JPH0816975B2 - Magnetic recording media - Google Patents
Magnetic recording mediaInfo
- Publication number
- JPH0816975B2 JPH0816975B2 JP62065697A JP6569787A JPH0816975B2 JP H0816975 B2 JPH0816975 B2 JP H0816975B2 JP 62065697 A JP62065697 A JP 62065697A JP 6569787 A JP6569787 A JP 6569787A JP H0816975 B2 JPH0816975 B2 JP H0816975B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- thin film
- magnetic recording
- recording medium
- rotation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005291 magnetic effect Effects 0.000 title claims description 122
- 239000010409 thin film Substances 0.000 claims description 40
- 230000005294 ferromagnetic effect Effects 0.000 claims description 11
- 230000004907 flux Effects 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 3
- 230000005415 magnetization Effects 0.000 description 10
- 239000010408 film Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910018134 Al-Mg Inorganic materials 0.000 description 2
- 229910018467 Al—Mg Inorganic materials 0.000 description 2
- 229910018104 Ni-P Inorganic materials 0.000 description 2
- 229910018536 Ni—P Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Landscapes
- Magnetic Record Carriers (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、強磁性金属もしくは合金薄膜を磁気記録媒
層とした磁気記録媒体に係り、特にノイズ(雑音)が低
く、S/N(出力対雑音比)特性に優れた信頼性の高い強
磁性薄膜型の磁気記録媒体に関する。Description: TECHNICAL FIELD The present invention relates to a magnetic recording medium having a ferromagnetic metal or alloy thin film as a magnetic recording medium layer, and in particular, it has low noise and S / N (output). The present invention relates to a highly reliable ferromagnetic thin film magnetic recording medium having an excellent noise-to-noise ratio characteristic.
従来の強磁性薄膜型の磁気記録媒体において、磁気記
録再生時におけるノイズの主たる発生原因は、記録ビッ
トの境界において磁化方向が乱れる領域(磁化遷移領
域)ができるためであることが、第5回日本応用磁気学
会学術講演概要集(1981年10月)の第16頁において論じ
られている。In the conventional ferromagnetic thin film magnetic recording medium, the main cause of noise during magnetic recording / reproduction is that a region where the magnetization direction is disturbed (magnetization transition region) is formed at the boundary of the recording bit. It is discussed on page 16 of the summary of lectures by the Japan Institute of Applied Magnetics (October 1981).
強磁性金属薄膜あるいは金属酸化物薄膜などを磁気記
録層(磁性層)として用いた強磁性薄膜型の磁気記録媒
体は、保磁力が高く、飽和磁束密度が大きいと共に、磁
性層の薄膜化が容易であるという特長をもっている。こ
れらの性質は、磁気記録媒体の高密度記録化を行う上
で、必要不可欠な特性であり、現在、多く用いられてい
る塗布型の磁気記録媒体に代わる次世代の高密度記録用
磁気記録媒体として大いに期待されている。しかし、強
磁性薄膜型の磁気記録媒体は、再生出力の向上という点
においては比較的容易に達成できるものの、磁気記録媒
体のノイズが大きくS/N特性に必ずしも優れた媒体が得
られないという問題があった。A ferromagnetic thin film type magnetic recording medium using a ferromagnetic metal thin film or a metal oxide thin film as a magnetic recording layer (magnetic layer) has a high coercive force and a high saturation magnetic flux density, and the magnetic layer can be easily thinned. It has the feature of being These properties are indispensable characteristics for achieving high density recording of the magnetic recording medium, and the next-generation magnetic recording medium for high density recording, which replaces the coating type magnetic recording medium which is widely used at present. Is highly expected as. However, although the ferromagnetic thin film type magnetic recording medium can be relatively easily achieved in terms of improvement of the reproduction output, the noise of the magnetic recording medium is large and a medium excellent in S / N characteristics cannot always be obtained. was there.
この強磁性薄膜型の磁気記録媒体のノイズの発生原因
については、いくつかの研究がなされており、例えば上
述した文献〔第5回日本応用磁気学会学術講演概要集
(1981)p16〕においては、信号記録時に発生するノイ
ズの主たる発生要因として、記録ビット境界に生じる磁
化遷移領域を挙げており、ほぼ記録密度に比例してノイ
ズが増大することを示している。したがって、この比例
定数をいかに小さくするかが高S/N磁気記録媒体を得る
上で重要な要因となる。しかし、磁気記録媒体のノイズ
と媒体の磁性薄膜の磁気特性がどのように関係している
かについては未だ不明であり、高S/N磁気記録媒体を得
るうえでの 路となっていた。Several studies have been conducted on the cause of noise in this ferromagnetic thin film magnetic recording medium. For example, in the above-mentioned document [5th Annual Meeting of the Applied Magnetics Society of Japan (1981) p16], As a main cause of generation of noise during signal recording, the magnetization transition region occurring at the recording bit boundary is mentioned, and it is shown that the noise increases almost in proportion to the recording density. Therefore, how to reduce this proportional constant is an important factor in obtaining a high S / N magnetic recording medium. However, it is still unknown how the noise of the magnetic recording medium is related to the magnetic characteristics of the magnetic thin film of the medium, and it has been a way to obtain a high S / N magnetic recording medium.
本発明の目的は、強磁性薄膜型の磁気記録媒体のノイ
ズを低くするために磁性薄膜が具備すべき磁気的な特性
を明示し、もって高S/N特性を有する磁気記録媒体を提
供することにある。An object of the present invention is to specify magnetic characteristics that a magnetic thin film should have in order to reduce noise of a ferromagnetic thin film type magnetic recording medium, and to provide a magnetic recording medium having high S / N characteristics. It is in.
上記本発明の目的は、磁気記録層となるべき磁性薄膜
を磁気トルク計で測定して求めた、回転履歴損失積分値
RH(Rotational Hysteresis Integral)が0.4から1.3の
範囲にある磁性薄膜を有する磁気記録媒体とすることに
より、達成される。The object of the present invention is to obtain a rotation history loss integrated value obtained by measuring a magnetic thin film to be a magnetic recording layer with a magnetic torque meter.
This is achieved by using a magnetic recording medium having a magnetic thin film having a R H (Rotational Hysteresis Integral) in the range of 0.4 to 1.3.
以下に、本発明の磁気記録媒体について具体的に説明
する。いま、磁気トルク計を用いて磁性薄膜試料の磁気
異方性を測定する時、通常、強磁界を磁性薄膜試料に印
加して回転すると、第3図(a)に示すような180度対
称のトルク曲線が得られる。そして、磁界を一方向に36
0度回転した後、再び逆方向に回転させると、そのトル
クの大きさは前に描かれた曲線上を通過しヒステリシス
は生じない。しかし、磁界を弱めていくと、第3図
(b)に示すように、磁界を一方向に回転した後、再び
逆方向に回転させると、もはやトルクの大きさは同一の
軌跡上に通過せず、ヒステリシスが現われてくる。第3
図(b)に示す2本の曲線で囲まれる面積 式中、Lは試料単位体積のトルクの大きさ、θは回転角
を表わす。)は回転履歴損失と呼ばれるものであり、磁
界の大きさに依存するものである。さらに、回転履歴損
失積分値RHは、上記の回転履歴損失Wrを飽和磁束密度Is
で割って、磁界の大きさHの逆数で 積分した値 であり、磁性薄膜の磁化の反転が、どのような機構で起
っているかを示す目安となるものである。通常、その磁
化反転が一斉回転モデルに従う場合は、RHは0.4とな
り、磁壁移動による磁化反転が含まれるにつれて、RHは
増大して行き、完全に180度磁壁移動だけで磁化反転が
起こる場合は4.0となる。The magnetic recording medium of the present invention will be specifically described below. Now, when measuring the magnetic anisotropy of a magnetic thin film sample using a magnetic torque meter, normally, when a strong magnetic field is applied to the magnetic thin film sample and rotated, a 180-degree symmetry as shown in FIG. A torque curve is obtained. Then, the magnetic field is
When it is rotated 0 degree and then rotated in the opposite direction again, the magnitude of the torque passes over the curve drawn previously and no hysteresis occurs. However, when the magnetic field is weakened, as shown in FIG. 3 (b), when the magnetic field is rotated in one direction and then rotated again in the opposite direction, the magnitude of the torque can no longer pass on the same locus. Instead, hysteresis appears. Third
Area enclosed by two curves shown in Figure (b) In the formula, L represents the magnitude of the torque per unit volume of the sample, and θ represents the rotation angle. ) Is called a rotation history loss and depends on the magnitude of the magnetic field. Further, the rotation history loss integrated value R H is obtained by comparing the above-mentioned rotation history loss Wr with the saturation magnetic flux density Is.
Value divided by and integrated by the reciprocal of the magnitude H of the magnetic field That is, it is a standard for indicating the mechanism of reversal of the magnetization of the magnetic thin film. Normally, if the magnetization reversal follows the simultaneous rotation model, R H will be 0.4, and R H will increase as the magnetization reversal due to domain wall motion is included, and if magnetization reversal occurs only by 180 degrees domain wall motion. Becomes 4.0.
本発明の磁気記録媒体の磁気記録層である磁性薄膜
は、Co、NiまたはFeの単体金属、もしくはこれらの元素
を主成分とする合金よりなり、さらに回転履歴損失積分
値RHを低くするために、非磁性の元素であるCu、V、Z
r、Ruなどの少なくとも1種の元素を0.1〜15at(原子)
%含有させることが好ましく、より好ましい範囲は3〜
8at%である。上記元素の含有量が0.1未満であるとノイ
ズ低減効果が少なく、また15at%を超えると保磁力およ
び飽和磁化が減少し、磁気記録媒体としての性能が低下
するので好ましくない。The magnetic thin film, which is the magnetic recording layer of the magnetic recording medium of the present invention, is made of Co, Ni or Fe, a simple metal, or an alloy containing these elements as a main component, and further has a low rotational history loss integral value R H. In addition, non-magnetic elements such as Cu, V, Z
0.1 to 15 at (atoms) of at least one element such as r and Ru
% Is preferable, and a more preferable range is 3 to
It is 8 at%. When the content of the above elements is less than 0.1, the noise reducing effect is small, and when it exceeds 15 at%, the coercive force and the saturation magnetization are decreased, and the performance as a magnetic recording medium is deteriorated, which is not preferable.
本発明の磁気記録媒体において、回転履歴損失積分値
RHを0.4から1.3の範囲にするということは、磁気記録媒
体として用いられる磁性薄膜の磁化反転機構が、一斉回
転モデルになるべく近い方がよいことを意味しており、
磁壁移動による磁化反転をなるべく制御した方が、磁気
記録媒体ノイズを低減させる上で好ましいことを意味し
ているものと考えられる。そして、回転履歴損失積分値
RHが0.4未満では、磁性薄膜が磁性体として理論的に存
在し得ない範囲であり、またRHが1.3を超えると磁区の
サイズが大きくなり、そのため磁気記録媒体のノイズが
増大するので好ましくない。In the magnetic recording medium of the present invention, the rotation history loss integrated value
Setting R H in the range of 0.4 to 1.3 means that the magnetization reversal mechanism of the magnetic thin film used as the magnetic recording medium should be as close as possible to the simultaneous rotation model,
It is considered that it is preferable to control the magnetization reversal due to the domain wall movement as much as possible in order to reduce the noise of the magnetic recording medium. And the rotation history loss integral value
When R H is less than 0.4, the magnetic thin film is in a range in which it cannot theoretically exist as a magnetic substance, and when R H exceeds 1.3, the size of the magnetic domain becomes large, and therefore the noise of the magnetic recording medium increases, which is preferable. Absent.
さらに、本発明の磁性薄膜において、Cu、V、Zr、Ru
などの非磁性の元素を適量添加すると、回転履歴損失積
分値RHをより低くする作用を示し、したがって高S/N媒
体が得られる効果が生ずる。Furthermore, in the magnetic thin film of the present invention, Cu, V, Zr, Ru
Addition of a suitable amount of a non-magnetic element, such as, has the effect of lowering the rotation history loss integral value R H , and thus an effect of obtaining a high S / N medium is produced.
以下に、本発明の一実施例を挙げ、図面に基づいてさ
らに詳細に説明する。Hereinafter, one embodiment of the present invention will be described in more detail with reference to the drawings.
(実施例 1) Cu-Snメッキした直径130mmのAl-Mg合金よりなる基板
表面を鏡面研磨し、アルカリ脱脂、水洗後、厚さを0〜
1000Åの範囲に種々変えた化学Ni−Pメッキ膜を形成さ
せた後、その表面に、厚さ750ÅのCo-20at%Ni-0.8at%
Pよりなる磁性薄膜を電気メッキ法で形成した。さら
に、このメッキディスクを空気中で300℃の温度に加熱
し、50分間表面酸化を行い深青色の酸化保護膜を形成さ
せた。Example 1 A surface of a substrate made of Cu—Sn plated Al—Mg alloy having a diameter of 130 mm is mirror-polished, alkali degreased and washed with water, and then the thickness is reduced to 0.
After forming various chemical Ni-P plating films in various ranges of 1000Å, 750Å thickness of Co-20at% Ni-0.8at% is formed on the surface.
A magnetic thin film of P was formed by electroplating. Further, this plated disk was heated in air to a temperature of 300 ° C. and surface-oxidized for 50 minutes to form a deep blue oxidation protection film.
上記のようにして作製したメッキディスクの再生ディ
スクとノイズを以下に示す方向で測定した。磁気ヘッド
には、トラック幅31μm、ギャップ長さ0.8μmのリン
グヘッドを用い、浮上高さを0.2μm、周速を20m/secの
条件で記録再生特性を評価した。記録再生特性評価が終
ったディスクから6mm角の試料を切出し、試料振動型磁
力計でヒステリシス曲線を求め、飽和磁束密度Is、保持
力Hc、角形比Ir/Isを測定した。また、磁気トルク計を
用い、上述した方法で回転履歴損失積分値RHを求めた。
第1図に、磁気記録媒体ノイズ/飽和磁束密度(μVrms
/G)およびS/N(dB)と回転履歴損失積分値RHの関係を
示した。ただし測定に用いた磁性薄膜試料の間では飽和
磁束密度Isが異なる場合があったため、磁気記録媒体ノ
イズNが飽和磁束密度Isで割ってある。図から明らかな
ように、媒体ノイズNと回転履歴損失積分値RHの間には
一様な関係があり、回転履歴損失積分値RHが小さいほ
ど、媒体ノイズは小さくなり、特にRHが1.3より小さく
なるとS/Nは35dB以上の、非常に優れた磁気特性を示し
た。The reproduced disc and the noise of the plated disc manufactured as described above were measured in the following directions. A ring head having a track width of 31 μm and a gap length of 0.8 μm was used as the magnetic head, and the recording / reproducing characteristics were evaluated under the conditions of a flying height of 0.2 μm and a peripheral speed of 20 m / sec. A 6 mm square sample was cut out from the disk for which the recording / reproduction characteristics had been evaluated, a hysteresis curve was obtained using a sample vibrating magnetometer, and the saturation magnetic flux density Is, coercive force Hc, and squareness ratio Ir / Is were measured. Further, using a magnetic torque meter, the rotation history loss integral value R H was obtained by the method described above.
Fig. 1 shows the magnetic recording medium noise / saturation magnetic flux density (μVrms
/ G) and S / N (dB) and the integrated value of rotational history loss R H. However, since the saturation magnetic flux density Is may differ between the magnetic thin film samples used for the measurement, the magnetic recording medium noise N is divided by the saturation magnetic flux density Is. As can be seen, there is a uniform relation between the rotation history loss integrated value R H and the medium noise N, as the rotation history loss integrated value R H is small, medium noise is reduced, in particular R H When it was smaller than 1.3, the S / N ratio was 35 dB or more, which was a very excellent magnetic property.
(実施例 2) Ni−Pメッキした直径130mmのAl-Mg合金よりなる基板
表面を鏡面研磨し、水洗後、150℃の温度に加熱し、DC
マグネトロンスパッタ法で、Arガス圧を5、10,15mTor
r、投入電力を1.6、6.4、16W/cm2と種々変えて厚さ2500
ÅのCr膜を形成した後、やはり種々のArガス圧、投入電
力条件でCo-30at%Ni、またはCo-30at%Ni-5.5at%Cu、
あるいはCo-30at%Ni-11at%Vの合金よりなる磁性薄膜
を、600Åの膜厚に形成した。さらに、カーボン保護膜
を400Åの膜厚に連続形成し磁気ディスクを作製した。
これらのディスクを、実施例1と同様の方法で記録再生
特性と磁気特性、ならびに回転履歴損失積分値RHを測定
した。その結果を第2図に示す。図から明らかなごと
く、磁性薄膜にCuやVの元素を添加すると磁気記録媒体
のノイズが減少し、S/Nが向上していることが分かる。
また、この場合においても、回転履歴損失積分値RHが小
さいほど媒体ノイズが小さくなるという結果が得られて
いる。また、実施例1の結果を第2図の破線4で示した
が、ほぼ同一の曲線となり、実施例2の場合においても
回転履歴損失積分値RHが1.3以下になると、S/Nが35dB以
上になることを示している。(Example 2) The surface of a substrate made of a Ni-P plated Al-Mg alloy having a diameter of 130 mm was mirror-polished, washed with water, and then heated to a temperature of 150 ° C.
Ar gas pressure is 5,10,15mTor by magnetron sputtering method
r, input power is 1.6, 6.4, 16W / cm 2 and thickness 2500
After forming the Cr film of Å, Co-30at% Ni or Co-30at% Ni-5.5at% Cu under various Ar gas pressures and input power conditions,
Alternatively, a magnetic thin film made of an alloy of Co-30at% Ni-11at% V was formed to a film thickness of 600Å. Furthermore, a carbon protective film was continuously formed to a film thickness of 400 Å to manufacture a magnetic disk.
Recording / reproducing characteristics, magnetic characteristics, and rotation history loss integral value R H of these disks were measured in the same manner as in Example 1. The results are shown in FIG. As is clear from the figure, when Cu or V element is added to the magnetic thin film, noise of the magnetic recording medium is reduced and S / N is improved.
Also in this case, the result is that the medium noise decreases as the rotation history loss integral value R H decreases. The result of Example 1 is shown by the broken line 4 in FIG. 2, but the curves are almost the same. Even in the case of Example 2, when the rotation history loss integrated value R H is 1.3 or less, the S / N is 35 dB. It has shown that it becomes above.
(実施例 3) 磁性薄膜の耐食性を向上させるために、磁性薄膜の組
成を、Co-30at%Ni-5at%Zr、またはCo-30at%Ni-4at%
Zr-1at%Ruとした以外は、実施例2と同じ条件で磁気デ
ィスクを作製した。これらのディスクを、実施例1と同
じ方法で記録再生特性と磁気特性、ならびに回転履歴損
失積分値RHを求めた。その結果、磁性薄膜をCo-30at%N
i-5at%Zrの組成とした磁気ディスクにおいて、回転履
歴損失積分値RHが1.1、磁気ディスクノイズ/飽和磁束
密度の値が1.0×10-3μVrms/G、S/Nが38dBであった。ま
た、磁性薄膜をCo-30at%Ni-4at%Zr-1at%Ruの組成と
した磁気ディスクにおいては、回転履歴損失積分値RH、
磁気ディスクノイズ/飽和磁束密度の値、およびS/N
が、それぞれ0.9、0.5×10-3μVrms/G、42dBとなった。
これらの値は、第1図と第2図に示した曲線上にほぼ位
置している。(Example 3) In order to improve the corrosion resistance of the magnetic thin film, the composition of the magnetic thin film was changed to Co-30at% Ni-5at% Zr or Co-30at% Ni-4at%.
A magnetic disk was manufactured under the same conditions as in Example 2 except that Zr-1at% Ru was used. Recording / reproducing characteristics, magnetic characteristics, and rotation history loss integral value R H of these disks were obtained by the same method as in Example 1. As a result, the magnetic thin film was changed to Co-30at% N
In the magnetic disk with the composition of i-5at% Zr, the rotation history loss integrated value R H was 1.1, the magnetic disk noise / saturation magnetic flux density was 1.0 × 10 -3 μVrms / G, and the S / N was 38 dB. . Further, in the magnetic disk having the composition of Co-30at% Ni-4at% Zr-1at% Ru as the magnetic thin film, the rotation history loss integrated value R H ,
Magnetic disk noise / saturation magnetic flux density value and S / N
Were 0.9, 0.5 × 10 -3 μVrms / G and 42 dB, respectively.
These values are approximately located on the curves shown in FIGS. 1 and 2.
以上説明した本発明の実施例から明らかなように、磁
性薄膜の組成が異なり、かつメッキ法とスパッタ法とい
うように、磁性薄膜の作製法がまったく異なる場合にお
いても、ノイズと回転履歴損失積分値RHの間に同一の関
係を有していることが分かる。このことは、とりもなお
さず強磁性薄膜型の磁気記録媒体の低ノイズ、高S/N化
を図るうえで、磁性薄膜の回転履歴損失積分値RHを小さ
くすることが必要不可欠の条件となっていることを示す
ものである。As is clear from the embodiments of the present invention described above, noise and rotation history loss integral values are different even when the composition of the magnetic thin film is different and the manufacturing method of the magnetic thin film is completely different such as the plating method and the sputtering method. It can be seen that they have the same relationship between R H. This means that in order to achieve low noise and high S / N of the ferromagnetic thin film magnetic recording medium, it is essential to reduce the rotation history loss integral value R H of the magnetic thin film. It shows that it has become.
以上詳細に説明したごとく、回転履歴損失積分値RHの
範囲を0.4〜1.3とした本発明の強磁性薄膜型の磁気記録
媒体は、媒体ノイズを著しく減少させることができ、S/
N特性に優れた信頼性の高い磁気記録媒体を得ることが
できる。As described in detail above, the ferromagnetic thin film magnetic recording medium of the present invention in which the range of the rotation history loss integral value R H is 0.4 to 1.3 can significantly reduce the medium noise, and S /
A highly reliable magnetic recording medium having excellent N characteristics can be obtained.
第1図は本発明の実施例1において作製した磁気ディス
クの媒体ノイズおよびS/Nと、回転履歴損失積分値の関
係を示すグラフ、第2図は本発明の実施例2において作
製した磁気ディスクの媒体ノイズおよびS/Nと、回転履
歴損失積分値の関係を示すグラフ、第3図(a)は磁性
薄膜試料を強磁界条件で磁気トルクを測定した場合のト
ルク曲線図、第3図(b)は磁性薄膜試料を通常の磁界
条件で磁気トルクを測定した場合のトルク曲線図を示
す。 1……強磁界で測定したトルク曲線 2……通常の磁界で測定したトルク曲線(右回転) 3……通常の磁界で測定したトルク曲線(左回転) 4……媒体ノイズ対RH曲線 5……S/N対RH曲線 6……媒体ノイズ対RH曲線 7……S/N対RH曲線FIG. 1 is a graph showing the relationship between the medium noise and S / N of the magnetic disk manufactured in Example 1 of the present invention and the integrated value of the rotation history loss, and FIG. 2 is the magnetic disk manufactured in Example 2 of the present invention. 3 is a graph showing the relationship between the medium noise and S / N of Fig. 3 and the rotation history loss integral value. Fig. 3 (a) is a torque curve diagram when the magnetic torque of the magnetic thin film sample is measured under a strong magnetic field condition. b) shows a torque curve diagram when the magnetic torque of the magnetic thin film sample was measured under a normal magnetic field condition. 1 …… Torque curve measured in strong magnetic field 2 …… Torque curve measured in normal magnetic field (right rotation) 3 …… Torque curve measured in normal magnetic field (left rotation) 4 …… Medium noise vs. R H curve 5 …… S / N vs. R H curve 6 …… Medium noise vs. R H curve 7 …… S / N vs. R H curve
───────────────────────────────────────────────────── フロントページの続き (72)発明者 積田 則和 神奈川県小田原市国府津2880番地 株式会 社日立製作所小田原工場内 (72)発明者 山下 武夫 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 鈴木 博之 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 北崎 容士 神奈川県小田原市国府津2880番地 株式会 社日立製作所小田原工場内 (72)発明者 大浦 正樹 神奈川県小田原市国府津2880番地 株式会 社日立製作所小田原工場内 (56)参考文献 特開 昭59−84407(JP,A) 特開 昭60−35326(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Norikazu Sekida 2880, Kozu, Odawara-shi, Kanagawa Hitachi Ltd. Odawara factory (72) Inventor Takeo Yamashita 1-280, Higashikoigakubo, Kokubunji, Tokyo Hitachi, Ltd. Central Research Laboratory (72) Inventor Hiroyuki Suzuki 1-280, Higashi Koigakubo, Kokubunji, Tokyo Hitachi, Ltd. Central Research Laboratory (72) Inventor Yoji Kitazaki 2880, Kozu, Odawara, Kanagawa Stock Company Hitachi Ltd. Odawara Plant ( 72) Inventor Masaki Oura 2880, Kozu, Odawara, Kanagawa Stock company, Hitachi Ltd. Odawara factory (56) References JP 59-84407 (JP, A) JP 60-35326 (JP, A)
Claims (2)
性金属もしくは合金からなる磁性薄膜を設けた磁気記録
媒体において、該磁気記録媒体より採取した磁性薄膜試
料に、磁界を印加しながら360度回転した後、逆方向に
回転させて、順回転のトルク曲線と逆回転のトルク曲線
とが同一の軌跡上を通過せずにヒステリシスが現われる
ように磁界の大きさを調整して、順回転と逆回転の2本
の曲線で囲まれる面積を、次の式(1)で示される回転
履歴損失Wrで表わし、 (式中、Lは試料単位体積のトルクの大きさ、θは回転
角で表わす。)上記式(1)で示される回転履歴損失値
Wrを、上記磁性薄膜の飽和磁束密度Isで割って、さらに
磁界の大きさHの逆数で積分して求めた次の式(2)で
示される回転履歴損失積分値RHで表わし、 上記式(2)で示される回転履歴損失積分値RHが0.4〜
1.3の範囲内にある磁性薄膜を磁性記録層としてなるこ
とを特徴とする磁気記録媒体。1. A magnetic recording medium in which a magnetic thin film made of a ferromagnetic metal or alloy is provided as a magnetic recording layer on a non-magnetic substrate, while applying a magnetic field to a magnetic thin film sample taken from the magnetic recording medium. After rotating 360 degrees, rotate it in the opposite direction, adjust the magnitude of the magnetic field so that hysteresis appears without the forward rotation torque curve and reverse rotation torque curve passing on the same trajectory, An area surrounded by two curves of rotation and reverse rotation is represented by a rotation history loss Wr represented by the following formula (1), (In the formula, L represents the torque magnitude of the unit volume of the sample, and θ represents the rotation angle.) The rotation history loss value represented by the above formula (1)
Wr is divided by the saturation magnetic flux density Is of the magnetic thin film, and is further integrated by the reciprocal of the magnitude H of the magnetic field, and is represented by the rotational history loss integral value R H shown by the following formula (2), The rotation history loss integral value R H shown by the above equation (2) is 0.4 to
A magnetic recording medium comprising a magnetic thin film within the range of 1.3 as a magnetic recording layer.
もしくはCo、Ni、Feのうちより選ばれる少なくとも1種
の元素を主成分とする合金からなり、さらに上記金属も
しくは合金に、Cu、V、Zr、Ruのうちより選ばれる少な
くとも1種の元素を、原子%で0.1〜15%含有すること
を特徴とする特許請求の範囲第1項に記載の磁気記録媒
体。2. The magnetic thin film is a simple metal of Co, Ni or Fe,
Alternatively, it is made of an alloy containing at least one element selected from Co, Ni, and Fe as a main component, and further contains at least one element selected from Cu, V, Zr, and Ru in the above metal or alloy. The magnetic recording medium according to claim 1, wherein the magnetic recording medium contains 0.1 to 15% by atomic%.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62065697A JPH0816975B2 (en) | 1987-03-23 | 1987-03-23 | Magnetic recording media |
US07/172,194 US4939045A (en) | 1987-03-23 | 1988-03-23 | Magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62065697A JPH0816975B2 (en) | 1987-03-23 | 1987-03-23 | Magnetic recording media |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12194898A Division JP3343215B2 (en) | 1998-05-01 | 1998-05-01 | Magnetic recording medium and method of manufacturing the same |
JP10121946A Division JP3035265B2 (en) | 1998-05-01 | 1998-05-01 | Magnetic recording media |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63234407A JPS63234407A (en) | 1988-09-29 |
JPH0816975B2 true JPH0816975B2 (en) | 1996-02-21 |
Family
ID=13294458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62065697A Expired - Lifetime JPH0816975B2 (en) | 1987-03-23 | 1987-03-23 | Magnetic recording media |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0816975B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3799168B2 (en) | 1998-08-20 | 2006-07-19 | 株式会社日立グローバルストレージテクノロジーズ | Magnetic recording / reproducing device |
JP3396175B2 (en) * | 1998-12-22 | 2003-04-14 | 昭和電工株式会社 | Manufacturing method of magnetic recording medium |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5673413A (en) * | 1979-11-20 | 1981-06-18 | Tdk Corp | Magnetic recording medium |
JPS5984407A (en) * | 1982-11-05 | 1984-05-16 | Hitachi Ltd | Magnetic recording medium |
JPS6035326A (en) * | 1983-08-06 | 1985-02-23 | Canon Inc | Magnetic recording medium |
JPS6035327A (en) * | 1983-08-06 | 1985-02-23 | Canon Inc | Magnetic recording medium |
JPS60171624A (en) * | 1984-02-16 | 1985-09-05 | Fujitsu Ltd | magnetic recording medium |
JPS61294629A (en) * | 1985-06-21 | 1986-12-25 | Sumitomo Metal Mining Co Ltd | Magnetic recording medium |
-
1987
- 1987-03-23 JP JP62065697A patent/JPH0816975B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63234407A (en) | 1988-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0573880A (en) | Magnetic recording medium and manufacture thereof | |
US6686071B2 (en) | Magnetic recording medium and magnetic recording apparatus using the same | |
JPH0572727B2 (en) | ||
JP3426894B2 (en) | Perpendicular magnetic recording medium and manufacturing method thereof | |
US4609593A (en) | Magnetic recording medium | |
JPH0816975B2 (en) | Magnetic recording media | |
JP3035265B2 (en) | Magnetic recording media | |
US4939045A (en) | Magnetic recording medium | |
JPH03155606A (en) | Manufacture of magnetic recording medium | |
JP3343215B2 (en) | Magnetic recording medium and method of manufacturing the same | |
JP2515771B2 (en) | Magnetic recording media | |
JPH04265511A (en) | Magnetic recording medium | |
JPH0650683B2 (en) | Magnetic memory | |
JP2002092838A (en) | Magnetic recording media | |
JP3386270B2 (en) | Magnetic head and magnetic recording device | |
JPS6153769B2 (en) | ||
JPH0380445A (en) | Magneto-optical recording medium | |
JP3434845B2 (en) | Magnetic recording medium, method for manufacturing the magnetic recording medium, and magnetic storage device | |
JP3427403B2 (en) | Perpendicular magnetization film and perpendicular magnetic recording medium | |
JP2001291220A (en) | Magnetic recording medium and magnetic storage device | |
JPS5996518A (en) | Magnetic head for vertical magnetic recording | |
JPS60209923A (en) | Vertical magnetic storage body | |
JPS6364623A (en) | magnetic recording medium | |
JPH05182171A (en) | Magnetic recording medium | |
JPH06124832A (en) | Magnetic recording media |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080221 Year of fee payment: 12 |