JPH08168640A - Catalyst for removing nitrogen oxide and manufacture thereof - Google Patents
Catalyst for removing nitrogen oxide and manufacture thereofInfo
- Publication number
- JPH08168640A JPH08168640A JP6317015A JP31701594A JPH08168640A JP H08168640 A JPH08168640 A JP H08168640A JP 6317015 A JP6317015 A JP 6317015A JP 31701594 A JP31701594 A JP 31701594A JP H08168640 A JPH08168640 A JP H08168640A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- vanadium
- titania
- removing nitrogen
- titanium oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 82
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title claims abstract description 69
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 26
- 150000003682 vanadium compounds Chemical class 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 229910021647 smectite Inorganic materials 0.000 claims abstract description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 88
- 239000002734 clay mineral Substances 0.000 claims description 28
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 18
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 17
- 239000004927 clay Substances 0.000 claims description 13
- 238000010298 pulverizing process Methods 0.000 claims description 11
- 229910021529 ammonia Inorganic materials 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 8
- 238000010304 firing Methods 0.000 claims description 3
- 235000011837 pasties Nutrition 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 31
- 238000002360 preparation method Methods 0.000 abstract description 5
- 238000005245 sintering Methods 0.000 abstract description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract description 3
- 239000011707 mineral Substances 0.000 abstract description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract 2
- 239000000969 carrier Substances 0.000 abstract 2
- 230000036571 hydration Effects 0.000 abstract 2
- 238000006703 hydration reaction Methods 0.000 abstract 2
- 229910052719 titanium Inorganic materials 0.000 abstract 2
- 239000010936 titanium Substances 0.000 abstract 2
- XWIPTOQZCFJFHK-UHFFFAOYSA-N [N]=O.[V].[Ti] Chemical compound [N]=O.[V].[Ti] XWIPTOQZCFJFHK-UHFFFAOYSA-N 0.000 abstract 1
- 229910052720 vanadium Inorganic materials 0.000 description 28
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 26
- 239000002994 raw material Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 239000010410 layer Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000004898 kneading Methods 0.000 description 9
- 239000012495 reaction gas Substances 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910052901 montmorillonite Inorganic materials 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000001354 calcination Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- UUUGYDOQQLOJQA-UHFFFAOYSA-L vanadyl sulfate Chemical compound [V+2]=O.[O-]S([O-])(=O)=O UUUGYDOQQLOJQA-UHFFFAOYSA-L 0.000 description 3
- 229940041260 vanadyl sulfate Drugs 0.000 description 3
- 229910000352 vanadyl sulfate Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- ALTWGIIQPLQAAM-UHFFFAOYSA-N metavanadate Chemical compound [O-][V](=O)=O ALTWGIIQPLQAAM-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- XDBSEZHMWGHVIL-UHFFFAOYSA-M hydroxy(dioxo)vanadium Chemical compound O[V](=O)=O XDBSEZHMWGHVIL-UHFFFAOYSA-M 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Catalysts (AREA)
- Treating Waste Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、窒素酸化物除去用の触
媒およびその製造方法に係り、特に熱的に安定な構造を
有し、かつNOX (窒素酸化物)除去率の高い窒素酸化
物除去用触媒およびその製造方法に関する。BACKGROUND OF THE INVENTION This invention relates to a catalyst and method of its manufacture removing nitrogen oxides, in particular thermally has a stable structure, and NO X (nitrogen oxide) removal rate of high nitrogen oxide The present invention relates to a catalyst for removing substances and a method for producing the same.
【0002】[0002]
【従来の技術】近年、大気汚染が地球的な規模で進行
し、人体への影響、森林の破壊等の環境問題への関心が
一段と高まってきている。汚染物質である窒素酸化物や
硫黄酸化物の大気中濃度を抑えるため、これらの物質の
発生源の排出規制が年々厳しくなりつつある。2. Description of the Related Art In recent years, air pollution has progressed on a global scale, and interest in environmental problems such as effects on the human body and destruction of forests has been further increased. In order to suppress atmospheric concentrations of pollutants such as nitrogen oxides and sulfur oxides, emission regulations of the sources of these substances are becoming stricter year by year.
【0003】窒素酸化物の除去法の一つであるアンモニ
アを用いた乾式還元法は、アンモニアを注入した排ガス
を、酸化チタンを主成分とする板状またはハニカム状の
触媒上で反応させることにより、NOX (窒素酸化物)
をN2 に還元するものである。この方法は、触媒を用い
た比較的簡便なシステムで、効率よく排ガスの処理がで
きるため、主に火力発電所等の固定排出源から出される
大量の排ガスの処理に適用されている。The dry reduction method using ammonia, which is one of the methods for removing nitrogen oxides, is carried out by reacting exhaust gas into which ammonia is injected on a plate-shaped or honeycomb-shaped catalyst containing titanium oxide as a main component. , NO x (nitrogen oxide)
Is reduced to N 2 . This method is a relatively simple system that uses a catalyst and can efficiently treat exhaust gas. Therefore, this method is mainly applied to the treatment of a large amount of exhaust gas emitted from a fixed emission source such as a thermal power plant.
【0004】上記方法では、窒素酸化物の除去率(以
下、単に活性と呼ぶ)は触媒の物性や形状、反応器の操
作条件と密接に関係している。なかでも、触媒物性にか
かわる触媒の組成の選定や調製法は、活性に大きく影響
するため、この技術の基本となる重要なものである。現
在、活性の高いチタニア−バナジウム系の組成をベース
にした触媒が主流になっている。通常、この触媒はチタ
ニア粒子の表面に、バナジウムを数%〜十数%担持した
形のものが使用されている(例えば、特公昭53−28
148号公報、特公昭55−23086号公報)。In the above method, the nitrogen oxide removal rate (hereinafter, simply referred to as activity) is closely related to the physical properties and shape of the catalyst and the operating conditions of the reactor. Among them, the selection of the composition of the catalyst and the method of preparation thereof, which are related to the physical properties of the catalyst, have a great influence on the activity, and are important as the basis of this technique. Currently, a catalyst based on a highly active titania-vanadium composition is predominant. Usually, this catalyst is used in the form of supporting vanadium on the surface of titania particles by several to ten and several percent (for example, JP-B-53-28).
148, Japanese Patent Publication No. 55-23086).
【0005】チタニア−バナジウム系の触媒の活性は、
チタニアの表面積と担持したバナジウムの量に大きく左
右され、高比表面積のチタニアに十分な量のバナジウム
を担持すれば、性能の高い触媒が得られる。しかしなが
ら、もともと耐熱性の低いチタニアにバナジウムを担持
すると、よりシンタリングが促進されるため、触媒調製
時のバナジウム原料の熱分解過程、または実機使用時
に、バナジウムの担持量の多いチタニアは比表面積の低
下が著しく、担持量に見合っただけの活性が得られない
のが現状である。したがって、活性を向上するには、チ
タニアのシンタリングを防止する技術の確立がなにより
も重要となる。The activity of the titania-vanadium catalyst is
It depends largely on the surface area of titania and the amount of vanadium supported, and if a sufficient amount of vanadium is supported on titania having a high specific surface area, a catalyst with high performance can be obtained. However, when vanadium is originally supported on titania, which has low heat resistance, the sintering is further promoted, so during the thermal decomposition process of the vanadium raw material during catalyst preparation, or when using actual equipment, titania with a large amount of supported vanadium has a specific surface area Under the present circumstances, the decrease is remarkable and the activity corresponding to the supported amount cannot be obtained. Therefore, in order to improve the activity, establishment of a technique for preventing titania sintering is of utmost importance.
【0006】チタニアのシンタリングを防止する技術
は、これまでにいろいろ検討されており、本発明者ら
も、粘土鉱物を遮蔽材として使う方法を検討してきた。
この方法は、スメクタイト系粘土鉱物とチタニアゾルを
せん断をかけながら混練し、チタニア粒子同士の接触を
粘土層が遮蔽した、多孔質担体を調製し、そこにバナジ
ウムを担持して触媒化するものである。Various techniques for preventing the sintering of titania have been studied so far, and the present inventors have also examined a method of using a clay mineral as a shielding material.
In this method, a smectite clay mineral and a titania sol are kneaded while shearing, a clay layer shields the contact between titania particles, a porous carrier is prepared, and vanadium is supported thereon to catalyze. .
【0007】[0007]
【発明が解決しようとする課題】粘土鉱物とチタニアゾ
ルを混練すると、鱗片状に近い形状の粘土層が結合の弱
い層間部分から剥離し、チタニアゾル中に分散する。こ
の状態で乾燥すると、粘土層が微粒のチタニア粒子の回
りを覆ったような構造になる。ここまでの状態を模式的
に示したのが、図1の粘土鉱物とチタニアゾルを混練し
た後、乾燥・焼成する工程までの部分である。前記先行
発明の触媒をマクロ的に見ると、表面は粘土層で占めら
れ、その中にチタニアの微粒子が取り込まれた格好にな
っていると推測できる。このような構造の触媒では、窒
素酸化物を含む反応ガスを通した際、粘土層により反応
ガスの拡散が阻害されるおそれがある。When a clay mineral and a titania sol are kneaded, a clay layer having a shape close to a scaly is separated from an interlayer portion where the bond is weak and dispersed in the titania sol. When dried in this state, the clay layer has a structure in which it covers the fine titania particles. The state up to this point is schematically shown until the step of kneading the clay mineral and the titania sol and then drying and firing. From a macroscopic view of the catalyst of the prior invention, it can be inferred that the surface is occupied by a clay layer, and fine particles of titania are incorporated therein. In the catalyst having such a structure, when the reaction gas containing nitrogen oxide is passed, the clay layer may hinder the diffusion of the reaction gas.
【0008】本発明者らの実験結果によると、粘土鉱物
にバナジウムを担持しても、活性は極めて低いことが分
かっており、上記多孔質担体のようにチタニアと粘土鉱
物の混合系では、バナジウムが担持されたチタニアの部
分が活性を担っていると推定される。したがって、反応
時に反応ガスの拡散が阻害されると、担体内部のバナジ
ウムを担持したチタニアが有効に使われなくなるため、
比表面積の割に活性が低くなることが考えられる。特
に、通常、ボイラ排ガスを処理する際の反応温度は35
0〜400℃であり、この条件下では、触媒細孔内での
反応ガスの拡散が、脱硝反応の律速段階となるため、こ
のような粘土鉱物の遮蔽は、いっそう活性を低下させる
原因となる。According to the experimental results of the present inventors, it has been found that the activity is extremely low even when vanadium is supported on the clay mineral, and vanadium is contained in the mixed system of titania and clay mineral as in the above porous carrier. It is presumed that the part of titania carrying is responsible for the activity. Therefore, if the diffusion of the reaction gas is inhibited during the reaction, the vanadium-supported titania in the carrier will not be used effectively,
It is considered that the activity becomes low relative to the specific surface area. In particular, the reaction temperature when treating boiler exhaust gas is usually 35
The temperature is 0 to 400 ° C., and under this condition, the diffusion of the reaction gas in the catalyst pores becomes the rate-determining step of the denitration reaction, and thus the shielding of the clay mineral further causes the activity to decrease. .
【0009】本発明の目的は、前記先行技術の有するか
かる問題点をなくし、耐熱性に優れたチタニア/粘土鉱
物系の多孔質担体にバナジウムを担持した触媒におい
て、反応ガスの拡散を容易にした構造により、高活性な
窒素酸化物除去用触媒およびその製造法を提案すること
にある。The object of the present invention is to eliminate the above-mentioned problems of the prior art and to facilitate the diffusion of reaction gas in a catalyst in which vanadium is supported on a titania / clay mineral type porous carrier having excellent heat resistance. According to the structure, a highly active catalyst for removing nitrogen oxides and a method for producing the same are proposed.
【0010】[0010]
【課題を解決するための手段】上記目的を達成するため
本願で特許請求する発明は以下のとおりである。 (1)チタン酸化物にバナジウム化合物を担持したアン
モニア還元による窒素酸化物除去用触媒において、鱗片
状の粘土層間にチタン酸化物粒子が挟まれて介在し、か
つ前記鱗片状の粘土層が破壊されて細分化しているとと
もに、前記チタン酸化物粒子にバナジウム化合物が担持
されていることを特徴とする窒素酸化物除去用触媒。 (2)チタン酸化物にバナジウム化合物を担持したアン
モニア還元による窒素酸化物除去用触媒の製造方法にお
いて、チタン酸化物または水和酸化物とスメクタイト系
粘土鉱物からなるペースト状混合物を乾燥固化させた
後、粉砕処理を行なって触媒担体とし、これにバナジウ
ム化合物を湿式法により担持させることを特徴とする窒
素酸化物除去用触媒の製造方法。 (3)チタン酸化物にバナジウム化合物を担持したアン
モニア還元による窒素酸化物除去用触媒の製造方法にお
いて、チタン酸化物または水和酸化物とスメクタイト系
粘土鉱物とバナジウム化合物とのペースト状混合物を乾
燥、焼成したのち、粉砕することを特徴とする窒素酸化
物除去用触媒の製造方法。In order to achieve the above object, the invention claimed in the present application is as follows. (1) In a catalyst for removing nitrogen oxides by ammonia reduction in which a vanadium compound is supported on titanium oxide, titanium oxide particles are interposed between scale-like clay layers, and the scale-like clay layer is destroyed. A catalyst for removing nitrogen oxides, characterized in that the titanium oxide particles carry a vanadium compound. (2) In a method for producing a catalyst for removing nitrogen oxides by ammonia reduction in which a vanadium compound is supported on titanium oxide, after drying and solidifying a pasty mixture of titanium oxide or hydrated oxide and smectite clay mineral A method for producing a catalyst for removing nitrogen oxides, which comprises carrying out a pulverization treatment to obtain a catalyst carrier, and supporting a vanadium compound thereon by a wet method. (3) In a method for producing a catalyst for nitrogen oxide removal by ammonia reduction in which a vanadium compound is supported on titanium oxide, a paste-like mixture of titanium oxide or hydrated oxide, a smectite clay mineral, and a vanadium compound is dried, A method for producing a catalyst for removing nitrogen oxides, which comprises firing and then pulverizing.
【0011】[0011]
【作用】本発明のように粘土鉱物とチタニア原料を湿式
で混練した後、一旦乾燥すると、脆性材料のように衝撃
に対して比較的脆い構造となり、これを粉砕処理するこ
とにより、混練時に層間部分より剥がれた鱗片状の粘土
層が、さらに層内でも破壊されて細分化する。この様子
を模式的に示したのが図1の本発明の触媒の部分であ
る。After the clay mineral and the titania raw material are wet-kneaded as in the present invention, once dried, the structure becomes relatively brittle against impact like a brittle material. The scale-like clay layer peeled off from the part is further broken and subdivided within the layer. This state is schematically shown in the portion of the catalyst of the present invention in FIG.
【0012】粉砕により、反応ガスが触媒内部に入る通
路が増えるとともに、チタニア上に担持されているバナ
ジウムが表面に露出し、反応ガスに触れやすくなり、活
性が向上する。その他、チタニア上に担持されていない
バナジウムが、粉砕過程でチタニアと接触し、新たな活
性点を形成して活性向上に寄与することも期待できる。By the pulverization, the passage of the reaction gas inside the catalyst is increased, and the vanadium supported on the titania is exposed on the surface, so that the reaction gas is easily contacted and the activity is improved. In addition, it can be expected that vanadium, which is not supported on titania, comes into contact with titania during the pulverization process to form new active sites and contribute to the activity improvement.
【0013】先行技術のように、粘土鉱物とチタニア原
料を湿式で混練しただけでは、層間の結合力が弱い部分
から粘土層が剥がれていく程度であり、乾燥体の構造は
鱗片状の粘土層同士の間にチタニア粒子が挟まれた格好
となり、この状態では活性測定時に反応ガスの拡散は容
易ではなく、比表面積の割に活性も高くならない。した
がって、本発明のように、担体または触媒を一度乾燥し
てから粉砕することが、活性向上に効果的である。As in the prior art, just by wet-kneading the clay mineral and the titania raw material, the clay layer is peeled from the portion where the bonding strength between the layers is weak, and the structure of the dried body is a scale-like clay layer. The titania particles are sandwiched between them, and in this state, the diffusion of the reaction gas is not easy at the time of activity measurement, and the activity does not become high relative to the specific surface area. Therefore, as in the present invention, it is effective to improve the activity by drying the carrier or the catalyst once and then pulverizing it.
【0014】このようにチタニアと粘土鉱物からなる担
体、またはバナジウムを担持した触媒を、一旦乾燥固化
してから粉砕処理を行なうことにより、高比表面積の特
徴を生かした高活性な触媒が得られる。水に分散したチ
タンの酸化物または水和酸化物とスメクタイト系粘土鉱
物(水をふくむと体積が膨張する膨潤性のある粘土の総
称)を、必要に応じて硝酸・塩酸などの鉱酸または有機
酸と混合して粘性ペーストとし、せん断をかけながら混
練した後乾燥固化し、必要により水洗処理を行ない、適
当な温度で焼成して、まず多孔質担体を作る。次にこの
多孔質担体と、水に溶解させたメタバナジン酸のごとき
水溶性バナジウム原料を混合した後、乾燥固化して一旦
粉砕し、その後適当な温度で焼成することにより本発明
の触媒が得られる。As described above, a carrier having titania and clay minerals or a catalyst carrying vanadium is dried, solidified and then pulverized to obtain a highly active catalyst which makes use of the feature of high specific surface area. . Titanium oxides or hydrated oxides and smectite clay minerals (generic term for swelling clay that expands in volume when water is included) dispersed in water are used, if necessary, with mineral acids such as nitric acid and hydrochloric acid or organic acids. A viscous paste is prepared by mixing with an acid, and is kneaded while being sheared, dried and solidified, washed with water if necessary, and calcined at an appropriate temperature to first make a porous carrier. Next, the catalyst of the present invention can be obtained by mixing this porous carrier and a water-soluble vanadium raw material such as metavanadic acid dissolved in water, drying and solidifying, pulverizing once, and then calcining at an appropriate temperature. .
【0015】この他、上記チタニア原料と粘土鉱物を混
練する際、同時にバナジウムを添加し、一度乾燥してか
ら粉砕したり、または上記多孔質担体を粉砕してから、
バナジウムを担持する方法でも構わない。要は、本発明
で重要なことは、粘土鉱物とチタニア原料を湿式で混練
した後、一度乾燥操作を入れて、その後粉砕処理を行な
うことである。In addition to the above, when kneading the above-mentioned titania raw material and clay mineral, vanadium is added at the same time and dried and then crushed, or after crushing the above-mentioned porous carrier,
A method of supporting vanadium may be used. In short, what is important in the present invention is that the clay mineral and the titania raw material are wet-kneaded, then once subjected to a drying operation, and then pulverized.
【0016】バナジウム原料としては、工業的な原料で
あるメタバナジン酸アンモンを使用すればよく、硫酸バ
ナジル等を用いても差し支えない。この場合、できるだ
け多孔質体の内部にバナジウムが侵入したほうが望まし
いので、粉末原料よりは水溶性原料を使用したほうがよ
い。粉砕処理は、湿式、乾式法のいずれを利用してもよ
く、装置や方法に特に制限を受けるものではない。As the vanadium raw material, ammon metavanadate, which is an industrial raw material, may be used, and vanadyl sulfate or the like may be used. In this case, since it is desirable that vanadium penetrates into the porous body as much as possible, it is preferable to use a water-soluble raw material rather than a powder raw material. The crushing treatment may use either a wet method or a dry method, and the apparatus and method are not particularly limited.
【0017】[0017]
【実施例】以下具体的実施例により本発明を詳細に説明
する。 実施例1 塩酸解膠したチタニアゾル(固形分濃度29wt%)70
0gに水分10.5wt%、Na2 O 3wt%を含むモン
モリロナイト87gを加えた後、ニーダで30分せん断
をかけながら混練した。混練ペーストを風乾した後15
0℃でゲル化させ、その後多量の水に浸け、よく攪拌し
た後上澄みを捨て、残った沈殿物を乾燥し、最終的に5
50℃で2h焼成し、触媒担体とした。EXAMPLES The present invention will be described in detail below with reference to specific examples. Example 1 Titania sol peptized with hydrochloric acid (solid content concentration: 29 wt%) 70
87 g of montmorillonite containing 10.5 wt% of water and 3 wt% of Na 2 O was added to 0 g of the montmorillonite, and the mixture was kneaded while being sheared with a kneader for 30 minutes. 15 after air-drying the kneading paste
Gel at 0 ° C, then soak in a large amount of water, stir well, discard the supernatant, dry the remaining precipitate, and finally add 5
It was calcined at 50 ° C. for 2 hours to obtain a catalyst carrier.
【0018】次に得られた上記触媒担体を、メタバナジ
ン酸アンモン21.3gを溶かした水溶液に加え、攪拌
器で150℃にて加温しながら混合し、最終的に水分を
全て蒸発させた後、550℃で2h焼成した。続いてこ
の焼成体をハンマミルで粉砕して、実施例1の触媒を得
た。 実施例2 実施例1において、活性測定用に10〜20meshに整粒
した触媒を500℃で2h再焼成して実施例2の触媒を
得た。 実施例3 バナジウム原料として、固形分濃度73.7%の硫酸バ
ナジル(VOSO4)40.3gを用いたこと以外は、実
施例1と同様にして本実施例3の触媒を調製した。 実施例4 実施例1において、前記触媒担体を、水に溶かしたメタ
バナジン酸アンモン21.3gとともに、ニーダで30
分よく混練しながら粉砕した後、該混合物を乾燥し、次
いで550℃で2h焼成して本実施例4の触媒を調製し
た。 実施例5 実施例1で用いた塩酸解膠したチタニアゾル700gと
メタバナジン酸アンモン21.3gを混合したところ
に、水分14.2%、Na2 O 0.2wt%のモンモリ
ロナイト91gを添加して湿式で混練した。続いて、こ
の混練物を乾燥し、550℃で2h焼成した後、ハンマ
ミルで粉砕して、実施例5の触媒を得た。Next, the above catalyst carrier obtained was added to an aqueous solution in which 21.3 g of ammonium metavanadate was dissolved, and the mixture was mixed while heating at 150 ° C. with a stirrer, and finally after evaporating all the water. It was baked at 550 ° C. for 2 hours. Then, the fired body was pulverized with a hammer mill to obtain a catalyst of Example 1. Example 2 In Example 1, the catalyst whose particle size was adjusted to 10 to 20 mesh for activity measurement was recalcined at 500 ° C. for 2 hours to obtain a catalyst of Example 2. Example 3 The catalyst of this Example 3 was prepared in the same manner as in Example 1 except that 40.3 g of vanadyl sulfate (VOSO 4 ) having a solid content concentration of 73.7% was used as the vanadium raw material. Example 4 In Example 1, the catalyst carrier was mixed with 21.3 g of ammonium metavanadate dissolved in water in a kneader.
After thoroughly kneading and pulverizing, the mixture was dried and then calcined at 550 ° C. for 2 hours to prepare a catalyst of this Example 4. Example 5 700 g of the titania sol peptized with hydrochloric acid used in Example 1 and 21.3 g of ammonium metavanadate were mixed, and 91 g of montmorillonite containing 14.2% of water and 0.2 wt% of Na 2 O was added in a wet process. Kneaded Subsequently, the kneaded product was dried, calcined at 550 ° C. for 2 hours, and then pulverized with a hammer mill to obtain a catalyst of Example 5.
【0019】比較例1 実施例1の方法で、ハンマミルによる粉砕を省略したこ
と以外は、実施例1と同様にして比較例1の触媒を調製
した。 比較例2 比較例1において、触媒担体を調製する際、粘土鉱物と
チタニアゾルの混練時間を60分としたこと以外は、比
較例1と同様にして比較例2の触媒を調製した。 比較例3 実施例1の方法で、バナジウム原料としてV2 O5 の粉
末を用いたこと以外は実施例1と同様にして比較例3の
触媒を調製した。 比較例4 550℃で2h焼成して、ハンマミルで粉砕したTi /
V=95/5(原子比)の触媒粉末200gと実施例5
で使用したモンモリロナイト90gを水とともに混合し
てペースト状態にし、ニーダで30分よく混練し、該混
合物を乾燥し、次いで550℃で2h焼成して、比較例
4の触媒を調製した。Comparative Example 1 A catalyst of Comparative Example 1 was prepared in the same manner as in Example 1 except that the grinding with a hammer mill was omitted in the method of Example 1. Comparative Example 2 A catalyst of Comparative Example 2 was prepared in the same manner as Comparative Example 1 except that the kneading time of the clay mineral and the titania sol was 60 minutes when the catalyst carrier was prepared. Comparative Example 3 A catalyst of Comparative Example 3 was prepared in the same manner as in Example 1 except that V 2 O 5 powder was used as the vanadium raw material by the method of Example 1. Comparative Example 4 2h calcination at 550 ° C., T and ground in a hammer mill i /
Example 5 with 200 g of catalyst powder of V = 95/5 (atomic ratio)
The catalyst of Comparative Example 4 was prepared by mixing 90 g of the montmorillonite used in 1 above with water to form a paste, kneading well with a kneader for 30 minutes, drying the mixture, and then calcining at 550 ° C. for 2 hours.
【0020】活性は、上記各触媒を10〜20meshに整
粒したものをNH3 /NO=1.2、SV=120,0
00h-1、反応温度350℃の条件で測定を行ない、下
式にしたがって求めた。As for the activity, NH 3 /NO=1.2 and SV = 120,0 were obtained by sizing the above catalysts to 10 to 20 mesh.
The measurement was carried out under the conditions of 00 h −1 and a reaction temperature of 350 ° C., and the value was calculated according to the following formula.
【0021】[0021]
【数1】 表1に結果を示す。実施例1の触媒は、比較例1の触媒
を粉砕処理したものである。このように、粘土鉱物を含
む触媒では、粉砕により活性が向上することは明らかで
ある。[Equation 1] The results are shown in Table 1. The catalyst of Example 1 is obtained by crushing the catalyst of Comparative Example 1. As described above, it is clear that the activity of the catalyst containing the clay mineral is improved by pulverization.
【0022】[0022]
【表1】 実施例2の触媒は、実施例1で粉砕した後、再焼成した
ものである。実施例1の触媒と比べて実施例2の触媒の
活性が高くなった理由として、チタニア上に担持されて
いないバナジウムが、粉砕によりチタニアと接触し、さ
らに再焼成することで、バナジウムがチタニア上に移動
して活性点が増えたためと考えられる。[Table 1] The catalyst of Example 2 was pulverized in Example 1 and then re-calcined. The reason why the activity of the catalyst of Example 2 was higher than that of the catalyst of Example 1 was that vanadium not supported on titania was contacted with titania by pulverization and then re-calcined so that vanadium was deposited on the titania. It is considered that the number of active points increased after moving to.
【0023】実施例3の触媒は、バナジウム原料として
メタバナジン酸アンモンの代わりに硫酸バナジルを用い
たもので、実施例1と実施例3は性能がほぼ同じであ
り、水溶性のバナジウム原料を使用すれば本発明の効果
は同様に得られる。比較例3の触媒は、粉末状のV2 O
5 を使用したもので、担体内部へバナジウムが侵入する
ことが、水溶性原料と比べて大幅に抑制されるため、粉
砕してもほとんどその効果が現れず、活性は極めて低
い。In the catalyst of Example 3, vanadyl sulfate was used as the vanadium raw material instead of ammonium metavanadate. The performances of Example 1 and Example 3 were almost the same, and the water-soluble vanadium raw material was used. For example, the effect of the present invention can be obtained similarly. The catalyst of Comparative Example 3 was powdered V 2 O.
Incorporating No. 5 , the invasion of vanadium into the carrier is greatly suppressed compared to the water-soluble raw material, so even if it is pulverized, its effect hardly appears, and the activity is extremely low.
【0024】実施例4は、触媒担体とメタバナジン酸ア
ンモンをペースト状態でニーダにより混練したものであ
り、このような方法でも活性向上は認められる。実施例
5は、触媒成分全てを一度に混練した後、乾燥焼成し
て、最終的に乾式粉砕したもので、このように簡略化し
たプロセスでも、乾燥および粉砕工程を設けることによ
り、容易に活性の高い触媒が得られる。In Example 4, the catalyst carrier and ammon metavanadate were kneaded in a paste in a kneader, and even with such a method, activity improvement was recognized. In Example 5, all the catalyst components were kneaded at once, dried and calcined, and finally dry-milled. Even in such a simplified process, by providing the drying and milling steps, the activity can be easily activated. A catalyst with high efficiency can be obtained.
【0025】実施例1〜5の触媒の比表面積は100m2
/g前後であり、粘土鉱物の添加により高比表面積化し
た状態で、活性の高い触媒が得られていることがわか
る。比較例2は、粘土鉱物とチタニアの混練時間を長く
したもので、このようにしても、活性は混練時間の短い
比較例1とほとんど変わらない。比較例4は、触媒粉末
に粘土鉱物を入れて湿式で混練したもので、こうした調
製法では粘土鉱物は十分に粉砕されないため活性は低
い。これらの結果より、粘土鉱物をチタニア微粒子とと
もに一旦固化させることなく、湿式状態で一定時間以上
混練しても、粘土鉱物は層間で剥離する程度しか粉砕さ
れないため、反応ガスの拡散の阻害を緩和するには至ら
ないことが推測される。The specific surface area of the catalysts of Examples 1 to 5 is 100 m 2.
It is about / g, and it can be seen that a catalyst with high activity is obtained in a state where the addition of clay mineral increases the specific surface area. In Comparative Example 2, the kneading time of the clay mineral and titania was lengthened, and even in this case, the activity was almost the same as that of Comparative Example 1 in which the kneading time was short. In Comparative Example 4, the clay mineral was added to the catalyst powder and the mixture was wet-kneaded, and the clay mineral was not sufficiently pulverized by such a preparation method, and thus the activity was low. From these results, even if the clay mineral is not solidified together with the titania fine particles, even if the clay mineral is kneaded for a certain time or more in a wet state, the clay mineral is crushed only to the extent that it separates between the layers, so that the inhibition of the diffusion of the reaction gas is alleviated. It is speculated that it will not reach.
【0026】このように、粘土鉱物とチタニアからなる
担体、またはこの担体にバナジウムを担持した触媒にお
いては、一旦乾燥してから粉砕することが、活性向上に
は重要であり、上記実施例触媒に限らず、このような処
理工程を経れば本発明と同等の効果が得られる。As described above, in the carrier composed of clay mineral and titania, or in the catalyst in which vanadium is supported on the carrier, it is important for the catalyst to be dried and then pulverized to improve the activity. Without being limited thereto, the same effects as those of the present invention can be obtained through such processing steps.
【0027】[0027]
【発明の効果】本発明によれば、高比表面積の酸化チタ
ンに十分な量のバナジウム酸化物が担持され、かつ触媒
調製時または使用時に熱による触媒のシンタリングが防
止されるので、長期間にわたり高活性のアンモニア還元
脱硝触媒が得られる。According to the present invention, a sufficient amount of vanadium oxide is supported on titanium oxide having a high specific surface area, and the sintering of the catalyst due to heat during catalyst preparation or use is prevented, so that the catalyst can be used for a long period of time. Thus, a highly active ammonia reduction denitration catalyst can be obtained.
【図1】本発明の触媒および従来触媒の構造を模式的に
説明したものである。FIG. 1 schematically illustrates the structures of a catalyst of the present invention and a conventional catalyst.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 21/06 ZAB A 23/22 A B01D 53/36 102 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 21/06 ZAB A 23/22 A B01D 53/36 102 C
Claims (3)
したアンモニア還元による窒素酸化物除去用触媒におい
て、鱗片状の粘土層間にチタン酸化物粒子が挟まれて介
在し、かつ前記鱗片状の粘土層が破壊されて細分化して
いるとともに、前記チタン酸化物粒子にバナジウム化合
物が担持されていることを特徴とする窒素酸化物除去用
触媒。1. A catalyst for removing nitrogen oxides by ammonia reduction in which a vanadium compound is supported on titanium oxide, wherein titanium oxide particles are sandwiched between scale-like clay layers, and the scale-like clay layer is formed. A catalyst for removing nitrogen oxides, characterized in that it is broken and fragmented, and that the titanium oxide particles carry a vanadium compound.
したアンモニア還元による窒素酸化物除去用触媒の製造
方法において、チタン酸化物または水和酸化物とスメク
タイト系粘土鉱物からなるペースト状混合物を乾燥固化
させた後、粉砕処理を行なって触媒担体とし、これにバ
ナジウム化合物を湿式法により担持させることを特徴と
する窒素酸化物除去用触媒の製造方法。2. A method for producing a catalyst for removing nitrogen oxides by reducing ammonia, which comprises supporting a vanadium compound on titanium oxide, by drying and solidifying a pasty mixture of titanium oxide or hydrated oxide and smectite clay mineral. After that, pulverization treatment is performed to obtain a catalyst carrier, and a vanadium compound is supported on the catalyst carrier by a wet method, which is a method for producing a catalyst for removing nitrogen oxides.
したアンモニア還元による窒素酸化物除去用触媒の製造
方法において、チタン酸化物または水和酸化物とスメク
タイト系粘土鉱物とバナジウム化合物とのペースト状混
合物を乾燥、焼成したのち、粉砕することを特徴とする
窒素酸化物除去用触媒の製造方法。3. A method for producing a catalyst for removing nitrogen oxides by reducing ammonia, which comprises supporting a vanadium compound on titanium oxide, wherein a paste-like mixture of titanium oxide or hydrated oxide, smectite clay mineral and vanadium compound is used. A method for producing a catalyst for removing nitrogen oxides, which comprises drying, firing, and then pulverizing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31701594A JP3657299B2 (en) | 1994-12-20 | 1994-12-20 | Nitrogen oxide removing catalyst and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31701594A JP3657299B2 (en) | 1994-12-20 | 1994-12-20 | Nitrogen oxide removing catalyst and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08168640A true JPH08168640A (en) | 1996-07-02 |
JP3657299B2 JP3657299B2 (en) | 2005-06-08 |
Family
ID=18083470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31701594A Expired - Fee Related JP3657299B2 (en) | 1994-12-20 | 1994-12-20 | Nitrogen oxide removing catalyst and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3657299B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2780308A1 (en) * | 1998-06-25 | 1999-12-31 | Inst Francais Du Petrole | New bifunctional hydrocracking catalysts based on phyllosilicate clays and group VB elements with an amorphous oxide matrix |
DE10015696A1 (en) * | 2000-03-27 | 2001-10-25 | Hyun Dai Heavy Ind Co Ltd | Catalyst for reducing nitric oxide to nitrogen and water in waste gases containing sulfur dioxide comprises titanium-pillared layered clay impregnated with vanadium pentoxide |
KR100415434B1 (en) * | 1998-09-25 | 2004-03-24 | 현대중공업 주식회사 | Bania catalyst supported on bentonite filled with titania to remove nitrogen oxides |
JP2008080313A (en) * | 2006-09-29 | 2008-04-10 | Nichias Corp | Metal oxide catalyst powder, method for producing the same, purification filter, method for decomposing volatile organic solvent, and method for decomposing nitrogen oxide |
CN113786829A (en) * | 2021-09-16 | 2021-12-14 | 华电青岛环保技术有限公司 | Method for quickly and accurately impregnating various active components on fresh honeycomb denitration catalyst at normal temperature |
-
1994
- 1994-12-20 JP JP31701594A patent/JP3657299B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2780308A1 (en) * | 1998-06-25 | 1999-12-31 | Inst Francais Du Petrole | New bifunctional hydrocracking catalysts based on phyllosilicate clays and group VB elements with an amorphous oxide matrix |
KR100415434B1 (en) * | 1998-09-25 | 2004-03-24 | 현대중공업 주식회사 | Bania catalyst supported on bentonite filled with titania to remove nitrogen oxides |
DE10015696A1 (en) * | 2000-03-27 | 2001-10-25 | Hyun Dai Heavy Ind Co Ltd | Catalyst for reducing nitric oxide to nitrogen and water in waste gases containing sulfur dioxide comprises titanium-pillared layered clay impregnated with vanadium pentoxide |
DE10015696B4 (en) * | 2000-03-27 | 2005-12-22 | Hyundai Heavy Industries Co. Ltd. | Catalytic mass for the removal of nitrogen oxides based on titanium column supported clay |
JP2008080313A (en) * | 2006-09-29 | 2008-04-10 | Nichias Corp | Metal oxide catalyst powder, method for producing the same, purification filter, method for decomposing volatile organic solvent, and method for decomposing nitrogen oxide |
CN113786829A (en) * | 2021-09-16 | 2021-12-14 | 华电青岛环保技术有限公司 | Method for quickly and accurately impregnating various active components on fresh honeycomb denitration catalyst at normal temperature |
Also Published As
Publication number | Publication date |
---|---|
JP3657299B2 (en) | 2005-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6489596B2 (en) | NOx removal catalyst and method for producing the same | |
CN101600499B (en) | Exhaust gas treatment catalyst, and exhaust gas treatment system | |
US6602818B2 (en) | Method for preparing a catalyst for selective catalytic reduction of nitrogen oxides | |
US4518710A (en) | Catalyst for the reduction of nitrogen oxides in gaseous mixtures and method of making the catalyst | |
JP3352494B2 (en) | Nitrogen oxide decomposition catalyst and denitration method using the same | |
JPS63104650A (en) | Catalyst material for reducing nitrogen oxide in flue gas | |
CN109603808B (en) | Preparation method and application of zirconium pillared montmorillonite-loaded Ce-Nb composite catalyst | |
TW562697B (en) | A method for preparing a catalyst for selective catalytic reduction of nitrogen oxides at high temperature window | |
JPH08168640A (en) | Catalyst for removing nitrogen oxide and manufacture thereof | |
KR102378405B1 (en) | Selective reduction catalyst for removing nitrogen oxide using ammonia, manufacturing method thereof and method for removing nitrogen oxide using the same | |
EP3075437B1 (en) | Exhaust gas treatment system | |
JP3474514B2 (en) | Low temperature denitration catalyst and low temperature denitration method | |
JP3783875B2 (en) | Catalyst for removing nitrogen oxides using clay minerals and exhaust gas treatment method | |
JP3325041B2 (en) | Decomposition and removal method of nitrous oxide | |
JP3219613B2 (en) | Ammonia decomposition catalyst and method for decomposing and removing ammonia | |
JP3893014B2 (en) | Exhaust gas treatment catalyst, its production method and exhaust gas treatment method | |
JPH0420663B2 (en) | ||
JP3076421B2 (en) | DeNOx catalyst suppressing sulfur dioxide oxidation and method for producing the same | |
JPH07114964B2 (en) | Nitrogen oxide reduction catalyst and method for producing the same | |
JP3860734B2 (en) | Exhaust gas treatment catalyst and exhaust gas treatment method | |
KR100279938B1 (en) | NO Oxidation Catalyst Composition | |
JP3236031B2 (en) | Method for decomposing and removing nitrous oxide | |
JP3270082B2 (en) | Decomposition and removal method of nitrous oxide | |
JP2004081995A (en) | Denitration catalyst and denitration method using the same | |
JP4283092B2 (en) | Exhaust gas treatment catalyst and exhaust gas treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050301 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050309 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080318 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090318 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100318 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |