layer has the function of making the heat transfer from the external heating source to the inside of the crucible uniform, but in the quartz glass crucible for pulling the silicon single crystal, it has the structure of this multi-bubble layer and the inner surface. Is very important for stabilizing the pulling of the silicon single crystal.

【0004】しかして、本発明者らは、先に石英ガラス
ルツボの性能向上について鋭意研究を重ねた結果、ルツ
ボの内面が平滑であることはもちろんのこと、この平滑
な内表面をもつ所定の厚さ(約0.5mmから2mm)の実質
的に無気泡の透明層を内層とし、外層は前記した多気泡
層であるところの二層構造からなる石英ガラスルツボが
極めて優れていることを確認し、そのルツボの構造、製
造方法を提案した(特開平1−148718、同1−1
48782、同1−148783)。
[0004] However, as a result of the earnest studies of the improvement of the performance of the quartz glass crucible, the present inventors have found that the inner surface of the crucible is not only smooth but also a predetermined inner surface having this smooth inner surface. It was confirmed that a quartz glass crucible having a two-layer structure, in which the transparent layer having a thickness (about 0.5 mm to 2 mm) and having substantially no bubbles is the inner layer and the outer layer is the multi-bubble layer described above, is extremely excellent. Then, the structure of the crucible and the manufacturing method thereof were proposed (JP-A-1-148718, 1-1).
48782, 1-14883).

【0005】上記それらの発明による石英ガラスルツボ
は、シリコン単結晶引き上げによるルツボ内表面の肌荒
れ発生が非常に少なく、またルツボ内面にクリストバラ
イトの斑点を発生することも少ないので、結果としてシ
リコン単結晶の引き上げを安定して遂行でき、シリコン
単結晶の生産性を大幅に向上させるという利点をもって
いる。
In the quartz glass crucibles according to the above inventions, the occurrence of rough skin on the inner surface of the crucible due to the pulling of the silicon single crystal is very small, and the spots of cristobalite are not generated on the inner surface of the crucible. It has the advantage that the pulling can be performed stably and the productivity of the silicon single crystal is significantly improved.

【0006】ところで、近年の超LSI製造のためには
高品質なシリコンウエハが要求されるが、この高品質の
シリコンウエハを安定して製造する為には、石英ガラス
ルツボの純度を一層高めることが必要になる。この要求
に応えるためにルツボ製造の原料粉として従来の天然水
晶粉に代えて合成石英粉を使用する試みがなされてい
る。例えば米国特許第4,528,163 号明細書には天然石英
粒子で外側を形成し、内側を合成石英粒子でライニング
し、このライニング層の表面に平滑な薄い非晶質層を形
成した石英ルツボが記載されている。しかし、ここに教
示されているルツボは、その内面に平滑な薄い非晶質の
膜を有するが、それはせいぜい0.1mm程度のものであっ
て、層全体が多気泡の構造であり、これは約0.5mm以上
のような厚さの実質的に無気泡の透明層をもつルツボで
はないので、複数回の単結晶引き上げを行うような長時
間の使用に耐えるものではなかった。
By the way, a high-quality silicon wafer is required for recent VLSI manufacturing, and in order to stably manufacture this high-quality silicon wafer, the purity of the quartz glass crucible should be further improved. Will be required. In order to meet this demand, attempts have been made to use synthetic quartz powder as a raw material powder for crucible production instead of conventional natural quartz powder. For example, U.S. Pat.No. 4,528,163 describes a quartz crucible in which the outer side is formed of natural quartz particles, the inner side is lined with synthetic quartz particles, and a smooth thin amorphous layer is formed on the surface of this lining layer. There is. However, the crucible taught herein has a smooth thin amorphous film on its inner surface, which is at most about 0.1 mm, and the entire layer has a multi-bubble structure, which is Since it is not a crucible having a transparent layer having a substantially bubble-free thickness of about 0.5 mm or more, it cannot be used for a long time such as pulling a single crystal a plurality of times.

【0007】特公昭62−36974号公報、高純度の
四塩化けい素を原料にして作った生成物の焼結品をその
表面から熔融することによって高純度の合成石英ガラス
物品(例えば石英ルツボ)を得ることを教示している。
また、特開昭61−44793号公報は、内層をOH基
含有率200ppm 以上の合成石英粉の熔融によって形成
し、外層をOH基含有率100ppm 以下の天然水晶粉の
熔融によって形成してなるシリコン単結晶引き上げ用石
英ガラスルツボを教示している。しかし、これら公報の
教示に従って単純に合成石英粉の熔融によりガラス層を
形成しても、得られるガラス層は充分に透明でないか、
安定したシリコン単結晶引き上げを行い得ないものとな
る。さらに、これら2件の公報に開示されているルツボ
も前記したと同様に、いずれも内面に0.5mm以上のよう
な厚さの実質的に無気泡の透明層をもつ構造ではないの
で、本発明者らが先に開発した二層構造のルツボがもつ
性能を具備したものではない。
Japanese Patent Publication No. 62-36974, high-purity synthetic quartz glass article (eg, quartz crucible) by melting a sintered product of a product made from high-purity silicon tetrachloride as a raw material from the surface thereof. Teaches to get.
Further, JP-A-61-44793 discloses a silicon in which an inner layer is formed by melting synthetic quartz powder having an OH group content of 200 ppm or more and an outer layer is formed by melting natural quartz powder having an OH group content of 100 ppm or less. He teaches a quartz glass crucible for pulling a single crystal. However, even if the glass layer is simply formed by melting the synthetic quartz powder in accordance with the teachings of these publications, the obtained glass layer is not sufficiently transparent,
It becomes impossible to stably pull the silicon single crystal. Further, the crucibles disclosed in these two publications do not have a structure having a substantially bubble-free transparent layer having a thickness of 0.5 mm or more on the inner surface, as described above. It does not have the performance of the double-layered crucible that the inventors previously developed.

【0008】更に合成シリカガラス層を形成させるため
の原料として、結晶質合成シリカの使用も考えられる
が、結晶質合成シリカはエステルシランやけい酸ソーダ
の加水分解又はハロゲン化シランの加水分解によって得
られた非晶質シリカを、アルカリ等を結晶化の種として
加熱失透により結晶化させ精製粉砕して製造するという
多くの工程を経るので高価となり、経済的に実用化の段
階には至っていない。
Further, it is possible to use crystalline synthetic silica as a raw material for forming the synthetic silica glass layer. The crystalline synthetic silica is obtained by hydrolysis of ester silane or sodium silicate or hydrolysis of halogenated silane. The obtained amorphous silica is expensive because it undergoes many steps of producing by refining and pulverizing by crystallizing by heating devitrification using alkali etc. as a seed for crystallization, and it has not reached the stage of economical practical application. .

【0009】合成シリカ粉は一般に非晶質であり、ガラ
ス層を形成するためには経済的である、という利点があ
る。しかし、非晶質のリシカ粉は融点が安定しないため
に滑らかな肌を得ることが困難であり、この性質が合成
シリカ粉の使用に際しての障害となっている。
Synthetic silica powder is generally amorphous and has the advantage of being economical for forming a glass layer. However, it is difficult to obtain smooth skin because the amorphous lysica powder has an unstable melting point, and this property is an obstacle when using the synthetic silica powder.

【0010】[0010]

【発明の解決しようとする課題】従って、本発明は実質
的に無気泡の透明層を内層とし、多気泡層を外層とする
二層構造の石英ガラスルツボにおいて、その内層を所定
の厚さ(0.5mm以上)からなる高純度の合成シリカガラ
スで形成したルツボの提供を解決課題とする。さらに詳
細に述べると、本発明が解決しようとする課題は、前記
内層を構成する高純度の合成シリカガラスとして、特定
の物性を有する合成シリカガスラ粉を選択使用すること
により、ルツボが高い機械的強度を維持しており、シリ
コン融液中へのルツボ材の溶け込みが一定化しており、
高品質のシリコン単結晶の引き上げが安定して行われる
高純度ルツボを提供することにある。
Therefore, in the present invention, in a two-layered silica glass crucible having a transparent layer having substantially no bubbles as an inner layer and a multi-bubble layer as an outer layer, the inner layer has a predetermined thickness ( The problem to be solved is to provide a crucible made of high-purity synthetic silica glass of 0.5 mm or more). More specifically, the problem to be solved by the present invention is that, as the high-purity synthetic silica glass constituting the inner layer, by using synthetic silica gas powder having specific physical properties, the crucible has high mechanical strength. Is maintained and the melting of the crucible material into the silicon melt is constant,
It is to provide a high-purity crucible in which a high-quality silicon single crystal is stably pulled.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するた
め、本発明においては、外層部及び内層部を有するシリ
コン単結晶引き上げ用石英ガラスルツボにおいて、外層
部はNa 、K、Li 含有量それぞれ0.3ppm 以下でAl
含有量5ppm 以上である結晶質天然石英粉を熔融してな
る多気泡石英ガラス層で形成し、内層部は高純度の非晶
質合成シリカ粉を熔融してなる実質的に無気泡の厚さ0.
5mm以上の透明合成シリカガラス層で形成した構成とし
た。
In order to solve the above problems, according to the present invention, in a quartz glass crucible for pulling a silicon single crystal having an outer layer portion and an inner layer portion, the outer layer portion has Na, K and Li contents of 0, respectively. Al less than 0.3ppm
Formed with a multi-bubble quartz glass layer made by melting crystalline natural quartz powder with a content of 5 ppm or more, and the inner layer is a virtually bubble-free thickness made by melting high-purity amorphous synthetic silica powder. 0.
The structure was made of a transparent synthetic silica glass layer of 5 mm or more.

【0012】上記において、外層部形成用結晶質天然石
英粉に非晶質合成シリカ粉を混合して使用することも可
能であるが、その際混合粉のAl 含有量が5ppm 以上で
あることが望ましい。また特に、内層部を形成する非晶
質合成シリカ粉としては、OH基を170ppm 以下含有
する非多孔性のシリカガラス粒子を使用することによ
り、目的の実質的に無気泡の透明合成シリカガラス層の
OH基含有量を200ppm 以下とすることができる。
In the above, it is possible to mix the crystalline natural quartz powder for forming the outer layer with the amorphous synthetic silica powder, and in that case, the Al content of the mixed powder is 5 ppm or more. desirable. In particular, as the amorphous synthetic silica powder forming the inner layer portion, by using non-porous silica glass particles containing 170 ppm or less of OH groups, the objective transparent synthetic silica glass layer having substantially no bubbles. The OH group content of can be 200 ppm or less.

【0013】そして、上記内層部すなわち実質的に無気
泡の透明合成シリカガラス層を形成する手段として、回
転する型内において、多気泡石英ガラス層からなるツル
ボ形状の外層を形成後またはその形成過程で、その外層
の内面に透明合成シリカガラス層を構成する。この透明
合成シリカガラス層の形成は、型とともに外層を回転さ
せながら、型内部にアーク放電等による高温雰囲気を形
成し、この高温雰囲気中に前記したOH基含有量が17
0ppm 以下の非晶質合成シリカ粉を供給する。この非晶
質合成シリカ粉は少なくとも部分的に熔融させられ、該
外層の内面に向けて飛散し付着して、所定厚さの実質的
に無気泡でOH基含有量が200ppm 以下の透明合成シ
リカガラス層を形成する。さらに本発明の他の態様にお
いては、非晶質合成シリカ粉として、非多孔性のものを
使用する。非多孔値の尺度は、比表面積が5m2/g以下
のものとする。
As a means for forming the above-mentioned inner layer portion, that is, a substantially bubble-free transparent synthetic silica glass layer, after forming a vine-shaped outer layer made of a multi-bubble quartz glass layer in a rotating mold, or a process of forming the same. Then, a transparent synthetic silica glass layer is formed on the inner surface of the outer layer. The transparent synthetic silica glass layer was formed by rotating the outer layer together with the mold to form a high temperature atmosphere inside the mold by arc discharge or the like, and the OH group content was 17% in the high temperature atmosphere.
Amorphous synthetic silica powder of 0 ppm or less is supplied. The amorphous synthetic silica powder is at least partially melted and scattered toward the inner surface of the outer layer and adheres to the transparent synthetic silica having a predetermined thickness and substantially no bubbles and an OH group content of 200 ppm or less. Form a glass layer. Further, in another aspect of the present invention, non-porous synthetic silica powder is used. The non-porosity value is measured with a specific surface area of 5 m 2 / g or less.

【0014】[0014]

【作 用】本発明の石英ガラスツルボは、外層がNa 、
K、Li 含有量それぞれ0.3ppm以下でAl 含有量5ppm
以上の結晶質天然石英粉若しくはこの天然石英粉と非
晶質合成シリカ粉との混合物を熔融してなる多気泡石英
ガラス層である。この多気泡石英ガラス層は外部加熱源
からのルツボの内部への熱伝導を均一にすると共にルツ
ボの機械的強度を大きくし、シリコン単結晶引き上げ時
(約1450℃)の熱変形を少なくしている。この外層
の外表面近傍に結晶質石英成分が偏在するように構成す
ると、該熱変形は更に小さくすることができる。
[Working] The quartz glass crucible of the present invention has an outer layer of Na,
K and Li contents are each 0.3ppm or less, and Al content is 5ppm
A multi-bubble quartz glass layer obtained by melting the above crystalline natural quartz powder or a mixture of this natural quartz powder and amorphous synthetic silica powder. This multi-bubble quartz glass layer makes the heat conduction from the external heating source to the inside of the crucible uniform, increases the mechanical strength of the crucible, and reduces the thermal deformation when pulling the silicon single crystal (about 1450 ° C). There is. If the crystalline quartz component is unevenly distributed near the outer surface of the outer layer, the thermal deformation can be further reduced.

【0015】上記においてAl 含有量は耐熱強度に関し
5ppm 以上を必要とし、その上限は特に制限されるもの
ではないが、結晶質天然石英粉の原料として通常使用さ
れる水晶のAl 含有量は約60ppm 以下であり、それ以
上増加させても耐熱強度は特に向上しないので、5ない
し60ppm のAl 含有量の結晶質天然石英粉の使用が工
業的に有利である。
In the above, the Al content needs to be 5 ppm or more with respect to heat resistance, and the upper limit is not particularly limited, but the Al content of the quartz crystal normally used as a raw material of crystalline natural quartz powder has an Al content of about 60 ppm. Since the heat resistance is not particularly improved even if the amount is further increased, it is industrially advantageous to use crystalline natural quartz powder having an Al content of 5 to 60 ppm.

【0016】更にアルカリ元素であるNa 、K、Li の
各イオンは石英ガラス中の高温の拡散速度が比較的早
く、内層表面の劣化に影響し、また製造されるシリコン
単結晶の品質を悪くするので夫々の含有量が0.3ppm 以
下であることが必要である。内層は高純度非晶質合成シ
リカ粉を熔融してなるOH基含有量200ppm 以下の厚
さ少なくとも0.5mm以上を有する透明合成シリカガラス
層である。この厚さ0.5mm以上の透明合成シリカガラス
層は極めて高純度であり、OH基含有量が一定の範囲内
にあるので、シリコン融液内への溶損量が一定化し、シ
リコン融液表面の上下振動が抑制され、シリコン単結晶
の引き上げが安定化し、結果として高抵抗値で結晶構造
の微小欠陥が非常に少ない高品質のシリコン単結晶が高
収率で得られる。
Further, each of the ions of Na, K and Li, which are alkali elements, has a relatively high diffusion rate at high temperature in quartz glass, which affects the deterioration of the inner layer surface and deteriorates the quality of the silicon single crystal produced. Therefore, it is necessary that the content of each is 0.3 ppm or less. The inner layer is a transparent synthetic silica glass layer formed by melting high-purity amorphous synthetic silica powder and having an OH group content of 200 ppm or less and a thickness of at least 0.5 mm or more. This transparent synthetic silica glass layer with a thickness of 0.5 mm or more is of extremely high purity, and since the OH group content is within a certain range, the amount of melting loss in the silicon melt becomes constant, and the surface of the silicon melt Vertical vibration of the silicon single crystal is suppressed, pulling of the silicon single crystal is stabilized, and as a result, a high quality silicon single crystal having a high resistance value and very few micro defects in the crystal structure can be obtained in high yield.

【0017】本発明に係わるルツボを製造するには、先
ず回転する型内において、多気泡石英ガラス層からなる
ルツボ形状の外層すなわち基体を形成後にまたはその形
成過程で、その基体内側にアーク放電等による高温雰囲
気を形成し、基体内面を熔融ないしは軟化状態とする。
この状態で、高温雰囲気中に非晶質合成シリカ粉を供給
するので、シリカ粉は少なくとも一部が熔融されてルツ
ボ内面に向けて飛散され、熔融ないしは軟化状態にある
ルツボ内面に付着する。この付着積層により実質的に無
気泡の透明な合成シリカガラス層が所定の厚さでルツボ
基体上に一体的に形成される。
In order to manufacture the crucible according to the present invention, first, in a rotating mold, after forming a crucible-shaped outer layer made of a multi-bubble quartz glass layer, that is, a substrate, or during the formation process, arc discharge or the like is formed inside the substrate. A high temperature atmosphere is formed by, and the inner surface of the substrate is melted or softened.
In this state, since the amorphous synthetic silica powder is supplied into the high temperature atmosphere, at least a part of the silica powder is melted and scattered toward the inner surface of the crucible, and adheres to the inner surface of the crucible in the molten or softened state. By this adhesion and lamination, a substantially bubble-free transparent synthetic silica glass layer having a predetermined thickness is integrally formed on the crucible substrate.

【0018】上記において非晶質合成シリカ粉は高純度
であることのみならず、OH基含有量170ppm 以下含
有し、かつ非多孔性のシリカガラス粒子であることが重
要である。このシリカガラス粒子がミクロ的に多孔質な
構造のものであると、これを前記したアーク放電等によ
る高温雰囲気中に供給し少なくとも部分的に熔融させて
回転しているルツボ基体内面に付着させても気泡を沢山
含む層が形成されるのみで実質的に無気泡の透明合成シ
リカガラス層を形成することはできない。
In the above description, it is important that the amorphous synthetic silica powder is not only highly pure but also non-porous silica glass particles containing an OH group content of 170 ppm or less. If the silica glass particles have a microscopically porous structure, they are supplied to the high temperature atmosphere by the above-described arc discharge, at least partially melted and adhered to the inner surface of the rotating crucible substrate. However, it is not possible to form a transparent synthetic silica glass layer that is substantially bubble-free, since only a layer containing many bubbles is formed.

【0019】本発明の一形態におけるように、非多孔性
の非晶質合成シリカ粉を使用した場合には、5ないし3
00g/分の割合でルツボ形状の外層基体内に供給し、
内面から加熱熔融することにより無気泡の透明層が形成
される。また、合成シリカガラス粉を使用することによ
る、滑らかな面が形成できない、という問題も解消され
る。
When non-porous amorphous synthetic silica powder is used, as in one form of the present invention, 5 to 3
It is supplied into the crucible-shaped outer layer substrate at a rate of 00 g / min,
By heating and melting from the inner surface, a bubble-free transparent layer is formed. Also, the problem that a smooth surface cannot be formed due to the use of synthetic silica glass powder is solved.

【0020】OH基が170ppm 以上でも内層として無
気泡の透明層は容易に得られるが、製品内層のOH基含
有量は原料より少し増加する傾向があるので、製品内層
のOH基含有量は約200ppm 以上のものになる。内層
のOH基含有量が200ppm 以上になるとシリコン単結
晶引き上げ工程時におけるシリコン融液面の上下振動が
起こり、引き上げたシリコン単結晶の径の変動が増加し
たり、引き上げ不良率が増加し好ましくない。OH基含
有量が500ppm 以上になるとシリコン単結晶の引き上
げ中にしばしば切断が起こる。
Even if the OH group content is 170 ppm or more, a bubble-free transparent layer can be easily obtained as an inner layer, but the OH group content of the product inner layer tends to increase slightly compared to the raw material. It will be over 200ppm. When the OH group content in the inner layer is 200 ppm or more, vertical vibration of the silicon melt surface occurs during the silicon single crystal pulling process, which increases the fluctuation of the diameter of the pulled silicon single crystal and increases the pulling defect rate, which is not preferable. . When the OH group content is 500 ppm or more, cutting often occurs during the pulling of the silicon single crystal.

【0021】このような所定量以下のOH基を含有し、
かつ非多孔性である高純度非晶質合成シリカ粉は、例え
ば、テトラメトキシシラン、エチルオルソシリケートな
どのテトラアルコキシシランあるいはテトラハロゲン化
シラン等の原料を加水分解し、乾燥焼結するいわゆるゾ
ルゲル法、火炎加水分解法あるいは他の公知の方法によ
りシリカを合成し、この合成段階で粉体を得るか、ある
いはこの合成シリカを例えば脱泡熔融により透明ガラス
体とし、この透明ガラス体を粉砕することにより非多孔
性のものとして得ることができる。
[0021] It contains such a predetermined amount or less of OH groups,
The high-purity amorphous synthetic silica powder that is non-porous is, for example, a so-called sol-gel method in which a raw material such as tetraalkoxysilane or tetrahalogenated silane such as tetramethoxysilane and ethyl orthosilicate is hydrolyzed and dried and sintered. , Synthesizing silica by flame hydrolysis method or other known method and obtaining powder in this synthesis step, or making this synthetic silica into a transparent glass body by, for example, degassing and melting, and crushing this transparent glass body Can be obtained as a non-porous material.

【0022】[0022]

【実施例】以下、本発明の実施例を図について説明す
る。第1図に示す回転型1は回転軸2を具え、型1内に
キャビティ1aが形成されている。この型キャビティ1
a内に外層部を構成する多気泡石英ガラスルツボ基体3
が配置されている。基体3は、Na 、K、Li 含有量が
それぞれ0.3ppm 以下でAl 含有量が5ppm 以上である
結晶質天然石英粉若しくは、これと非晶質合成シリカ粉
との混合粉を回転する型1内で所望のルツボ形状に予備
成形し、この予備成形粉体を内面から加熱して粉末を熔
融させ冷却することにより製造される。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. The rotary mold 1 shown in FIG. 1 has a rotary shaft 2, and a cavity 1 a is formed in the mold 1. This mold cavity 1
Multi-bubble quartz glass crucible base body 3 forming an outer layer portion in a
Is arranged. The substrate 3 is a mold 1 for rotating crystalline natural quartz powder having Na, K, Li contents of 0.3 ppm or less and Al content of 5 ppm or more, or a mixed powder of this and amorphous synthetic silica powder. It is manufactured by pre-forming into a desired crucible shape inside, and heating the pre-formed powder from the inner surface to melt and cool the powder.

【0023】次に型1を回転させながら熱源5を基体3
内に挿入し加熱を行う。基体3は上端が開口しており、
この開口はリング状の隙間を残すように蓋7で閉鎖す
る。熱源5でルツボ基体3内に高温ガス雰囲気8を形成
させ、OH基濃度170ppm 以下の高純度非晶質合成シ
リカ粉6をノズル9から少量づつ高温ガス雰囲気8内に
供給する。合成シリカ粉6はOH基濃度170ppm 以下
の非晶質構造のものであればよいが、完全な透明シリカ
ガラス層(内層部)を得るためには非多孔性のものであ
ることが望ましい。更に本発明に使用される合成シリカ
粉6は粒径30〜1000μmのものが使用できるが、
好ましくは粒径100〜300μmであり、非多孔性を
示す尺度として比表面積が5m2/g以下のものが望まし
い。
Next, while the mold 1 is rotated, the heat source 5 is attached to the base 3
Insert inside and heat. The base body 3 has an open upper end,
This opening is closed by a lid 7 so as to leave a ring-shaped gap. A high temperature gas atmosphere 8 is formed in the crucible base 3 by the heat source 5, and high purity amorphous synthetic silica powder 6 having an OH group concentration of 170 ppm or less is supplied into the high temperature gas atmosphere 8 little by little from a nozzle 9. The synthetic silica powder 6 may have an amorphous structure having an OH group concentration of 170 ppm or less, but is preferably non-porous in order to obtain a completely transparent silica glass layer (inner layer portion). Further, the synthetic silica powder 6 used in the present invention may have a particle size of 30 to 1000 μm,
The particle size is preferably 100 to 300 μm, and the specific surface area of 5 m 2 / g or less is desirable as a measure of non-porosity.

【0024】合成シリカ粉6は基体3の内面に向けて供
給され、基体3の内面に達する時には少なくとも一部が
熔融状態になり、その時までに基体3の内面も熔融状態
になり、供給される合成シリカ粉6はルツボ基体3の内
面に付着し、該基体と一体的で実質的に無気泡な透明合
成シリカガラス層4を構成する。合成シリカ粉6は、供
給層10から、計量フィーダにより供給量を調節しなが
らノズル9を介して供給される。第1図に示す実施例で
は、あらかじめ所要形状に成形した半透明石英ルツボ基
体3を型1内に配置し、その内面に透明合成シリカガラ
ス層4を形成させている。しかし結晶質天然石英粉又は
これと非晶質合成シリカ粉との混合粉を回転している型
1内に供給し、型1の内面に沿って分布させ所要厚さの
粉体層を形成し、型1を回転させながらこの石英粉体層
を内面から加熱して熔融させ、ルツボ基体を形成する工
程と同時に透明合成シリカガラス層を形成する工程を行
ってもよい。この方法によれば、製造中のルツボ基体3
内に高温ガス雰囲気8が形成され、ルツボ基体の製造中
にこの高温ガス雰囲気8内に合成シリカ粉6が供給さ
れ、基体とルツボとが同一の型1内で形成しうる利点が
ある。更に、ルツボ基体3の形成に際し、粉体層を内面
から加熱熔融させる段階で加熱条件を調節し該粉体層の
すべてをガラス化することなく、又は必要に応じて型の
外部を冷却し、ルツボ基体3の外表面近傍に結晶質天然
石英粉を偏在させることができる。
The synthetic silica powder 6 is supplied toward the inner surface of the substrate 3, and when it reaches the inner surface of the substrate 3, at least a part thereof is in a molten state, and by that time, the inner surface of the substrate 3 is also in a molten state and is supplied. The synthetic silica powder 6 adheres to the inner surface of the crucible substrate 3 and constitutes the transparent synthetic silica glass layer 4 which is integral with the substrate and is substantially bubble-free. The synthetic silica powder 6 is supplied from the supply layer 10 through the nozzle 9 while adjusting the supply amount by a measuring feeder. In the embodiment shown in FIG. 1, a semi-transparent quartz crucible substrate 3 which has been formed into a desired shape in advance is placed in a mold 1, and a transparent synthetic silica glass layer 4 is formed on the inner surface thereof. However, crystalline natural quartz powder or a mixed powder of this and amorphous synthetic silica powder is supplied into the rotating mold 1 and distributed along the inner surface of the mold 1 to form a powder layer having a required thickness. The step of forming the transparent synthetic silica glass layer may be performed simultaneously with the step of heating and melting the quartz powder layer from the inner surface while rotating the mold 1 to form the crucible substrate. According to this method, the crucible substrate 3 being manufactured
A high temperature gas atmosphere 8 is formed therein, and synthetic silica powder 6 is supplied into the high temperature gas atmosphere 8 during the production of the crucible substrate, so that there is an advantage that the substrate and the crucible can be formed in the same mold 1. Further, when forming the crucible base 3, the heating conditions are adjusted at the stage of heating and melting the powder layer from the inner surface without vitrifying all of the powder layer, or if necessary, the outside of the mold is cooled, The crystalline natural quartz powder can be unevenly distributed near the outer surface of the crucible base 3.

【0025】石英粉体層3及び合成シリカ粉6を加熱熔
融するための手段としてカーボン等の電極5を使用する
アーク放電等が有効である。電極としては陽極と陰極の
最低2本が必要であるが、3本以上でアーク放電するこ
とも可能である。電極間隔と電極の先端とルツボ基体間
の距離を調節することにより、粉体の熔融を制御し、ル
ツボ基体内に透明合成シリカガラス層4を形成すること
ができる。熔融加熱中は温度調整の為型1の上部に蓋7
を設置するが、シリカ中に僅か含まれる微粉(粒径30
μm以下)やシリカの昇華成分が飛散するので蓋7と型
1とは密着させず、リング状の隙間を開けておくことが
重要である。
As a means for heating and melting the quartz powder layer 3 and the synthetic silica powder 6, arc discharge using an electrode 5 of carbon or the like is effective. At least two electrodes, an anode and a cathode, are required as electrodes, but it is also possible to arc discharge with three or more. By adjusting the electrode interval and the distance between the tip of the electrode and the crucible base, the melting of the powder can be controlled and the transparent synthetic silica glass layer 4 can be formed in the crucible base. A lid 7 is placed on the top of the mold 1 to adjust the temperature during melting and heating.
Is installed, but fine powder (particle size 30
It is important that the lid 7 and the mold 1 are not brought into close contact with each other, and a ring-shaped gap is opened, because a sublimation component of silica or silica) is scattered.

【0026】第2図に上述の方法により形成される単結
晶引き上げ用の石英ルツボを示す。すでに説明したよう
に、このルツボは多気泡石英ガラス層として形成される
外層3と、非晶質合成シリカ粉により形成された高純度
の内層4とからなる。内層4はOH基含有量200ppm
以下の透明合成シリカガラス層で、厚さは0.5mm以上で
ある。外層3はNa 、K、Li の含有量がそれぞれ0.3
ppm 以下で、Al 含有量が5ppm 以上である。
FIG. 2 shows a quartz crucible for pulling a single crystal formed by the above method. As already explained, this crucible comprises the outer layer 3 formed as a multi-bubble quartz glass layer and the high-purity inner layer 4 formed of amorphous synthetic silica powder. Inner layer 4 has an OH group content of 200 ppm
The transparent synthetic silica glass layer below has a thickness of 0.5 mm or more. The outer layer 3 has Na, K, and Li contents of 0.3, respectively.
Below ppm, the Al content is above 5 ppm.

【0027】[0027]

【実施例1】前述の方法により、粒度分布100〜30
0μmの結晶質天然石英粉を回転する成型用型内に供給
し、厚さ14mmの粉体層を形成させ、アーク放電により
内部から加熱熔融させると同時に非晶質合成シリカ粉を
アーク放電による高温雰囲気中に供給し前記粉体層の内
面に付着させ厚さ約1mmの透明合成シリカガラス層を有
する肉厚7.9mm、直径14インチの石英ガラスルツボを
作成した。
Example 1 A particle size distribution of 100 to 30 was obtained by the above method.
0 μm crystalline natural quartz powder is fed into a rotating molding die to form a powder layer with a thickness of 14 mm, which is heated and melted from the inside by arc discharge and at the same time amorphous synthetic silica powder is heated to a high temperature by arc discharge. A quartz glass crucible having a thickness of 7.9 mm and a diameter of 14 inches having a transparent synthetic silica glass layer having a thickness of about 1 mm which was supplied into the atmosphere and adhered to the inner surface of the powder layer was prepared.

【0028】天然石英粉としては不純物としてNa 0.1
6ppm 、K0.10ppm 、Li 0.22ppm 及びAl 8.2pp
m を含む水晶粉を使用し、内層として使用した高純度非
晶質合成シリカ粉は粒度分布100〜300μmの比表
面積8、4、1及び0.5m2/gのもので水酸基含有量
の異なったものを選び実験した。その結果を次表に示
す。
As natural quartz powder, Na 0.1 as an impurity
6ppm, K 0.10ppm, Li 0.22ppm and Al 8.2pp
The high-purity amorphous synthetic silica powder used as the inner layer of quartz powder containing m has a specific surface area of 8, 4, 1 and 0.5 m 2 / g with a particle size distribution of 100-300 μm and a different hydroxyl content. I chose an experiment and experimented. The results are shown in the table below.

【表1】 表 1 ───────────────────────────────── 試料番号 非晶質合成シリカ粉 ルツボ外観 原料の物性 ───────────────────────────────── 比表面積 OH基 (m2/g) (ppm) ───────────────────────────────── 試料 1 0.5 62 無気泡透明な内層を示す。 試料 2 0.5 161 同 上 試料 3 1 43 同 上 試料 4 4 73 同 上 比較例1 0.5 250 無気泡透明な内層を示す。 比較例2 0.5 620 同 上 比較例3 8 63 気泡を含み内層が半透明になる。[Table 1] Table 1 ───────────────────────────────── Sample number Amorphous synthetic silica powder Crucible appearance Raw material Physical properties of ───────────────────────────────── Specific surface area OH groups (m 2 / g) (ppm) ── ─────────────────────────────── Sample 1 0.5 62 Shows a bubble-free transparent inner layer. Sample 2 0.5 161 Same as above Sample 3 1 43 Same as above Sample 4 4 73 Same as above Comparative Example 1 0.5 250 Shows a bubble-free transparent inner layer. Comparative Example 2 0.5 620 Same as above Comparative Example 3 8 63 The inner layer becomes semi-transparent including bubbles.

【0029】[0029]

【実施例2】前記作製ルツボにつき、通常のチョコラル
スキー法によりシリコン単結晶引き上げ製造をおこな
い、直径6インチの単結晶シリコンインゴット30kgを
各ルツボで3本づつ連続して製造した。その単結晶比率
の平均値を表2に示す。
Example 2 With respect to the prepared crucible, a silicon single crystal was pulled up and manufactured by an ordinary Czochralski method, and 30 kg of a single crystal silicon ingot having a diameter of 6 inches was continuously manufactured by three crucibles. The average value of the single crystal ratio is shown in Table 2.

【表2】 表 2 ─────────────────────── 試料番号 単 結 晶 比 率 (%) 1本目 2本目 3本目 ─────────────────────── 試料 1 100 90 80 試料 2 90 90 70 試料 3 90 90 70 試料 4 90 80 70 比較例1 90 50 -- 比較例2 80 40 -- 比較例3 80 50 -- ─────────────────────── 本発明の試料1、2、3及び4は安定したシリコン単結
晶の製造を示している。
[Table 2] Table 2 ─────────────────────── Sample No. Single crystal ratio (%) 1st 2nd 3rd ───── ────────────────── Sample 1 100 90 80 Sample 2 90 90 70 Sample 3 90 90 70 Sample 4 90 80 70 Comparative Example 1 90 50 --Comparative Example 2 80 40 --Comparative Example 3 80 50 ---- ─────────────────────── Samples 1, 2, 3 and 4 of the present invention are stable silicon single crystals. Shows manufacturing.

【0030】比較例1及び2の場合は、2本目の引き上
げでシリコン融液面のゆれが大きくルツボの膨張がみら
れ湯漏れの危険を生じたので3本目の引き上げは不能で
あった。比較例3は2本目の引き上げが不安定となり、
3本目は単結晶引き上げが不能となったが、ルツボ内面
特にシリコン融液面の部分の浸蝕がはげしく透明層が失
われていることが原因と推定される。
In the case of Comparative Examples 1 and 2, the third melt was unable to be lifted because the fluctuation of the silicon melt surface was large at the time of the second lift and the crucible expanded, causing a risk of molten metal leak. In Comparative Example 3, the second pulling up becomes unstable,
The third crystal could not be pulled up, but it is presumed that the inner surface of the crucible, especially the silicon melt surface, was corroded so much that the transparent layer was lost.

【0031】ここで特に注目されることは、本発明の試
料1、2、3及び4では3本の単結晶シリコンを製造し
た後でも何れもその内表面に透明層が残存していたこと
である。
What is particularly noted here is that in Samples 1, 2, 3 and 4 of the present invention, the transparent layer remained on the inner surface of all of them even after the production of three single crystal silicons. is there.

【0032】[0032]

【実施例3】「実施例1」の試料1の作製条件で、外層
基体用としてNa 0.41ppm 、K0.20ppm 、Li 0.2
1ppm 及びAl 7.9ppm の不純物を含有する水晶粉を使
用して作製したルツボ試料を比較例4とし、同時にNa
0.30ppm 、K0.45ppm 、Li 0.24ppm 、及びAl
8.7ppm 又はNa 0.18ppm 、K0.08ppm 、Li 1.9
ppm 、及びAl 3.5ppm の不純物を含有する水晶粉で作
製したルツボ試料を夫々比較例5及び6とし、「実施例
2」と同様な方法でシリコン単結晶比率を調べた結果を
表3に示す。
[Embodiment 3] Na 0.41 ppm, K 0.20 ppm, Li 0.2 for the outer layer substrate under the manufacturing conditions of the sample 1 of "Example 1".
A crucible sample prepared by using quartz powder containing impurities of 1 ppm and Al of 7.9 ppm was designated as Comparative Example 4, and at the same time, Na
0.30 ppm, K 0.45 ppm, Li 0.24 ppm, and Al
8.7ppm or Na 0.18ppm, K 0.08ppm, Li 1.9
Crucible samples made of quartz powder containing impurities of ppm and Al of 3.5 ppm are designated as Comparative Examples 5 and 6, respectively, and the results of examining the silicon single crystal ratio in the same manner as in "Example 2" are shown in Table 3. Show.

【表3】 表 3 ─────────────────────── 試料番号 単 結 晶 比 率 (%) 1本目 2本目 3本目 ─────────────────────── 試料 1 100 90 80 比較例4 100 90 70 比較例5 100 90 70 比較例6 90 50 -- ─────────────────────── 比較例6は2本目の単結晶引き上げでルツボの膨張がみ
られ変形を生じたので、3本目は中止した。
[Table 3] Table 3 ─────────────────────── Sample No. Single crystal ratio (%) 1st 2nd 3rd ───── ────────────────── Sample 1 100 90 80 Comparative Example 4 100 90 70 Comparative Example 5 100 90 70 Comparative Example 6 90 50 --───────── ─────────────── In Comparative Example 6, since the crucible expanded due to the expansion of the second single crystal, the third crystal was discontinued.

【0033】更に、試料1及び比較例4、5で製造した
単結晶シリコン夫々1本目と3本目の中央部につき比抵
抗値と酸素濃度を測定した値を表4に示す。
Further, Table 4 shows the measured values of the specific resistance and the oxygen concentration in the central portions of the first and third single crystal silicons produced in Sample 1 and Comparative Examples 4 and 5, respectively.

【表4】 表 4 ────────────────────────────── 単結晶試料 比抵抗値 酸素濃度 (Ω・cm) (X1018atm/cc) ────────────────────────────── 試料1で製造した単結晶 1本目 1300 1.6 3本目 1200 1.5 比較例4で製造した単結晶 1本目 1300 1.8 3本目 300 1.6 比較例5で製造した単結晶 1本目 1200 1.9 3本目 180 1.7 ────────────────────────────── 表4から判るように本発明の試料1で引き上げ製造した
単結晶シリコンは安定した高抵抗値を示し、酸素濃度も
安定している。比較例4及び5ではルツボ外層部のアル
カリ濃度の影響によると推定されるが、3本目の引き上
げで高抵抗値のものが得られなかった。
[Table 4] Table 4 ────────────────────────────── Single crystal sample Resistivity value Oxygen concentration (Ωcm) ( X10 18 atm / cc) ────────────────────────────── Single crystal produced from Sample 1 1st 1300 1.6 3rd 1200 1.5 Single crystal produced in Comparative Example 4 1st crystal 1300 1.8 3rd crystal 300 1.6 Single crystal produced in Comparative Example 5 1st crystal 1200 1.9 3rd crystal 180 1.7 ─────────────────── ───────────── As can be seen from Table 4, the single crystal silicon produced by pulling up with the sample 1 of the present invention shows a stable high resistance value and a stable oxygen concentration. In Comparative Examples 4 and 5, it is presumed that it was due to the influence of the alkali concentration in the outer layer of the crucible, but a high resistance value could not be obtained by the third pulling.

【0034】[0034]

【実施例4】「実施例1」の試料1と同様の原料を使用
し、回転する型内に先ず外層部の水晶粉体層を形成さ
せ、次に非晶質合成シリカ粉を供給し水晶粉体層の内面
に非晶質合成シリカ粉層を形成させてから、アーク放電
で内部から加熱熔融して肉厚8mmの14インチの石英ル
ツボを作製して、ルツボ断面を調べた所透明な内層は肉
眼で観察できなかった。尚このルツボで実験例2と同様
な方法で単結晶比率を調べた所1本目は80%であった
が2本目は50%に低下した。
[Embodiment 4] Using the same raw material as in Sample 1 of "Embodiment 1", first, a quartz powder layer of the outer layer portion is formed in a rotating mold, and then an amorphous synthetic silica powder is supplied to the quartz die. After forming an amorphous synthetic silica powder layer on the inner surface of the powder layer, it was heated and melted from the inside by arc discharge to produce a 14-inch quartz crucible with a thickness of 8 mm. The inner layer was not visible to the naked eye. When the single crystal ratio of this crucible was examined in the same manner as in Experimental Example 2, the first crystal ratio was 80%, but the second crystal ratio decreased to 50%.

【0035】[0035]

【実施例5】不純物としてNa 0.21ppm 、K0.13pp
m 、Li 0.19ppm 及びAl 11.4ppm を含有する粒度
分布100〜300μmの水晶粉に、不純物濃度Na <
0.01ppm 、K<0.05ppm 、Li <0.01ppm Al 0.
02ppm 、Fe <0.05ppm及びCu <0.01ppm でO
H基83ppm を有する粒度分布100〜300μmの比
表面積0.4m2 /gを有する非晶質合成シリカ粉を等量
混合した混合粉をルツボ外層形成用原料とし、上記合成
シリカ粉をルツボ内層用原料として、本発明実施例記載
の方法で内面に厚さ1.1mmの合成シリカガラス透明層を
有する肉厚8.0mmの径14インチの石英ガラスルツボを
作成し実験例2記載の方法で単結晶比率を調べた所、表
2の試料1と同様の良好な結果が得られた。
[Embodiment 5] Na 0.21 ppm and K 0.13 pp as impurities
In a quartz powder having a particle size distribution of 100 to 300 μm and containing m, Li 0.19 ppm and Al 11.4 ppm, the impurity concentration Na <
0.01 ppm, K <0.05 ppm, Li <0.01 ppm Al 0.
O at 02 ppm, Fe <0.05 ppm and Cu <0.01 ppm
A mixed powder in which equal amounts of amorphous synthetic silica powder having a specific surface area of 0.4 m 2 / g having a particle size distribution of 100 to 300 μm and having an H group of 83 ppm was mixed was used as a raw material for forming a crucible outer layer, and the synthetic silica powder was used for an inner layer of the crucible. As a raw material, a quartz glass crucible having a thickness of 8.0 mm and a diameter of 14 inches having a synthetic silica glass transparent layer having a thickness of 1.1 mm on the inner surface was prepared by the method described in the example of the present invention, and the single crystal was prepared by the method described in the experimental example 2. When the crystal ratio was examined, good results similar to those of Sample 1 in Table 2 were obtained.

【0036】[0036]

【発明の効果】本発明の石英ルツボによれば、ルツボの
耐熱強度が極めて大きく、単結晶引き上げ時にルツボの
変形を生ずることなく、またルツボ内表面の部分的な侵
蝕も殆どなく、複数回の単結晶引き上げを行っても従来
維持しえなかった高抵抗単結晶を保ちつつ高い結晶比率
を維持することができ、高品質のシリコン単結晶を高収
率で得ることができる。更に、本発明の石英ルツボの製
造に際して、ルツボ内層の合成シリカガラス層の原料と
して従来高価であった結晶質のものを使用するこなく、
製造の容易な非多孔性の合成シリカガラス粉を使用する
ことにより本発明の石英ルツボを初めて工業的に有利に
製造することができる。
According to the quartz crucible of the present invention, the heat resistance of the crucible is extremely large, the crucible is not deformed when the single crystal is pulled, and the inner surface of the crucible is not substantially corroded. Even if a single crystal is pulled, a high crystal ratio can be maintained while maintaining a high resistance single crystal that could not be conventionally maintained, and a high quality silicon single crystal can be obtained in a high yield. Further, in the production of the quartz crucible of the present invention, without using a crystalline material which was conventionally expensive as a raw material of the synthetic silica glass layer of the inner layer of the crucible,
The quartz crucible of the present invention can be industrially advantageously manufactured for the first time by using a non-porous synthetic silica glass powder that is easy to manufacture.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法に使用される石英ルツボ製造用回
転成型装置の断面概略図、
FIG. 1 is a schematic cross-sectional view of a rotary molding device for producing a quartz crucible used in the method of the present invention,

【図2】本発明の方法により得られる石英ルツボの一部
切欠斜視図である。
FIG. 2 is a partially cutaway perspective view of a quartz crucible obtained by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 回転型、 1a キャビティ、 2 回転軸、 3 ルツボ基体(外層部)、 4 透明合成シリカガラス層、 5 電極(カーボン)、 6 合成シリカ粉、 7 蓋、 8 高温ガス雰囲気、 9 ノズル、 10 ホッパー。 1 rotation type, 1a cavity, 2 rotation axis, 3 crucible base (outer layer part), 4 transparent synthetic silica glass layer, 5 electrode (carbon), 6 synthetic silica powder, 7 lid, 8 high temperature gas atmosphere, 9 nozzle, 10 hopper .

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 外層部および内層部を有するシリコン単
結晶引き上げ用石英ガラスルツボにおいて、前記外層部
はNa 、K、Li の含有量がそれぞれ0.3ppm 以下であ
り、Al 含有量が5ppm 以上である多気泡石英ガラス層
であり、内層部は高純度非晶質合成シリカ粉を溶融して
なるOH基の含有量が200ppm 以下の透明シリカガラ
ス層であることを特徴とするシリコン単結晶引き上げ用
石英ガラスルツボ。
1. A quartz glass crucible for pulling a silicon single crystal having an outer layer portion and an inner layer portion, wherein the outer layer portion has Na, K, and Li contents of 0.3 ppm or less, respectively, and an Al content of 5 ppm or more. A multi-bubble quartz glass layer, the inner layer portion being a transparent silica glass layer having an OH group content of 200 ppm or less formed by melting high-purity amorphous synthetic silica powder, for pulling a silicon single crystal Quartz glass crucible.
【請求項2】 請求項1に記載した石英ガラスルツボに
おいて、前記外層が天然石英粉若しくは該天然石英粉と
非晶質合成シリカ粉との混合石英粉を溶融して形成した
ものである石英ガラスルツボ。
2. The quartz glass crucible according to claim 1, wherein the outer layer is formed by melting natural quartz powder or fused quartz powder of the natural quartz powder and amorphous synthetic silica powder. Crucible.
【請求項3】 請求項1または2に記載した石英ガラス
ルツボにおいて、前記内層部が少なくとも0.5mmの厚さ
を有する石英ガラスルツボ。
3. The quartz glass crucible according to claim 1 or 2, wherein the inner layer portion has a thickness of at least 0.5 mm.
【請求項4】 請求項1ないし3のいずれか1項に記載
した石英ガラスルツボにおいて、前記外層部は外表面近
傍に偏在した結晶質石英成分を有する石英ガラスルツ
ボ。
4. The quartz glass crucible according to any one of claims 1 to 3, wherein the outer layer portion has a crystalline quartz component unevenly distributed near the outer surface.
JP7079032A 1995-04-04 1995-04-04 Quartz glass crucible for pulling silicon single crystal Expired - Lifetime JP2811290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7079032A JP2811290B2 (en) 1995-04-04 1995-04-04 Quartz glass crucible for pulling silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7079032A JP2811290B2 (en) 1995-04-04 1995-04-04 Quartz glass crucible for pulling silicon single crystal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3093861A Division JP2933404B2 (en) 1990-06-25 1991-04-24 Quartz glass crucible for pulling silicon single crystal and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH08169798A true JPH08169798A (en) 1996-07-02
JP2811290B2 JP2811290B2 (en) 1998-10-15

Family

ID=13678596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7079032A Expired - Lifetime JP2811290B2 (en) 1995-04-04 1995-04-04 Quartz glass crucible for pulling silicon single crystal

Country Status (1)

Country Link
JP (1) JP2811290B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187089B1 (en) 1999-02-05 2001-02-13 Memc Electronic Materials, Inc. Tungsten doped crucible and method for preparing same
US6319313B1 (en) 1999-03-15 2001-11-20 Memc Electronic Materials, Inc. Barium doping of molten silicon for use in crystal growing process
US6350312B1 (en) 1999-03-15 2002-02-26 Memc Electronic Materials, Inc. Strontium doping of molten silicon for use in crystal growing process
US6447601B1 (en) 2001-03-19 2002-09-10 Memc Electronic Materials, Inc. Crystal puller and method for growing monocrystalline silicon ingots
US6916370B2 (en) * 2002-01-17 2005-07-12 Heraeus Quarzglas Gmbh & Co. Kg Quartz glass crucible for pulling up silicon single crystal and method for producing the same
US7299658B2 (en) 2003-05-30 2007-11-27 Heraeus Quarzglas Gmbh & Co. K.G. Quartz glass crucible for the pulling up of silicon single crystal
JP2008063157A (en) * 2006-09-05 2008-03-21 Shinetsu Quartz Prod Co Ltd Quartz glass member for semiconductor manufacturing
US7587912B2 (en) 2003-02-28 2009-09-15 Heraeus Quarzglas Gmbh & Co. Kg Method for producing quartz glass crucible for use in pulling silicon single crystal and quartz glass crucible produced by said method
EP2182099A1 (en) 2008-10-31 2010-05-05 Japan Super Quartz Corporation Silica glass crucible having multilayered structure
JP2010138005A (en) * 2008-12-09 2010-06-24 Japan Siper Quarts Corp Quartz glass crucible for pulling up silicon single crystal and method for manufacturing the same
JP2010280567A (en) * 2010-09-17 2010-12-16 Covalent Materials Corp Method for producing silica glass crucible
JP2012211082A (en) * 2012-08-07 2012-11-01 Shinetsu Quartz Prod Co Ltd Silica vessel
WO2013140706A1 (en) * 2012-03-23 2013-09-26 信越石英株式会社 A silica container for pulling up monocrystalline silicon and method for manufacturing same
US8689584B2 (en) 2010-12-31 2014-04-08 Japan Super Quartz Corporation Method of manufacturing vitreous silica crucible
US8726692B2 (en) 2010-12-31 2014-05-20 Japan Super Quartz Corporation Method of manufacturing vitreous silica crucible
US8739573B2 (en) 2009-08-12 2014-06-03 Japan Super Quartz Corporation Apparatus and method for manufacturing vitreous silica crucible
US8806892B2 (en) 2010-12-31 2014-08-19 Japan Super Quartz Corporation Method of manufacturing vitreous silica crucible
US8844321B2 (en) 2009-10-02 2014-09-30 Japan Super Quartz Corporation Apparatus and method for manufacturing vitreous silica crucible
JP2015127287A (en) * 2013-12-28 2015-07-09 株式会社Sumco Quartz glass crucible and manufacturing method thereof
US9085480B2 (en) 2010-12-31 2015-07-21 Japan Super Quartz Corporation Method of manufacturing vitreous silica crucible
US9181121B2 (en) 2010-12-31 2015-11-10 Sumco Corporation Method for manufacturing vitreous silica crucible
CN110670121A (en) * 2019-11-20 2020-01-10 宁夏富乐德石英材料有限公司 Local coating quartz crucible and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4086283B2 (en) 2002-07-31 2008-05-14 信越石英株式会社 Silica glass crucible for pulling silicon single crystal and method for producing the same
KR100774606B1 (en) * 2003-05-01 2007-11-09 신에쯔 세끼에이 가부시키가이샤 Quartz glass crucible for pulling up silicon single crystal and method for manufacture thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113817A (en) * 1977-03-17 1978-10-04 Toshiba Ceramics Co Quartz glass crucible for pulling up single crysal of silicon
JPS5617996A (en) * 1979-07-12 1981-02-20 Heraeus Schott Quarzschmelze Crucible for semiconductor art and manufacture thereof
JPS59213697A (en) * 1983-05-20 1984-12-03 Toshiba Ceramics Co Ltd Pulling device for single crystal semiconductor
JPS60137892A (en) * 1983-12-26 1985-07-22 Toshiba Ceramics Co Ltd Quartz glass crucible
JPS63166791A (en) * 1986-12-26 1988-07-09 Toshiba Ceramics Co Ltd Quartz glass crucible and production thereof
JPH01148783A (en) * 1987-12-03 1989-06-12 Shin Etsu Handotai Co Ltd Quartz crucible for pulling up single crystal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113817A (en) * 1977-03-17 1978-10-04 Toshiba Ceramics Co Quartz glass crucible for pulling up single crysal of silicon
JPS5617996A (en) * 1979-07-12 1981-02-20 Heraeus Schott Quarzschmelze Crucible for semiconductor art and manufacture thereof
JPS59213697A (en) * 1983-05-20 1984-12-03 Toshiba Ceramics Co Ltd Pulling device for single crystal semiconductor
JPS60137892A (en) * 1983-12-26 1985-07-22 Toshiba Ceramics Co Ltd Quartz glass crucible
JPS63166791A (en) * 1986-12-26 1988-07-09 Toshiba Ceramics Co Ltd Quartz glass crucible and production thereof
JPH01148783A (en) * 1987-12-03 1989-06-12 Shin Etsu Handotai Co Ltd Quartz crucible for pulling up single crystal

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187089B1 (en) 1999-02-05 2001-02-13 Memc Electronic Materials, Inc. Tungsten doped crucible and method for preparing same
US6319313B1 (en) 1999-03-15 2001-11-20 Memc Electronic Materials, Inc. Barium doping of molten silicon for use in crystal growing process
US6350312B1 (en) 1999-03-15 2002-02-26 Memc Electronic Materials, Inc. Strontium doping of molten silicon for use in crystal growing process
US6461427B2 (en) 1999-03-15 2002-10-08 Memc Electronic Materials, Inc. Barium doping of molten silicon for use in crystal growing process
US6447601B1 (en) 2001-03-19 2002-09-10 Memc Electronic Materials, Inc. Crystal puller and method for growing monocrystalline silicon ingots
US6916370B2 (en) * 2002-01-17 2005-07-12 Heraeus Quarzglas Gmbh & Co. Kg Quartz glass crucible for pulling up silicon single crystal and method for producing the same
US7587912B2 (en) 2003-02-28 2009-09-15 Heraeus Quarzglas Gmbh & Co. Kg Method for producing quartz glass crucible for use in pulling silicon single crystal and quartz glass crucible produced by said method
US7299658B2 (en) 2003-05-30 2007-11-27 Heraeus Quarzglas Gmbh & Co. K.G. Quartz glass crucible for the pulling up of silicon single crystal
JP2008063157A (en) * 2006-09-05 2008-03-21 Shinetsu Quartz Prod Co Ltd Quartz glass member for semiconductor manufacturing
EP2182099A1 (en) 2008-10-31 2010-05-05 Japan Super Quartz Corporation Silica glass crucible having multilayered structure
JP2010138005A (en) * 2008-12-09 2010-06-24 Japan Siper Quarts Corp Quartz glass crucible for pulling up silicon single crystal and method for manufacturing the same
US8739573B2 (en) 2009-08-12 2014-06-03 Japan Super Quartz Corporation Apparatus and method for manufacturing vitreous silica crucible
US8844321B2 (en) 2009-10-02 2014-09-30 Japan Super Quartz Corporation Apparatus and method for manufacturing vitreous silica crucible
JP2010280567A (en) * 2010-09-17 2010-12-16 Covalent Materials Corp Method for producing silica glass crucible
US8806892B2 (en) 2010-12-31 2014-08-19 Japan Super Quartz Corporation Method of manufacturing vitreous silica crucible
US8689584B2 (en) 2010-12-31 2014-04-08 Japan Super Quartz Corporation Method of manufacturing vitreous silica crucible
US8726692B2 (en) 2010-12-31 2014-05-20 Japan Super Quartz Corporation Method of manufacturing vitreous silica crucible
US9085480B2 (en) 2010-12-31 2015-07-21 Japan Super Quartz Corporation Method of manufacturing vitreous silica crucible
US9181121B2 (en) 2010-12-31 2015-11-10 Sumco Corporation Method for manufacturing vitreous silica crucible
JP5462423B1 (en) * 2012-03-23 2014-04-02 信越石英株式会社 Silica container for pulling single crystal silicon and manufacturing method thereof
WO2013140706A1 (en) * 2012-03-23 2013-09-26 信越石英株式会社 A silica container for pulling up monocrystalline silicon and method for manufacturing same
JP2012211082A (en) * 2012-08-07 2012-11-01 Shinetsu Quartz Prod Co Ltd Silica vessel
JP2015127287A (en) * 2013-12-28 2015-07-09 株式会社Sumco Quartz glass crucible and manufacturing method thereof
CN110670121A (en) * 2019-11-20 2020-01-10 宁夏富乐德石英材料有限公司 Local coating quartz crucible and manufacturing method thereof
CN110670121B (en) * 2019-11-20 2024-04-12 宁夏盾源聚芯半导体科技股份有限公司 Locally coated quartz crucible and manufacturing method thereof

Also Published As

Publication number Publication date
JP2811290B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
JP2933404B2 (en) Quartz glass crucible for pulling silicon single crystal and its manufacturing method
JP2811290B2 (en) Quartz glass crucible for pulling silicon single crystal
US6841210B2 (en) Multilayer structured quartz glass crucible and method for producing the same
JP4166241B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
US7226508B2 (en) Quartz glass crucible and method for the production thereof
EP1286925B1 (en) Method for producing quartz glass crucible
US8172945B2 (en) High-purity vitreous silica crucible for pulling large-diameter single-crystal silicon ingot
EP2251460B1 (en) Silica crucible for pulling silicon single crystal
KR101104673B1 (en) High Purity Quartz Glass Crucible for Large Diameter Silicon Single Crystal Ingot Impression
JP3733144B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JPH0729871B2 (en) Quartz crucible for pulling single crystals
TW200936820A (en) Quartz glass crucible, method for manufacturing the same and single crystal pulling method
EP1905872A1 (en) Quartz glass crucible for pulling up of silicon single crystal and process for producing the quartz glass crucible
US8163083B2 (en) Silica glass crucible and method for pulling up silicon single crystal using the same
JP2005231986A (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JPH0692779A (en) Quartz crucible for pulling up single crystal
JP2005060152A (en) Manufacturing method for quartz crucible, quartz crucible, and manufacturing method for silicon single crystal using the same
JP7280160B2 (en) Silica glass crucible
EP2143831B1 (en) Method for pulling up silicon single crystal using a silica glass crucible.
JP3050351B2 (en) Method for producing opaque quartz glass
JPH0813716B2 (en) Silica glass crucible for pulling silicon single crystal
JPH09241093A (en) Two-layer structure quartz crucible for melting silicon