[go: up one dir, main page]

JPH08165879A - Borehole flow velocity measuring device - Google Patents

Borehole flow velocity measuring device

Info

Publication number
JPH08165879A
JPH08165879A JP30853294A JP30853294A JPH08165879A JP H08165879 A JPH08165879 A JP H08165879A JP 30853294 A JP30853294 A JP 30853294A JP 30853294 A JP30853294 A JP 30853294A JP H08165879 A JPH08165879 A JP H08165879A
Authority
JP
Japan
Prior art keywords
light
resistant container
pressure
lens
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30853294A
Other languages
Japanese (ja)
Other versions
JP3396867B2 (en
Inventor
Yoshinao Hori
義直 堀
Fumio Sakata
文男 坂田
Nobuyoshi Yamazaki
宣悦 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Sakata Denki Co Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Sakata Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Sakata Denki Co Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP30853294A priority Critical patent/JP3396867B2/en
Publication of JPH08165879A publication Critical patent/JPH08165879A/en
Application granted granted Critical
Publication of JP3396867B2 publication Critical patent/JP3396867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/10Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with axial admission
    • G01F1/103Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with axial admission with radiation as transfer means to the indicating device, e.g. light transmission

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

PURPOSE: To provide a borehole flow velocity measuring device measuring the velocity of a high-pressure high-temperature fluid in a boring hole with good accuracy. CONSTITUTION: A propeller 34 is arranged in the underground flowing water, the water current velocity is converted into the rotation of the propeller 34, and the rotation is transmitted to a slit disk 33. The slit disk 33 interrupts the light fed through the path constituted of the first optical fiber 12, the first lens 25, a glass window 29 provided on part of the wall of a pressure container 22, a reflector 30, the second lens 26, and the second optical fiber 15, coverts it into the intermittent modulating signal of light, and feeds it to a photodetector. The intermittent modulating signal of light is converted into the electrical pulse signal, and the water current velocity is measured by counting the pulse signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温岩体発電用ボーリ
ング孔内の地下流水の流速を測定する方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the flow velocity of groundwater in a borehole for hot rock mass power generation.

【0002】[0002]

【従来の技術】高温岩体発電は、地下3000m付近の
地中温度が高い深度まで2本のボーリングを行い、両方
のボーリング孔間に圧力を加えて岩盤中に小さい亀裂を
多数作り、両方のボーリング孔が岩盤中の亀裂でつなが
ると、岩盤中に見かけ上の熱交換器を形成出来るという
原理に基づいている。すなわち、一方のボーリング孔よ
り温度の低い水を注入すれば、他方のボーリング孔から
は極めて高温の熱水が得られ、この熱エネルギーを利用
して発電を行うことが可能となる。熱交換器が形成され
る深度では高圧のため水の沸騰点は上昇することから、
蒸気にはならずに高温の水として存在する。
2. Description of the Prior Art In hot rock power generation, two borings are carried out to a depth where the underground temperature is high around 3000m, and pressure is applied between both boring holes to make many small cracks in the bedrock. It is based on the principle that apparent heat exchangers can be formed in the bedrock if the boreholes are connected by cracks in the bedrock. That is, if water having a temperature lower than that of one of the boring holes is injected, extremely high temperature hot water is obtained from the other boring hole, and it becomes possible to generate electric power by using this thermal energy. Since the boiling point of water rises due to the high pressure at the depth where the heat exchanger is formed,
It does not become steam but exists as hot water.

【0003】ここで、一方のボーリング孔より加圧注入
された水は岩盤中の熱交換器を経て他方のボーリング孔
によって地上で回収されるため、全体としての流速は測
定可能である。ところが、熱交換器としての岩盤の亀裂
が存在する領域のどの部分から水が流入しているかにつ
いては、深度毎の流速を直接測定する以外には領域を特
定することが出来なかった。
The water injected under pressure from one of the boring holes is recovered above the ground by the other boring hole after passing through the heat exchanger in the bedrock, so that the flow velocity as a whole can be measured. However, regarding which part of the region where the cracks of the rock as a heat exchanger exist, the water could not be specified except by directly measuring the flow velocity at each depth.

【0004】[0004]

【発明が解決しようとする課題】高温流体の速度測定
は、地上であればドップラー測定などの非接触な測定方
式を用いることで測定は可能である。しかし、深いボー
リング孔内のように高圧下における高温流体の中で速度
測定を行うには、半導体を用いた通常の電子回路部品は
動作限界を越える温度となることから、測定方法が殆ど
存在しない状況であった。
The velocity of a high temperature fluid can be measured on the ground by using a non-contact measurement method such as Doppler measurement. However, in order to measure the velocity in a high temperature fluid under high pressure such as in a deep boring hole, the temperature of ordinary electronic circuit components using semiconductors exceeds the operating limit, so there is almost no measurement method. It was a situation.

【0005】従って本発明の課題は、ボーリング孔内の
高圧高温流体の速度を精度良く測定する孔内流速測定装
置を提供することにある。
Therefore, an object of the present invention is to provide an in-hole flow velocity measuring device for accurately measuring the velocity of a high-pressure high-temperature fluid in a boring hole.

【0006】[0006]

【課題を解決するための手段】本発明によれば、光源か
らの光をボーリング孔内に配置される耐圧容器内に導く
第1の光ファイバと、この第1の光ファイバの一端部か
ら出射される光を平行光線に拡大するように前記耐圧容
器内に配置された第1のレンズと、この第1のレンズか
ら出射される平行光を前記耐圧容器の外側に導くよう
に、前記耐圧容器の壁部に設けられた光透過窓と、この
光透過窓を介して前記耐圧容器の外側に導かれた平行光
を再び前記光透過窓を介して前記耐圧容器内に導くよう
に、前記耐圧容器の外側に配置された反射鏡と、この反
射鏡により前記耐圧容器内に導かれた前記平行光を受光
して収束させるように前記耐圧容器内に配置された第2
のレンズと、この第2のレンズにより収束された光を受
光し、受光した光を光検出器に導く第2の光ファイバ
と、前記耐圧容器の外側において前記第1のレンズから
前記第2のレンズに至る光路を横切って回転可能に配置
され、透光部と遮光部とが回転方向に交互に配置された
回転盤と、この回転盤の回転軸に固定され、前記耐圧容
器外を流れる地下流水により回転可能に配置される羽根
車とを備え、前記光検出器は前記第2の光ファイバから
の間欠的な光信号から前記地下流水の流速を測定するこ
とを特徴とする孔内流速測定装置が得られる。
According to the present invention, there is provided a first optical fiber for guiding light from a light source into a pressure vessel arranged in a borehole, and an output from one end of this first optical fiber. A first lens disposed in the pressure resistant container so as to expand the reflected light into parallel rays, and the pressure resistant container so as to guide the parallel light emitted from the first lens to the outside of the pressure resistant container. Of the pressure-resistant container so that the parallel light guided to the outside of the pressure-resistant container through the light-transmitting window is guided again into the pressure-resistant container through the light-transmitting window. A reflecting mirror arranged outside the container, and a second mirror arranged inside the pressure resistant container so as to receive and focus the parallel light guided by the reflecting mirror into the pressure resistant container.
Lens, a second optical fiber that receives the light converged by the second lens and guides the received light to a photodetector, and the first lens to the second optical fiber outside the pressure vessel. A turntable which is rotatably arranged across the optical path leading to the lens and in which light-transmitting parts and light-shielding parts are alternately arranged in the direction of rotation, and a basement which is fixed to the rotary shaft of the turntable and flows outside the pressure vessel. An impeller rotatably arranged by running water, wherein the photodetector measures the flow velocity of the groundwater downstream from an intermittent optical signal from the second optical fiber. The device is obtained.

【0007】なお、前記光透過窓は前記耐圧容器の底壁
部に設けられ、前記反射鏡、前記回転盤及び前記羽根車
は前記耐圧容器の下部に連設された筒状容器内に収納さ
れている。
The light transmission window is provided on the bottom wall of the pressure resistant container, and the reflecting mirror, the rotary disk and the impeller are housed in a cylindrical container connected to the lower part of the pressure resistant container. ing.

【0008】また、前記光検出器は、前記間欠的な光信
号を電気的なパルス状信号に変換する光電変換部と、前
記パルス状信号のレベルをあらかじめ定められた基準電
圧レベルと比較して、前記パルス状信号のレベルが前記
基準電圧レベルより高い時に信号を出力する比較部と、
該比較部からの信号をカウントするカウンタと、あらか
じめ定められた周期で前記カウンタの計数値をラッチす
るラッチ回路と、該ラッチ回路の出力を表示する表示部
とを含む。
The photodetector compares the level of the pulsed signal with a predetermined reference voltage level, and a photoelectric conversion unit for converting the intermittent optical signal into an electrical pulsed signal. A comparator for outputting a signal when the level of the pulsed signal is higher than the reference voltage level,
The counter includes a counter that counts the signal from the comparison unit, a latch circuit that latches the count value of the counter at a predetermined cycle, and a display unit that displays the output of the latch circuit.

【0009】[0009]

【作用】上記の孔内流速測定装置によれば、高温高圧下
における流体の流速を羽根車の回転に変換し、この回転
を透光部と遮光部とが回転方向に交互に配置された回転
盤に伝達し、この回転盤により、第1の光ファイバの一
端部から前記第2の光ファイバの一端部に至る光路を断
続し、地上の光検出器により光の断続変化を検出するこ
とにより、高温岩体発電に使用されるボーリング孔内部
における高温流体の速度測定が可能となる。
According to the above hole flow velocity measuring device, the flow velocity of the fluid under high temperature and high pressure is converted into the rotation of the impeller, and this rotation is rotated by the light transmitting portion and the light shielding portion arranged alternately in the rotation direction. By transmitting to the board, by this rotating disk, the optical path from the one end of the first optical fiber to the one end of the second optical fiber is interrupted, and the intermittent change of light is detected by the photodetector on the ground. , It is possible to measure the velocity of high temperature fluid inside the borehole used for hot rock power generation.

【0010】[0010]

【実施例】次に、本発明の一実施例を図面を参照して詳
細に説明する。図1は本発明の孔内流速測定装置の全体
構成を示す図である。地上に配置されたレーザ光源11
から第1光ファイバ12内へレーザ光を入射させ、ボー
リング孔13内に配置された流速検出部14にレーザ光
を供給する。流速検出部14ではレーザ光は後述するよ
うに、流速に比例して断続変調され、第2光ファイバ1
5により地上の光検出器16に導かれる。光検出器16
は、後述するように、断続変調されたレーザ光から流速
を判定する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, one embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing the overall configuration of the in-hole flow velocity measuring device of the present invention. Laser light source 11 placed on the ground
The laser light is made incident on the first optical fiber 12 from the above, and the laser light is supplied to the flow velocity detection unit 14 arranged in the boring hole 13. In the flow velocity detector 14, the laser light is intermittently modulated in proportion to the flow velocity, as will be described later, and the second optical fiber 1
5 is guided to the photodetector 16 on the ground. Photo detector 16
Determines the flow velocity from the intermittently modulated laser light, as will be described later.

【0011】図2はボーリング孔内に配置された流速検
出部14の構成を示す断面図である。流速検出部14は
円筒状の容器21内に収納されている。容器21の上部
は密閉された耐圧容器22を含んでいる。耐圧容器22
内には第1光ファイバ12と第2光ファイバ15の端部
が収納されている。これら第1、第2光ファイバ12、
15の一端部23、24にはそれぞれ、第1、第2レン
ズ25、26が結合されている。第1レンズ25は第1
光ファイバ12から出射されるレーザ光を平行光に拡大
し、耐圧容器22の底壁27に設けられたガラス窓28
を通して耐圧容器22の外部に導出する。
FIG. 2 is a sectional view showing the structure of the flow velocity detecting section 14 arranged in the bore hole. The flow velocity detector 14 is housed in a cylindrical container 21. The upper part of the container 21 includes a closed pressure-resistant container 22. Pressure container 22
The ends of the first optical fiber 12 and the second optical fiber 15 are housed therein. These first and second optical fibers 12,
First and second lenses 25 and 26 are coupled to the one ends 23 and 24 of the lens 15, respectively. The first lens 25 is the first
The laser light emitted from the optical fiber 12 is expanded into parallel light, and the glass window 28 provided on the bottom wall 27 of the pressure-resistant container 22.
Through the pressure-resistant container 22.

【0012】耐圧容器22の下部に連設されている容器
21内には、ガラス窓28の直下に反射鏡30が配置さ
れている。この反射鏡30は、耐圧容器22の外部に導
出された平行光29を折り返して再びガラス窓28を通
して耐圧容器22内に導入するものである。耐圧容器2
2内部に導入された平行光29は、耐圧容器22内部に
配置された第2レンズ26に入射する。第2レンズ26
は、この平行光線を再び収束させて第2光ファイバ15
にその一端部24から入射させる。
A reflecting mirror 30 is arranged just below a glass window 28 in the container 21 which is continuously provided under the pressure-resistant container 22. The reflecting mirror 30 is adapted to turn back the parallel light 29 led out of the pressure resistant container 22 and introduce it again into the pressure resistant container 22 through the glass window 28. Pressure container 2
The parallel light 29 introduced into the inside of the second lens 2 is incident on the second lens 26 disposed inside the pressure resistant container 22. Second lens 26
Refocuses the parallel rays to generate a second optical fiber 15
The light from one end 24 thereof.

【0013】耐圧容器22下部の容器21内にはまた、
耐圧容器22の底壁27と容器21の下端に設けられた
軸受け板31との間に回転可能に、かつ垂直方向に延長
された回転軸32が設けられている。この回転軸32に
は、耐圧容器22直下の容器21内で回転可能なスリッ
ト付円盤33が固定されている。スリット付円盤33
は、その一部が耐圧容器22の底壁27と反射鏡30と
の間の空間にあって、第1レンズ25から第2レンズ2
6に至る平行光線29の光路を横切って回転するように
配置されている。そして、スリット付円盤33の平行光
線を横切って回転する部分には図示しないが、円周方向
に一定間隔をおいてスリットが形成されている。
In the container 21 below the pressure resistant container 22,
A rotary shaft 32 extending rotatably and vertically is provided between a bottom wall 27 of the pressure-resistant container 22 and a bearing plate 31 provided at the lower end of the container 21. A disk 33 with a slit that is rotatable in the container 21 immediately below the pressure resistant container 22 is fixed to the rotary shaft 32. Disc with slit 33
Is partially present in the space between the bottom wall 27 of the pressure resistant container 22 and the reflecting mirror 30, and the first lens 25 to the second lens 2
It is arranged so as to rotate across the optical path of the collimated light ray 29 leading to 6. Although not shown, slits are formed in the portion of the disc 33 with slits that rotates across the parallel rays at regular intervals in the circumferential direction.

【0014】回転軸32の下部にはまた、地下流水によ
り回転可能に配置されるプロペラ34が固定されてい
る。地下流水は矢印35で示すように、容器21の下端
から流入し、耐圧容器22より下の容器21の周壁に形
成された透孔36から容器21外へ流出する。この地下
流水35によりプロペラ34が回転し、この回転は回転
軸32を介してスリット付円盤33に伝達される。スリ
ット付円盤33の回転により、第1、第2レンズ27、
28間を通過する平行光線29を断続変調する。すなわ
ち、スリット付円盤33が平行光線29の光路を横切る
とき、スリット付円盤33に形成されたスリット(図示
せず)部では平行光線29を通過させ、隣接するスリッ
ト間では平行光線を遮断する。プロペラ34の単位時間
当たりの回転数は地下流水35の流速に比例して増減す
るため、スリット付円盤33の単位時間当たりの回転数
も地下流水34の流速に比例して増減する。したがっ
て、このスリット付円盤33により断続される平行光線
の単位時間当たりの断続回数は地下流水34の流速に比
例して増減する。
A propeller 34 rotatably arranged by groundwater is fixed to the lower part of the rotary shaft 32. As shown by the arrow 35, the groundwater flows in from the lower end of the container 21 and flows out of the container 21 through the through holes 36 formed in the peripheral wall of the container 21 below the pressure resistant container 22. The propeller 34 is rotated by the groundwater 35, and this rotation is transmitted to the slitted disk 33 via the rotary shaft 32. By rotating the disk 33 with slits, the first and second lenses 27,
The parallel light ray 29 passing between 28 is intermittently modulated. That is, when the disk 33 with slits crosses the optical path of the parallel light rays 29, the parallel light rays 29 pass through the slits (not shown) formed in the disk 33 with slits, and the parallel light rays are blocked between adjacent slits. Since the number of revolutions of the propeller 34 per unit time increases or decreases in proportion to the flow velocity of the groundwater 35, the number of revolutions of the disk 33 with slits also increases or decreases in proportion to the velocity of the groundwater 34. Therefore, the number of interruptions of the parallel rays interrupted by the disc 33 with slits per unit time increases or decreases in proportion to the flow velocity of the groundwater 34.

【0015】なお、スリット付円盤33に形成されたス
リット(図示せず)部は、第1レンズ25から反射鏡3
0に向かう平行光線29と反射鏡30から第2レンズ2
6に向かう平行光線29の2本の光路が存在するが、こ
れら2本の光路を同時に断続する構造でも、いずれか一
方のみを断続し他方は単に通過させる構造としてもよ
い。更に、平行光線29の断続はスリットでなくても、
光を透過する部分と遮断する部分とにより構成されてい
ればよい。
The slits (not shown) formed on the disc 33 with slits are provided from the first lens 25 to the reflecting mirror 3.
The second lens 2 from the parallel light ray 29 and the reflecting mirror 30 which go to 0
Although there are two optical paths of the parallel light rays 29 directed to 6, the structure may be such that these two optical paths are interrupted at the same time, or only one of them is interrupted and the other is simply passed. Furthermore, the interruption of the parallel rays 29 is not limited to the slit,
It may be composed of a portion that transmits light and a portion that blocks light.

【0016】この実施例においては、スリット付円盤3
3が耐圧容器22の外側に設けられており、耐圧容器2
2内の平行光線29がガラス窓28を通して外部のスリ
ット付円盤33に導かれるため、構造が簡単となり、高
い圧力の地下流水35が耐圧容器22内に侵入する恐れ
がないという利点がある。
In this embodiment, the disk with slit 3
3 is provided outside the pressure resistant container 22, and the pressure resistant container 2
Since the parallel rays 29 in 2 are guided to the external disk 33 with slits through the glass window 28, there is an advantage that the structure is simplified and there is no possibility that high pressure groundwater 35 will enter the pressure vessel 22.

【0017】図3は、図1に示される地上に設けられる
光検出器16の構成を示すブロック図である。第2光フ
ァイバ15から得られた断続変調されたレーザ光はアバ
ランシェ・フォトトランジスタ等の光電変換素子51に
入射し、電気信号に変換される。この信号は断続変調さ
れたレーザ光に対応した電気信号で、増幅器52により
増幅されて比較回路53に供給される。比較回路53に
は基準電圧源54から基準電圧が供給され、この基準電
圧と増幅器52の出力とを比較する。比較回路53は、
増幅器52の出力が基準電圧より大きい場合にはハイレ
ベル信号を出力し、増幅器52の出力が基準電圧より小
さい場合にはローレベル信号を出力することにより、成
形されたパルス状信号が得られる。
FIG. 3 is a block diagram showing the configuration of the photodetector 16 provided on the ground shown in FIG. The intermittently modulated laser light obtained from the second optical fiber 15 enters a photoelectric conversion element 51 such as an avalanche phototransistor and is converted into an electric signal. This signal is an electric signal corresponding to the intermittently modulated laser light, amplified by the amplifier 52, and supplied to the comparison circuit 53. A reference voltage is supplied from the reference voltage source 54 to the comparison circuit 53, and this reference voltage is compared with the output of the amplifier 52. The comparison circuit 53
A shaped pulse signal is obtained by outputting a high level signal when the output of the amplifier 52 is larger than the reference voltage and outputting a low level signal when the output of the amplifier 52 is smaller than the reference voltage.

【0018】このパルス状信号はカウンタ回路55に供
給されて計数される。カウンタ回路55の出力は計数値
を示すバイナリ信号で、ラッチ回路56に供給される。
カウンタ回路55及びラッチ回路56にはタイマ回路5
7から一定周期のクロックパルスが供給され、各周期の
時間内におけるカウンタ回路55によるパルス状信号の
計数値がラッチ回路56にラッチされる。ラッチ回路5
6にラッチされたパルス状信号の計数値はD/Aコンバ
ータ58に供給されてアナログ信号に変換され、メータ
等の表示器59に表示される。この結果、表示器59に
は、タイマ回路57により定められる一定周期毎に表示
が更新されるため、地下流水の流速に比例した計数値が
順次表示されることになる。
This pulsed signal is supplied to the counter circuit 55 and counted. The output of the counter circuit 55 is a binary signal indicating the count value and is supplied to the latch circuit 56.
The timer circuit 5 is provided in the counter circuit 55 and the latch circuit 56.
7, a clock pulse of a constant cycle is supplied, and the count value of the pulsed signal by the counter circuit 55 within the time of each cycle is latched by the latch circuit 56. Latch circuit 5
The count value of the pulsed signal latched by 6 is supplied to the D / A converter 58, converted into an analog signal, and displayed on the display 59 such as a meter. As a result, the display is updated on the display unit 59 at regular intervals determined by the timer circuit 57, so that the count value proportional to the groundwater flow velocity is sequentially displayed.

【0019】なお、図3に示した光検出器の構成は一例
であり、他の周知の技術を利用して変更が可能であるこ
とは言うまでもない。
It is needless to say that the configuration of the photodetector shown in FIG. 3 is an example and can be changed by using other well-known techniques.

【0020】[0020]

【発明の効果】本発明によれば、地下流水中に配置され
たプロペラにより、水流速度を回転速度に変換し、更に
これを光の断続変調信号として光ファイバにより取り出
すことにより、深いボーリング孔内のように高圧下にお
ける高温流体の中でも高精度での流水速度の測定が可能
となった。
According to the present invention, a propeller placed in the groundwater downstream converts a water flow velocity into a rotation velocity, which is then taken out as an intermittent modulation signal of light by an optical fiber, whereby a deep bore hole is formed. As described above, it became possible to measure the water flow velocity with high accuracy even in a high temperature fluid under high pressure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の孔内流速測定装置の全体構成を示す図
である。
FIG. 1 is a diagram showing an overall configuration of an in-hole flow velocity measuring device of the present invention.

【図2】図1に示された流速検出部の構成を示す断面図
である。
FIG. 2 is a cross-sectional view showing a configuration of a flow velocity detector shown in FIG.

【図3】図1に示された光検出器の構成を示すブロック
図である。
FIG. 3 is a block diagram showing a configuration of the photodetector shown in FIG.

【符号の説明】[Explanation of symbols]

21 容器 22 耐圧容器 23 第1光ファイバの一端部 24 第2光ファイバの一端部 27 底壁 29 平行光線 31 軸受け板 32 回転軸 35 地下流水 36 透孔 21 Container 22 Pressure Resistant Container 23 One End of First Optical Fiber 24 One End of Second Optical Fiber 27 Bottom Wall 29 Parallel Rays 31 Bearing Plate 32 Rotating Shaft 35 Groundwater 36 Water Through Hole

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光源からの光をボーリング孔内に配置さ
れる耐圧容器内に導く第1の光ファイバと、この第1の
光ファイバの一端部から出射される光を平行光線に拡大
するように前記耐圧容器内に配置された第1のレンズ
と、この第1のレンズから出射される平行光を前記耐圧
容器の外側に導くように、前記耐圧容器の壁部に設けら
れた光透過窓と、この光透過窓を介して前記耐圧容器の
外側に導かれた平行光を再び前記光透過窓を介して前記
耐圧容器内に導くように、前記耐圧容器の外側に配置さ
れた反射鏡と、この反射鏡により前記耐圧容器内に導か
れた前記平行光を受光して収束させるように前記耐圧容
器内に配置された第2のレンズと、この第2のレンズに
より収束された光を受光し、受光した光を光検出器に導
く第2の光ファイバと、前記耐圧容器の外側において前
記第1のレンズから前記第2のレンズに至る光路を横切
って回転可能に配置され、透光部と遮光部とが回転方向
に交互に配置された回転盤と、この回転盤の回転軸に固
定され、前記耐圧容器外を流れる地下流水により回転可
能に配置される羽根車とを備え、前記光検出器は前記第
2の光ファイバからの間欠的な光信号から前記地下流水
の流速を測定することを特徴とする孔内流速測定装置。
1. A first optical fiber that guides light from a light source into a pressure-resistant container disposed in a borehole, and light emitted from one end of the first optical fiber is expanded into parallel rays. A first lens disposed inside the pressure resistant container, and a light transmission window provided on a wall portion of the pressure resistant container so as to guide parallel light emitted from the first lens to the outside of the pressure resistant container. And a reflecting mirror arranged outside the pressure resistant container so that the parallel light guided to the outside of the pressure resistant container through the light transparent window is guided again into the pressure resistant container through the light transparent window. , A second lens arranged in the pressure-resistant container so as to receive and converge the parallel light guided into the pressure-resistant container by the reflecting mirror, and receive the light converged by the second lens And a second optical fiber that guides the received light to the photodetector A turntable that is rotatably disposed outside the pressure vessel across the optical path from the first lens to the second lens and in which light-transmitting portions and light-shielding portions are alternately arranged in the rotation direction; An impeller fixed to the rotating shaft of the rotating disk and rotatably arranged by groundwater flowing outside the pressure vessel, wherein the photodetector is provided with an intermittent optical signal from the second optical fiber. An in-hole flow velocity measuring device for measuring the flow velocity of the groundwater.
【請求項2】 請求項1記載の孔内流速測定装置におい
て、前記光透過窓は前記耐圧容器の底壁部に設けられ、
前記反射鏡、前記回転盤及び前記羽根車は前記耐圧容器
の下部に連設された筒状容器内に収納されていることを
特徴とする孔内流速測定装置。
2. The hole velocity measuring device according to claim 1, wherein the light transmission window is provided in a bottom wall portion of the pressure resistant container,
The in-hole flow velocity measuring device, wherein the reflecting mirror, the rotary disk, and the impeller are housed in a cylindrical container that is continuously provided below the pressure-resistant container.
【請求項3】 請求項1あるいは2記載の孔内流速測定
装置において、前記光検出器は、前記間欠的な光信号を
電気的なパルス状信号に変換する光電変換部と、前記パ
ルス状信号のレベルをあらかじめ定められた基準電圧レ
ベルと比較して、前記パルス状信号のレベルが前記基準
電圧レベルより高い時に信号を出力する比較部と、該比
較部からの信号をカウントするカウンタと、あらかじめ
定められた周期で前記カウンタの計数値をラッチするラ
ッチ回路と、該ラッチ回路の出力を表示する表示部とを
含むことを特徴とする孔内流速測定装置。
3. The hole velocity measuring device according to claim 1, wherein the photodetector converts the intermittent optical signal into an electric pulse signal, and the pulse signal. Of the pulsed signal is compared with a predetermined reference voltage level to output a signal when the level of the pulsed signal is higher than the reference voltage level, and a counter that counts the signal from the comparison unit, An in-hole flow velocity measuring device comprising: a latch circuit that latches the count value of the counter at a predetermined cycle; and a display unit that displays the output of the latch circuit.
JP30853294A 1994-12-13 1994-12-13 In-hole flow velocity measuring device Expired - Fee Related JP3396867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30853294A JP3396867B2 (en) 1994-12-13 1994-12-13 In-hole flow velocity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30853294A JP3396867B2 (en) 1994-12-13 1994-12-13 In-hole flow velocity measuring device

Publications (2)

Publication Number Publication Date
JPH08165879A true JPH08165879A (en) 1996-06-25
JP3396867B2 JP3396867B2 (en) 2003-04-14

Family

ID=17982171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30853294A Expired - Fee Related JP3396867B2 (en) 1994-12-13 1994-12-13 In-hole flow velocity measuring device

Country Status (1)

Country Link
JP (1) JP3396867B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020789A2 (en) * 2002-08-30 2004-03-11 Sensor Highway Limited Method and apparatus for logging a well using a fiber optic line and sensors
GB2409871A (en) * 2002-08-30 2005-07-13 Schlumberger Holdings Optical reflective device for a well
EP1739396A1 (en) * 2005-06-29 2007-01-03 Services Petroliers Schlumberger Turbine flow meter for measuring flow velocity and direction
CN111492207A (en) * 2017-12-18 2020-08-04 朴准永 Flow rate measuring device and flow rate measuring method using the same
CN113134146A (en) * 2021-05-27 2021-07-20 哈尔滨医科大学 Anesthesia loop gas monitoring device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020789A2 (en) * 2002-08-30 2004-03-11 Sensor Highway Limited Method and apparatus for logging a well using a fiber optic line and sensors
WO2004020789A3 (en) * 2002-08-30 2004-07-01 Sensor Highway Ltd Method and apparatus for logging a well using a fiber optic line and sensors
GB2409871A (en) * 2002-08-30 2005-07-13 Schlumberger Holdings Optical reflective device for a well
GB2409871B (en) * 2002-08-30 2005-11-09 Schlumberger Holdings Optical fibre conveyance, telemetry, and/or actuation
US7140435B2 (en) 2002-08-30 2006-11-28 Schlumberger Technology Corporation Optical fiber conveyance, telemetry, and/or actuation
US8074713B2 (en) 2002-08-30 2011-12-13 Schlumberger Technology Corporation Casing collar locator and method for locating casing collars
EP1739396A1 (en) * 2005-06-29 2007-01-03 Services Petroliers Schlumberger Turbine flow meter for measuring flow velocity and direction
WO2007000224A1 (en) * 2005-06-29 2007-01-04 Services Petroliers Schlumberger Turbine flow meter for measuring flow velocity and direction
JP2009508088A (en) * 2005-06-29 2009-02-26 シュランベルジェ、ホールディング、リミテッド Turbine flow meter for measuring flow velocity and flow direction
US8280637B2 (en) 2005-06-29 2012-10-02 Schlumberger Technology Corporation Device for measuring a fluid flow velocity and direction
CN111492207A (en) * 2017-12-18 2020-08-04 朴准永 Flow rate measuring device and flow rate measuring method using the same
CN113134146A (en) * 2021-05-27 2021-07-20 哈尔滨医科大学 Anesthesia loop gas monitoring device

Also Published As

Publication number Publication date
JP3396867B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
CN106568483B (en) Turbine optical sensor and turbine optical flowmeter based on same
CA2613176C (en) Turbine flow meter for measuring flow velocity and direction
JP3396867B2 (en) In-hole flow velocity measuring device
US4947692A (en) Apparatus for detecting positional changes in relation to a vertical reference direction in buildings or in building subsoil
CN104197967A (en) Double-ring coaxial optical fiber turbine flow meter and test method
Betta et al. A digital liquid level transducer based on optical fiber
Snoek A selection of new developments in multiphase flow measurement techniques
US4428243A (en) Flowmeters
CN204501931U (en) A kind of transfusion system detection alarm circuit and system
JP3396866B2 (en) In-hole flow velocity measuring device
US5218346A (en) Low volume flow meter
CN214251123U (en) Non-magnetic flow metering device
GB2074316A (en) Opto-electric Transducer
CN107831331A (en) Rotary body detection means and system
JPH0755515A (en) Flow rate sensor
JPH071186B2 (en) Flow meter transmitter
JP3053442B2 (en) Pilot rotation detector for water meter
CN203925466U (en) Probe-type gas holdup meter
JPS601564B2 (en) transducer
US3251227A (en) Method for measuring mass and mass flow
Pratt An opto-electronic torquemeter for engine control
RU55968U1 (en) WATER METER WITH OPTICAL INFO REMOVAL
JP2005077402A (en) Flow sensor and flow rate measuring device
KR20000066245A (en) Apparatus for counting rotation times of numeric wheel of metering system
CN221037749U (en) Calibration device of photovoltaic panel temperature measurement system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021225

LAPS Cancellation because of no payment of annual fees