JPH0816633B2 - Main steam isolation valve leak test device - Google Patents
Main steam isolation valve leak test deviceInfo
- Publication number
- JPH0816633B2 JPH0816633B2 JP61294651A JP29465186A JPH0816633B2 JP H0816633 B2 JPH0816633 B2 JP H0816633B2 JP 61294651 A JP61294651 A JP 61294651A JP 29465186 A JP29465186 A JP 29465186A JP H0816633 B2 JPH0816633 B2 JP H0816633B2
- Authority
- JP
- Japan
- Prior art keywords
- valve
- main steam
- pressure
- air supply
- detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
Landscapes
- Examining Or Testing Airtightness (AREA)
Description
【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は原子力プラントにおいて実施される主蒸気隔
離弁漏洩試験の際に使用される主蒸気隔離弁漏洩試験装
置に係り、特に、主蒸気隔離弁漏洩試験をほぼ自動的に
実施するように改良した主蒸気隔離弁漏洩試験装置に関
する。DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial field of application) The present invention relates to a main steam isolation valve leakage test device used in a main steam isolation valve leakage test performed in a nuclear power plant, In particular, the present invention relates to a main steam isolation valve leakage test device improved so as to perform a main steam isolation valve leakage test almost automatically.
(従来の技術) 一般に、原子力プラントでは定期検査時に主蒸気隔離
弁(Main Steam Isolation Valve,以下MSIVという)の
漏洩試験が実施される。(Prior Art) Generally, in a nuclear power plant, a leakage test of a main steam isolation valve (hereinafter referred to as MSIV) is performed at the time of periodic inspection.
MSIVは第2図に示すように原子炉格納容器1を貫通す
る主蒸気管2の貫通部の内側と外側とにMSIV内側弁3と
MSIV外側弁4とをそれぞれ介装して構成されており、非
常時には原子炉水位低信号等により自動閉鎖されて、原
子炉系をタービン等より隔離するようになっている。As shown in FIG. 2, the MSIV has an MSIV inner valve 3 inside and outside the penetration part of the main steam pipe 2 that penetrates the reactor containment vessel 1.
The MSIV outer valve 4 and the MSIV outer valve 4 are respectively interposed, and in an emergency, they are automatically closed by a low reactor water level signal, etc. to isolate the reactor system from the turbine or the like.
主蒸気管2は原子炉格納容器1内に収納されている原
子炉圧力容器5の蒸気出口ノズル6を図示しない蒸気タ
ービンの蒸気入口ノズルに接続し、原子炉圧力容器5内
で発生した蒸気を蒸気タービンに導き、蒸気タービンを
回転駆動させて発電等を行なうようになっている。The main steam pipe 2 connects the steam outlet nozzle 6 of the reactor pressure vessel 5 housed in the reactor containment vessel 1 to the steam inlet nozzle of a steam turbine (not shown), and the steam generated in the reactor pressure vessel 5 is connected to the main steam pipe 2. It is configured to lead to a steam turbine and drive the steam turbine to rotate to generate electricity.
また、主蒸気管2は原子炉圧力容器5の蒸気出口ノズ
ル6とMSIV内側弁3との間で仕切られる主蒸気管内側部
2Aに内側ドレン排出管7の一端を接続すると共に、MSIV
内側弁3とMSIV外側弁4とで仕切られる主蒸気管弁間部
2Bに外側ドレン排出管8の一端を接続し、主蒸気管内側
部2Aおよび弁間部2Bのドレンを排出する。The main steam pipe 2 is an inner part of the main steam pipe which is partitioned between the steam outlet nozzle 6 of the reactor pressure vessel 5 and the MSIV inner valve 3.
Connect one end of the inner drain discharge pipe 7 to 2A and
Main steam pipe valve section separated by inner valve 3 and MSIV outer valve 4
One end of the outer drain discharge pipe 8 is connected to 2B to discharge the drain of the main steam pipe inner part 2A and the intervalve part 2B.
このようにMSIV内側弁3とMSIV外側弁4よりなるMSIV
の漏洩試験は従来では第2図により示す主蒸気隔離弁漏
洩試験装置Aを使用して実施される。Thus, the MSIV consisting of the MSIV inner valve 3 and the MSIV outer valve 4
Conventionally, the leakage test of (1) is carried out by using the main steam isolation valve leakage test apparatus A shown in FIG.
この主蒸気隔離弁漏洩試験装置Aは上記外側ドレン排
出管8の途中に各配管を介して弁間部圧力検出器9と差
圧検出器のマノメータ10とをそれぞれ接続し、これら各
検出器9,10には元弁11,12をそれぞれ付設している。This main steam isolation valve leakage test apparatus A connects an intervalve pressure detector 9 and a manometer 10 of a differential pressure detector in the middle of the outer drain discharge pipe 8 via respective pipes, and each of these detectors 9 Main valves 11 and 12 are attached to 10 and 10, respectively.
また、空気供給源13を有する空気供給管14の両吐出口
端は内、外側ドレン排出管7,8の途中にそれぞれ接続さ
れ、原子炉圧力容器5の蒸気出口ノズル6をその内側よ
りMSLプラグ15により気密に止栓した後、主蒸気管内側
部2Aおよび弁間部2B内に例えば3.92kg/cm2G以上の空気
圧を加圧するようになっており、第1、第2空気供給弁
16a,16bをそれぞれ介装している。Both ends of the air supply pipe 14 having the air supply source 13 are connected to the inner and outer drain discharge pipes 7 and 8, respectively, and the steam outlet nozzle 6 of the reactor pressure vessel 5 is connected to the MSL plug from the inside. After airtightly stoppering with 15, air pressure of, for example, 3.92 kg / cm 2 G or more is applied to the inside 2A of the main steam pipe and the intervalve portion 2B, and the first and second air supply valves are provided.
16a and 16b are provided respectively.
空気供給管14の途中には内側部圧力検出器17が元弁18
を介装した配管を介して接続され、主蒸気管弁間部2B内
には原子炉格納容器1の内側にて温度検出器19が内蔵さ
れている。Inside the air supply pipe 14, an inner pressure detector 17 is provided with a main valve 18
A temperature detector 19 is built inside the reactor containment vessel 1 inside the main steam pipe valve inter-valve section 2B.
このように構成された主蒸気隔離弁漏洩試験装置Aに
よりMSIV漏洩試験を行なう場合は、まず、原子炉圧力容
器5の蒸気出口ノズル6内に、その内側よりMSLプラグ1
5を挿入して気密に止栓し、MSIV内側弁3およびMSIV外
側弁4を閉じる。When conducting the MSIV leakage test with the main steam isolation valve leakage test apparatus A configured as described above, first, the MSL plug 1 is inserted into the steam outlet nozzle 6 of the reactor pressure vessel 5 from the inside.
5 is inserted and airtightly closed, and the MSIV inner valve 3 and the MSIV outer valve 4 are closed.
次に、MSIV内側弁3とMSIV外側弁4との各漏洩試験
を、例えば次の手順で順次行なう。Next, each leak test of the MSIV inner valve 3 and the MSIV outer valve 4 is sequentially performed in the following procedure, for example.
MSIV内側弁3の漏洩率を測定する場合は、まず、ドレ
ン排出弁20を予め開放してから、第1空気供給弁16aを
開放し、空気供給源13より空気供給管14および内側ドレ
ン排出管7をそれぞれ経て、主蒸気管内側部2Aに空気を
供給し、所定圧に加圧する。When measuring the leak rate of the MSIV inner valve 3, first open the drain discharge valve 20 in advance, then open the first air supply valve 16a, and from the air supply source 13, the air supply pipe 14 and the inner drain discharge pipe. Air is supplied to the inner portion 2A of the main steam pipe via 7 and pressurized to a predetermined pressure.
このときの主蒸気管内側部2A内の空気圧は元弁18を開
放して内側部圧力検出器17により検出して、所定圧に加
圧されていることを確認し、さらに、元弁12を開放して
主蒸気管弁間部2B内の圧力をマノメータ10により検出
し、大気圧との差が零であることを確認する。At this time, the air pressure inside the main steam pipe 2A is detected by the inner pressure detector 17 by opening the main valve 18, and it is confirmed that the pressure is increased to a predetermined pressure. After opening, the pressure in the main steam pipe inter-valve portion 2B is detected by the manometer 10, and it is confirmed that the difference from the atmospheric pressure is zero.
しかる後に、ドレン排出弁20を閉じてからMSIV内側弁
3の漏洩試験を開始し、その開始時より規定の時間、例
えば5分間間隔でマノメータ10の左右の水位と内側部圧
力検出器17と温度検出器19との各指示値を作業員が目視
により読み取り、これら読み取ったデータを作業員がコ
ンピュータ21に入力する等所要の操作によりMSIV内側弁
3の漏洩率を算出する。Then, after the drain discharge valve 20 is closed, the leak test of the MSIV inner valve 3 is started, and the water level on the left and right of the manometer 10 and the inner pressure detector 17 and the temperature are measured at a predetermined time, for example, every 5 minutes from the start. A worker visually reads each indicated value with the detector 19, and the worker inputs the read data into the computer 21 to calculate the leakage rate of the MSIV inner valve 3 by a required operation.
次に、MSIV外側弁4の漏洩率を測定する場合は、ま
ず、マノメータ10の元弁12および第1空気供給弁16aを
それぞれ閉じる一方、第2空気供給弁16bを開放し、MSI
V内側弁3とMSIV外側弁4とで仕切られる主蒸気管弁間
部2Bに、空気供給源13より空気供給管14および外側ドレ
ン排出管8をそれぞれ経て空気を供給して、例えば3.92
kg/cm2G以上に加圧し、その圧力は元弁11を開放して弁
間部圧力検出器9により確認する。Next, when measuring the leak rate of the MSIV outer valve 4, first, the main valve 12 and the first air supply valve 16a of the manometer 10 are closed, respectively, while the second air supply valve 16b is opened, and the MSI is opened.
Air is supplied from the air supply source 13 through the air supply pipe 14 and the outer drain discharge pipe 8 to the main steam pipe inter-valve portion 2B partitioned by the V inner valve 3 and the MSIV outer valve 4, for example, 3.92.
Pressurize to more than kg / cm 2 G, and check the pressure with the intervalve pressure detector 9 with the main valve 11 opened.
この後、第2空気供給弁16bを閉じて、MSIV外側弁4
の漏洩試験を開始し、その試験開始時より例えば5分間
間隔で30分間、弁間部圧力検出器9と温度検出器19の各
指示値を作業員が目視により読み取り、これら読み取っ
たデータを作業員がコンピュータ21に入力する等所要の
操作を行なってMSIV外側弁4の漏洩率を算出する。After this, the second air supply valve 16b is closed and the MSIV outer valve 4 is closed.
Starting the leak test, the operator visually reads each indicated value of the intervalve pressure detector 9 and the temperature detector 19 for 5 minutes at an interval of 5 minutes from the start of the test, and works on the read data. The leak rate of the MSIV outer valve 4 is calculated by performing a required operation such as inputting to the computer 21 by a worker.
(発明が解決しようとする問題点) しかしながら、このような従来の主蒸気隔離弁漏洩試
験装置Aでは各元弁11,12,18、第1、第2空気供給弁16
a,16b、ドレン排出弁20等の開閉を試験実施手順に従っ
て逐次作業員により手動操作しなければならず、煩雑で
あると共に、誤操作を伴う恐れもある。(Problems to be solved by the invention) However, in such a conventional main steam isolation valve leakage test apparatus A, the main valves 11, 12, 18 and the first and second air supply valves 16
The opening and closing of the a, 16b, the drain discharge valve 20 and the like must be manually operated by an operator in sequence according to the test implementation procedure, which is complicated and may cause an erroneous operation.
また、各検出器9,10,17,19の各検出値を作業員が目視
により読み取る際と、データをコンピュータ21に入力す
る際とに人為的ミスが介入する恐れがある。Further, there is a possibility that human error may occur when an operator visually reads the detection values of the detectors 9, 10, 17, and 19 and inputs the data to the computer 21.
そこで、本発明の目的は、MSIV漏洩試験の実施から主
蒸気隔離弁の漏洩率算出までをほぼ自動化した主蒸気隔
離弁漏洩試験装置を提供することにある。Therefore, an object of the present invention is to provide a main steam isolation valve leakage test device that is substantially automated from the execution of the MSIV leakage test to the calculation of the leakage rate of the main steam isolation valve.
(問題点を解決するための手段) 本発明は、コンピュータよりなる演算制御器により、
MSIVの漏洩試験をほぼ自動化しようとするものであり、
次のように構成される。(Means for Solving Problems) The present invention provides an arithmetic controller including a computer,
It aims to automate the leak test of MSIV,
It is constructed as follows.
原子炉圧力容器の蒸気出口ノズルと主蒸気隔離弁の内
側弁とにより仕切られる主蒸気管の内側部の内圧を検出
する内側部圧力検出器と、上記主蒸気隔離弁の内側弁と
その外側弁とにより仕切られる主蒸気管の弁間部の内圧
を検出する弁間部圧力検出器と、この主蒸気管弁間部の
内圧と大気圧との差圧を検出する差圧検出器と、主蒸気
管弁間部の温度を検出する温度検出器と、上記主蒸気管
内側部おび弁間部に空気をそれぞれ供給する空気供給管
に介装されて遠隔制御自在に構成された空気供給弁と、
上記主蒸気管内側部および弁間部からのドレンを排出す
るドレン排出管に介装されて遠隔制御自在に構成された
ドレン排出弁と、上記内側部圧力検出器、弁間部圧力検
出器および差圧検出器にそれぞれ付設されて遠隔制御自
在に構成された各元弁と、上記ドレン排出弁を開した
後、一方の空気供給弁を開放させて主蒸気管内側部に空
気を供給して加圧させ、上記差圧検出器の元弁を開放さ
せて主蒸気管弁間部の圧力が大気圧であることを確認し
たときに、このドレン排出弁を閉じてから、所定時間間
隔で差圧検出器と温度検出器による各検出値を読み込ん
で主蒸気隔離弁の内側弁の漏洩率を求める一方、上記差
圧検出器の元弁と上記空気供給弁を閉じて他方の空気供
給元弁を開放して、主上記隔離弁の内側弁および外側弁
間の主蒸気管の弁間部内に空気を供給して加圧させ、こ
の空気供給元弁を閉じた後、所定時間間隔で弁間部圧力
検出器と温度検出器とによる各検出値を読み込んで主蒸
気隔離弁の外側弁の漏洩率を求めると共に、これら漏洩
率を出力装置に与える演算制御器と、を有することを特
徴とする。An inner pressure detector for detecting the inner pressure of the inner portion of the main steam pipe partitioned by the steam outlet nozzle of the reactor pressure vessel and the inner valve of the main steam isolation valve, and the inner valve of the main steam isolation valve and its outer valve An inter-valve pressure detector that detects the internal pressure of the inter-valve portion of the main steam pipe that is partitioned by and a differential pressure detector that detects the differential pressure between the internal pressure of this main steam pipe inter-valve portion and the atmospheric pressure, and A temperature detector for detecting the temperature between the steam pipe valves, and an air supply valve configured to be remotely controllable by being interposed in the air supply pipes that respectively supply air to the inside of the main steam pipe and the space between the valves. ,
A drain discharge valve configured to be remotely controllable by being installed in a drain discharge pipe that discharges drain from the inside of the main steam pipe and between the valves, and the inside pressure detector, the intervalve pressure detector, and After opening each source valve that is attached to each differential pressure detector and configured to be remotely controllable, and the drain discharge valve, open one of the air supply valves to supply air to the inside of the main steam pipe. When the pressure is increased and the main valve of the differential pressure detector is opened to confirm that the pressure between the main steam pipe valves is atmospheric pressure, after closing the drain discharge valve, The values detected by the pressure detector and temperature detector are read to determine the leak rate of the inner valve of the main steam isolation valve, while the main valve of the differential pressure detector and the air supply valve are closed and the other air supply source valve is closed. Open the main steam pipe between the inner and outer valves of the isolation valve above. After supplying air to the inside to pressurize and closing this air supply source valve, the values detected by the inter-valve pressure detector and temperature detector are read at predetermined time intervals and the outer valve of the main steam isolation valve is read. And a calculation controller that gives these leakage rates to the output device.
(作用) 演算制御器を起動させると、主蒸気隔離弁漏洩試験の
上記発明の構成欄で記載した所定の実施手順に従って、
各検出器の元弁、空気供給弁およびドレン排出弁が演算
制御器により適宜遠隔制御され、しかも、内側部圧力検
出器、弁間部圧力検出器、差圧検出器および鈍度検出器
の各検出値が演算制御器により読み込まれる。(Operation) When the arithmetic and control unit is activated, according to the predetermined implementation procedure described in the configuration column of the above invention of the main steam isolation valve leakage test,
The main valve, air supply valve, and drain discharge valve of each detector are appropriately remote-controlled by the arithmetic controller, and the inner pressure detector, inter-valve pressure detector, differential pressure detector and dullness detector The detected value is read by the arithmetic controller.
演算制御器は読み込んだデータに基づいてMSIV内側弁
および外側弁の各漏洩率を算出し、その算出結果を出力
装置に与える。The arithmetic controller calculates each leak rate of the MSIV inner valve and the outer valve based on the read data, and gives the calculation result to the output device.
したがって、本発明によれば、主蒸気隔離弁漏洩試験
の実施および主蒸気隔離弁の漏洩率の算出がほぼ自動化
されるので、人為的ミスが介入するのを防止することが
でき、主蒸気隔離弁の漏洩率算出結果の精度向上を図る
ことができる。また、演算制御器は空気供給弁等の各遠
隔制御弁や各種検出器等にケーブルにより電気的に接続
されているので、このケーブルを長くすることにより、
演算制御器と出力装置とを放射線管理区域外に出すこと
ができる。これにより、演算制御器と出力装置とを手動
操作する操作員の被曝線量を低減して安全性を高めるこ
とができるという原子力プラントに特有の効果を奏する
ことができる。Therefore, according to the present invention, since the main steam isolation valve leakage test is performed and the leakage rate of the main steam isolation valve is calculated almost automatically, it is possible to prevent the human error from intervening and prevent the main steam isolation valve from intervening. It is possible to improve the accuracy of the valve leakage rate calculation result. In addition, since the arithmetic controller is electrically connected to each remote control valve such as the air supply valve and various detectors by a cable, by lengthening this cable,
The arithmetic controller and the output device can be out of the radiation controlled area. As a result, it is possible to achieve an effect peculiar to a nuclear power plant that the exposure dose of an operator who manually operates the arithmetic and control unit and the output device can be reduced and safety can be improved.
さらに、各種検出器は演算制御器により読み込めるよ
うに構成すればよく、人により各種検出値を目測し得る
目測部を設ける必要がないので、これら検出器の小型軽
量化を図ることができる。Further, the various detectors may be configured so that they can be read by the arithmetic and control unit, and it is not necessary to provide an eye measurement unit capable of visually inspecting various detection values by a person, so that the size and weight of these detectors can be reduced.
(実施例) 以下、本発明の一実施例を第1図に基づいて説明す
る。なお、第1図中、第2図と共通する部分には同一符
号を付して、その重複した説明は省略する。Embodiment An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, the same parts as those in FIG. 2 are designated by the same reference numerals, and the duplicate description thereof will be omitted.
第1図は本発明の一実施例の全体構成を示し、図にお
いて、主蒸気隔離弁漏洩試験装置30は外側ドレン排出管
8の途中に、弁間部圧力検出器31と差圧検出器32とを各
配管33,34をそれぞれ介して接続しており、各配管33,34
には電磁弁等よりなる元弁35,36をそれぞれ介装してい
る。FIG. 1 shows the overall configuration of an embodiment of the present invention. In the figure, a main steam isolation valve leakage test device 30 is provided with an intervalve pressure detector 31 and a differential pressure detector 32 in the middle of the outer drain discharge pipe 8. Are connected via respective pipes 33, 34.
The main valves 35 and 36, which are electromagnetic valves and the like, are installed in each.
したがって、弁間部圧力検出器31により主蒸気管弁間
部2B内の圧力が検出され、差圧検出器32により主蒸気管
弁間部2B内圧と大気圧との差圧が検出される。Therefore, the inter-valve pressure detector 31 detects the pressure in the main steam pipe inter-valve region 2B, and the differential pressure detector 32 detects the differential pressure between the main steam pipe inter-valve region 2B and the atmospheric pressure.
また、空気供給配管14には空気供給源13に接続される
接続部の前後にて、電磁弁等よりなる第1、第2空気供
給弁37,38がそれぞれ介装され、第1空気供給弁37の開
放時には、空気供給源13より空気供給配管14および内側
ドレン排出管7を経て主蒸気管2の主蒸気管内側部2Aに
空気が供給されて所定圧に加圧され、第2空気供給弁38
の開放時には、空気供給源13より空気供給配管14および
外側ドレン排出管8を経て主蒸気管弁間部2Bに空気が供
給されて所定圧に加圧される。In addition, first and second air supply valves 37 and 38, which are electromagnetic valves and the like, are interposed in the air supply pipe 14 before and after the connecting portion connected to the air supply source 13, respectively. When 37 is opened, air is supplied from the air supply source 13 to the inside 2A of the main steam pipe of the main steam pipe 2 through the air supply pipe 14 and the inner drain discharge pipe 7, and is pressurized to a predetermined pressure to supply the second air. Valve 38
When is opened, air is supplied from the air supply source 13 through the air supply pipe 14 and the outer drain discharge pipe 8 to the main steam pipe valve inter-valve portion 2B and pressurized to a predetermined pressure.
第1空気供給弁37より空気流下流側における空気供給
配管14の途中には配管39を介して内側部圧力検出器40が
接続され、配管39の途中には電磁弁等よりなる元弁41が
介装されている。An inner pressure detector 40 is connected via a pipe 39 in the middle of the air supply pipe 14 downstream of the first air supply valve 37, and a main valve 41 such as a solenoid valve is provided in the middle of the pipe 39. It is installed.
したがって、内側部圧力検出器40により主蒸気管内側
部2A内圧が検出される。Therefore, the inner pressure detector 40 detects the inner pressure of the main steam pipe inner portion 2A.
また、MSIV内側弁3と、MSIV外側弁4とで仕切られる
主蒸気管弁間部2B内には温度検出器42が内蔵され、外側
ドレン排出管8には、配管34との接続部より下流側にて
電磁弁等よりなるドレン排出弁43が介装されている。Further, a temperature detector 42 is built in the main steam pipe inter-valve portion 2B which is partitioned by the MSIV inner valve 3 and the MSIV outer valve 4, and the outer drain discharge pipe 8 is downstream from the connection portion with the pipe 34. A drain discharge valve 43 including a solenoid valve is provided on the side.
上記弁間部圧力検出器31、差圧検出器32、内側部圧力
検出器40と、これらの各元弁35,36,41と、温度検出器42
と、第1、第2空気供給弁37,38と、ドレン排出弁43と
は破線で示す信号線を介して演算制御器44に電気的に接
続され、演算制御器44の出力部には例えばプリンタおよ
びCRT表示装置等よりなる出力装置45が電気的に接続さ
れている。The inter-valve pressure detector 31, the differential pressure detector 32, the inner pressure detector 40, each of these main valves 35, 36, 41, and the temperature detector 42.
The first and second air supply valves 37, 38 and the drain discharge valve 43 are electrically connected to the arithmetic controller 44 via a signal line indicated by a broken line. An output device 45 including a printer and a CRT display device is electrically connected.
演算制御器44はコンピュータ等よりなり、MSIV漏洩試
験を実施するための実施手順に従って主蒸気隔離弁漏洩
試験装置30の各弁35〜38,39,41,42の開閉を制御すると
共に、各検出器31,32,40,42の検出値を読み込み、この
読み込んだデータに基づいてMSIV内側弁3および外側弁
4の漏洩率を算出し、しかも、その算出結果を出力装置
45に与えるようになっている。The arithmetic and control unit 44 is composed of a computer or the like, controls the opening and closing of each valve 35 to 38, 39, 41, 42 of the main steam isolation valve leakage test apparatus 30 according to the procedure for carrying out the MSIV leakage test, and detects each. The detection values of the devices 31, 32, 40, 42 are read, the leak rates of the MSIV inner valve 3 and the outer valve 4 are calculated based on the read data, and the calculation results are output to the output device
It is designed to give to 45.
すなわち、MSIV漏洩試験は、まず、作業員により、原
子炉圧力容器5の蒸気出口ノズル6内に、その内側より
MSLプラグ15を挿入して、気密に止栓し、MSIV内側弁3
および外側弁4を閉じた状態に設定されるが、これより
後に実施されるMSIV漏洩試験の実施手順がプログラムと
して演算制御器44内に内蔵されており、その実施手順は
従来技術の説明の際に述べた手順と同一であり、ここで
は省略する。That is, in the MSIV leakage test, first, an operator puts the steam inside the steam outlet nozzle 6 of the reactor pressure vessel 5 from the inside.
Insert the MSL plug 15 and plug it in an airtight manner, then the MSIV inner valve 3
And the outer valve 4 is set to a closed state, but the procedure for performing the MSIV leakage test performed after this is built in the arithmetic and control unit 44 as a program. The procedure is the same as that described above, and is omitted here.
また、演算制御器44には下記に示すMSIV内側弁3およ
び外側弁4の漏洩率L3,L4をそれぞれ算出するための数
式(1),(2)と、その計算方法とがプログラムとし
て内蔵されている。In addition, the arithmetic controller 44 includes the following equations (1) and (2) for calculating the leakage rates L 3 and L 4 of the MSIV inner valve 3 and the outer valve 4, respectively, and the calculation method as a program. It is built in.
MSIV内側弁3の漏洩率L3 P2=h×a×10-4 MSIV外側弁4の漏洩率L4 但し、(1)および(2)式において、 V:原子炉圧力容器蒸気相体積(m3)[定数] Vf:弁間体積(m3)[定数] P1:測定開始時の弁間圧力(kg/cm2g) T1:測定開始時の弁間温度(゜K) P2:測定終了時の弁間圧力(kg/cm2g) T2:測定終了時の弁間温度(゜K) P:逃し弁機能の最低設定値(kg/cm2g)[定数] Ra:水蒸気の気体定数(kgm/cm2゜K)[定数] Ta:P圧力での飽和蒸気温度(゜K)[定数] Rt:加圧気体の気体定数(kgm/kg゜K)[定数] Pt:加圧気体の圧力(kg/cm2g) Tt:加圧気体の温度(゜K) t:測定時間(分) h:差圧検出器32の検出圧力(mm) a:測定温度における水の比重(g/cm3)[定数] 次に、本実施例の作用について述べる。MSIV inner valve 3 leakage rate L 3 P 2 = h × a × 10 −4 MSIV Outer valve 4 leakage rate L 4 However, in the equations (1) and (2), V: reactor pressure vessel vapor phase volume (m 3 ) [constant] Vf: intervalve volume (m 3 ) [constant] P 1 : intervalve pressure at the start of measurement (Kg / cm 2 g) T 1 : Valve temperature at the start of measurement (° K) P 2 : Valve pressure at the end of measurement (kg / cm 2 g) T 2 : Valve temperature at the end of measurement (° K) P: Minimum setting value of relief valve function (kg / cm 2 g) [Constant] R a : Gas constant of water vapor (kgm / cm 2 ° K) [Constant] T a : Saturated steam temperature at P pressure ( ° K) [Constant] R t : Gas constant of pressurized gas (kgm / kg ° K) [Constant] P t : Pressure of pressurized gas (kg / cm 2 g) T t : Temperature of pressurized gas (° K) t: measurement time (minutes) h: pressure detected by the differential pressure detector 32 (mm) a: specific gravity of water at measurement temperature (g / cm 3 ) [constant] Next, the operation of this embodiment will be described.
MSIV漏洩試験を実施する場合はまず、作業員により原
子炉圧力容器の蒸気出口ノズル6内にその内側からMSL
プラグ15を挿入して気密に止栓し、MSIV内側弁3および
外側弁4を共に閉じておく。When carrying out the MSIV leak test, first the operator puts the MSL inside the steam outlet nozzle 6 of the reactor pressure vessel from the inside.
The plug 15 is inserted and the plug is hermetically closed, and the MSIV inner valve 3 and the outer valve 4 are both closed.
次に、演算制御器44はドレン排出弁43を開した後、第
1の空気供給弁37を開放させて主蒸気管内側部2Aに空気
を供給して加圧させ、上記差圧検出器32の元弁36を開放
させて主蒸気管弁間部28の圧力が大気圧であることを確
認し、その後、ドレン排出弁43を閉じてから、所定時間
間隔で差圧検出器32と温度検出器42の各検出値を読み込
んで主蒸気隔離弁の内側弁3の漏洩率を求める。この
後、上記差圧検出器32の元弁36と上記空気供給弁37を閉
じて第2の空気供給元弁38を開放して、主蒸気隔離弁の
内側弁32および外側弁4間の主蒸気管の弁間部2B内に空
気を供給して加圧させ、この空気供給元弁38を閉じた
後、所定時間間隔で弁間部圧力検出部31と温度検出器42
とによる各検出値を読み込んで主蒸気隔離弁の外側弁41
の漏洩率を求める。Next, the arithmetic controller 44 opens the drain discharge valve 43, then opens the first air supply valve 37 to supply air to the main steam pipe inner portion 2A to pressurize the same, and the differential pressure detector 32 It is confirmed that the pressure of the main steam pipe inter-valve portion 28 is atmospheric pressure by opening the main valve 36 of the above, and after closing the drain discharge valve 43, the differential pressure detector 32 and the temperature detection at a predetermined time interval. The leak rate of the inner valve 3 of the main steam isolation valve is obtained by reading each detected value of the container 42. Thereafter, the main valve 36 and the air supply valve 37 of the differential pressure detector 32 are closed and the second air supply source valve 38 is opened, so that the main valve between the inner valve 32 and the outer valve 4 of the main steam isolation valve is closed. Air is supplied into the intervalve portion 2B of the steam pipe to pressurize it, and after closing the air supply source valve 38, the intervalve pressure detecting portion 31 and the temperature detector 42 at predetermined time intervals
Each detected value by and is read and the outer valve of the main steam isolation valve 41
Find the leakage rate of.
これらデータに基づいて演算制御器44によりMSIV内側
弁3および外側弁4の各漏洩率が算出され、その算出結
果が出力装置に与えられる。Based on these data, the arithmetic controller 44 calculates the leakage rates of the MSIV inner valve 3 and the outer valve 4, and the calculated results are given to the output device.
したがって、本実施例によれば、蒸気出口ノズル6へ
のMSLプラグ15の止栓と、MSIV内側弁3および外側弁4
の閉成とを除いて、MSIV漏洩試験の実施をほぼ自動化
し、MSIV内側弁3および外側弁4の漏洩率算出も自動化
されるので、人為的ミスの介入を殆ど防止することがで
き、MSIV漏洩率の精度の向上を図ることができる。ま
た、演算制御器44は空気供給弁37,38等の各遠隔制御弁
や各種検出器31,32,40,42等にケーブルにより電気的に
接続されているので、このケーブルを長くすることによ
り、演算制御器44と出力装置45とを放射線管理区域外に
出すことができる。これにより、演算制御器44と出力装
置45とを手動操作する操作員の被曝線量を低減して安全
性を高めることができるという原子力プラントに特有の
効果を奏することができる。Therefore, according to this embodiment, the stopper of the MSL plug 15 to the steam outlet nozzle 6, the MSIV inner valve 3 and the outer valve 4 are provided.
Except for closing the MSIV, the MSIV leakage test is almost automatically performed, and the leakage rate calculation of the MSIV inner valve 3 and outer valve 4 is also automated, so that the intervention of human error can be almost prevented. The accuracy of the leakage rate can be improved. Further, the arithmetic controller 44 is electrically connected to each remote control valve such as the air supply valves 37 and 38 and various detectors 31, 32, 40 and 42 by a cable. The arithmetic controller 44 and the output device 45 can be out of the radiation controlled area. As a result, it is possible to achieve an effect peculiar to a nuclear power plant that the exposure dose of an operator who manually operates the arithmetic and control unit 44 and the output device 45 can be reduced and safety can be improved.
さらに、各種検出器は演算制御器44により読み込める
ように構成すればよく、人により各種検出値を目測し得
る目測部を設ける必要がないので、これら検出器の小型
軽量化を図ることができる。Further, the various detectors may be configured so that they can be read by the arithmetic and control unit 44, and it is not necessary to provide an eye measurement unit capable of visually inspecting various detected values by a person, so that the size and weight of these detectors can be reduced.
以上説明したように本発明は、主蒸気隔離弁漏洩試験
の実施をほぼ自動化すると共に、主蒸気隔離弁の漏洩率
の算出を自動化したので、主蒸気隔離弁漏洩試験の実施
時および漏洩率算出時に人為的ミスが介入するのを防止
することができ、主蒸気隔離弁の漏洩率の精度向上を図
ることができる。また、演算制御器は空気供給弁等の各
遠隔制御弁や各種検出器等にケーブルにより電気的に接
続されているので、このケーブルを長くすることによ
り、演算制御器と出力装置とを放射線管理区域外に出す
ことができる。これにより、演算制御器と出力装置とを
手動操作する操作員の被曝線量を低減して安全性を高め
ることができるという原子力プラントに特有の効果を奏
することができる。As described above, the present invention substantially automates the execution of the main steam isolation valve leakage test, and also automates the calculation of the leakage rate of the main steam isolation valve. Occasionally, human error can be prevented from intervening, and the accuracy of the leakage rate of the main steam isolation valve can be improved. Further, since the arithmetic controller is electrically connected to each remote control valve such as an air supply valve and various detectors by a cable, by lengthening this cable, the arithmetic controller and the output device are controlled by radiation. Can be placed outside the area. As a result, it is possible to achieve an effect peculiar to a nuclear power plant that the exposure dose of an operator who manually operates the arithmetic and control unit and the output device can be reduced and safety can be improved.
さらに、各種検出器は演算制御器により読み込めるよ
うに構成すればよく、人により各種検出値を目測し得る
目測部を設ける必要がないので、これら検出器の小型軽
量化を図ることができる。Further, the various detectors may be configured so that they can be read by the arithmetic and control unit, and it is not necessary to provide an eye measurement unit capable of visually inspecting various detection values by a person, so that the size and weight of these detectors can be reduced.
第1図は本発明に係る主蒸気隔離弁漏洩試験装置の一実
施例の全体構成を示す全体構成図、第2図は従来の主蒸
気隔離弁漏洩試験装置の全体構成を示す全体構成図であ
る。 3……MSIV内側弁、4……MSIV外側弁、5……原子炉圧
力容器、6……蒸気出口ノズル、7……内側ドレン排出
管、8……外側ドレン排出管、14……空気供給管、30…
…主蒸気隔離弁漏洩試験装置、31……弁間部圧力検出
器、32……差圧検出器、35,36,41……元弁、37……第1
空気供給弁、38……第2空気供給弁、40……内側部圧力
検出器、42……温度検出器、43……外側ドレン排出管、
44……演算制御器。FIG. 1 is an overall configuration diagram showing the overall configuration of an embodiment of a main steam isolation valve leakage test device according to the present invention, and FIG. 2 is an overall configuration diagram showing the overall configuration of a conventional main steam isolation valve leakage test device. is there. 3 ... MSIV inner valve, 4 ... MSIV outer valve, 5 ... Reactor pressure vessel, 6 ... Steam outlet nozzle, 7 ... Inner drain discharge pipe, 8 ... Outer drain discharge pipe, 14 ... Air supply Tube, 30 ...
… Main steam isolation valve leak test device, 31 …… Valve pressure detector, 32 …… Differential pressure detector, 35,36,41 …… Main valve, 37 …… First
Air supply valve, 38 ... second air supply valve, 40 ... inner pressure detector, 42 ... temperature detector, 43 ... outer drain discharge pipe,
44 ... Arithmetic controller.
Claims (1)
隔離弁の内側弁とにより仕切られる主蒸気管の内側部の
内圧を検出する内側部圧力検出器と、上記主蒸気隔離弁
の内側弁とその外側弁とにより仕切られる主蒸気管の弁
間部の内圧を検出する弁間部圧力検出器と、この主蒸気
管弁間部の内圧と大気圧との差圧を検出する差圧検出器
と、主蒸気管弁間部の温度を検出する温度検出器と、上
記主蒸気管内側部および弁間部に空気をそれぞれ供給す
る空気供給管に介装されて隔離制御自在に構成された空
気供給弁と、上記主蒸気管内側部および弁間部からのド
レンを排出するドレン排出管に介装されて遠隔制御自在
に構成されたドレン排出弁と、上記内側部圧力検出器、
弁間部圧力検出器および差圧検出器にそれぞれ付設され
て遠隔制御自在に構成された各元弁と、上記ドレン排出
弁を開した後、一方の空気供給弁を開放させて主蒸気管
内側部に空気を供給して加圧させ、上記差圧検出器の元
弁を開放させて主蒸気管弁間部の圧力が大気圧であるこ
とを確認したときに、このドレン排出弁を閉じてから、
所定時間間隔で差圧検出器と温度検出器による各検出値
を読み込んで主蒸気隔離弁の内側弁の漏洩率を求める一
方、上記差圧検出器の元弁と上記空気供給弁を閉じて他
方の空気供給元弁を開放して、主上記隔離弁の内側弁お
よび外側弁間の主蒸気管の弁間部内に空気を供給して加
圧させ、この空気供給元弁を閉じた後、所定時間間隔で
弁間部圧力検出器と温度検出器とによる各検出値を読み
込んで主蒸気隔離弁の外側弁の漏洩率を求めると共に、
これら漏洩率を出力装置に与える演算制御器と、を有す
ることを特徴とする主蒸気隔離弁漏洩試験装置。1. An inner pressure detector for detecting an inner pressure of an inner portion of a main steam pipe partitioned by a steam outlet nozzle of a reactor pressure vessel and an inner valve of the main steam isolation valve, and an inner side of the main steam isolation valve. Inter-valve pressure detector that detects the internal pressure of the inter-valve portion of the main steam pipe partitioned by the valve and its outer valve, and the differential pressure that detects the differential pressure between the internal pressure of this main steam pipe valve and the atmospheric pressure. A detector, a temperature detector for detecting the temperature between main steam pipe valves, and an air supply pipe for supplying air to the inside of the main steam pipe and the space between the valves, respectively, and are configured to be controllable separately. An air supply valve, a drain discharge valve configured to be remotely controllable by being installed in a drain discharge pipe that discharges drain from the inner portion and the intervalve portion of the main steam pipe, and the inner pressure detector,
Inside the main steam pipe by opening each main valve that is attached to the inter-valve pressure detector and the differential pressure detector and configured to be remotely controllable, and the drain discharge valve, and then open one of the air supply valves. When the main valve of the differential pressure detector is opened and it is confirmed that the pressure between the main steam pipe valves is atmospheric pressure, close the drain discharge valve by supplying air to the section to pressurize. From
The values detected by the differential pressure detector and the temperature detector are read at predetermined time intervals to obtain the leakage rate of the inner valve of the main steam isolation valve, while the main valve of the differential pressure detector and the air supply valve are closed and the other The air supply source valve of the main valve is opened, air is supplied into the intervalve portion of the main steam pipe between the inner valve and the outer valve of the isolation valve to pressurize, and the air supply source valve is closed, The leak rate of the outer valve of the main steam isolation valve is obtained by reading each detected value by the inter-valve pressure detector and the temperature detector at time intervals.
A main steam isolation valve leakage test apparatus, comprising: an arithmetic controller that gives these leakage rates to an output device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61294651A JPH0816633B2 (en) | 1986-12-12 | 1986-12-12 | Main steam isolation valve leak test device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61294651A JPH0816633B2 (en) | 1986-12-12 | 1986-12-12 | Main steam isolation valve leak test device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63149536A JPS63149536A (en) | 1988-06-22 |
JPH0816633B2 true JPH0816633B2 (en) | 1996-02-21 |
Family
ID=17810525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61294651A Expired - Fee Related JPH0816633B2 (en) | 1986-12-12 | 1986-12-12 | Main steam isolation valve leak test device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0816633B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10300592B4 (en) * | 2003-01-10 | 2015-12-10 | Robert Bosch Gmbh | Method for operating an internal combustion engine |
RU209939U1 (en) * | 2021-11-15 | 2022-03-24 | Публичное акционерное общество "КАМАЗ" | PLUG FOR PIPING LEAK TEST |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61260192A (en) * | 1985-05-15 | 1986-11-18 | 株式会社東芝 | Method and device for testing leakage from main steam separation valve |
-
1986
- 1986-12-12 JP JP61294651A patent/JPH0816633B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
自動制御研究会編「自動制御便覧」第5版(昭37−8−30)コロナ会,P.487−489 |
Also Published As
Publication number | Publication date |
---|---|
JPS63149536A (en) | 1988-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106092561B (en) | A kind of multifunctional safety valve calibration equipment | |
KR100716550B1 (en) | Leak test device for pressure structure with airtight internal space | |
US6227035B1 (en) | Gas module orifice automated test fixture | |
JP4814330B2 (en) | Method and apparatus for continuous monitoring of gaps in gasoline storage facilities and pipelines | |
CN105203717B (en) | Inert gas monitor field calibration device and its application process | |
JPS649863B2 (en) | ||
KR100293116B1 (en) | Method and apparatus for testing a fluid conduit system for leaks | |
US5535253A (en) | Method and device for detecting leaks in penetrations of a nuclear reactor vessel head during operation | |
JPH08500442A (en) | Recovery boiler leak detection system and method | |
JPH0816633B2 (en) | Main steam isolation valve leak test device | |
US4510791A (en) | Method and apparatus for testing the air-tightness of a building using transient pressurization | |
US2608855A (en) | Method and apparatus for measuring tightness of vessels | |
JPS60183536A (en) | Monitoring device for pressure gas leak | |
RU2744321C1 (en) | Automatic pressure regulation system | |
JPH10103547A (en) | Gas shut-off device | |
JP2618952B2 (en) | Calibration device for differential pressure transmitter | |
JP2649490B2 (en) | Housing watertightness test equipment | |
JP3061471B2 (en) | Liquid sampling device | |
RU1839626C (en) | Method and device for gas sterilization of inside surfaces of spacecraft | |
JPS59180340A (en) | Leak testing device | |
JPH0196525A (en) | Testing method for leakage rate of main vapor separation valve | |
JPH1090108A (en) | Inspection method for gas leak in pipe and detector therefor | |
SU1033883A1 (en) | Method and device for testing hollow article fluid-tightness | |
JP2721692B2 (en) | Electric pressure gauge | |
JPS5851215B2 (en) | Kouatsusuichiyuuno |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |