JPH08163041A - Special light communication equipment - Google Patents
Special light communication equipmentInfo
- Publication number
- JPH08163041A JPH08163041A JP6329691A JP32969194A JPH08163041A JP H08163041 A JPH08163041 A JP H08163041A JP 6329691 A JP6329691 A JP 6329691A JP 32969194 A JP32969194 A JP 32969194A JP H08163041 A JPH08163041 A JP H08163041A
- Authority
- JP
- Japan
- Prior art keywords
- angle
- light
- optical
- communication device
- projection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Mechanical Optical Scanning Systems (AREA)
- Optical Communication System (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光走査機能又は光軸ず
れ補正機能を備え、空間を伝送路とし光ビームにより送
受信を行う空間光通信装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spatial optical communication device having an optical scanning function or an optical axis shift correcting function and transmitting / receiving with a light beam using a space as a transmission path.
【0002】[0002]
【従来の技術】従来から、図5に示すような光走査機能
を備えた空間光通信装置が知られている。情報を含む発
光素子1からの出射光を、正のパワーを有するレンズ群
2により、細径のほぼ平行な光ビームにし、この光ビー
ムの光軸O1に垂直な軸を回転軸とした回転ミラー3によ
り反射し、負のパワーを持つレンズ群4と正のパワーを
持つレンズ群5とで構成されるビームエクスパンダ6を
介して装置から外方へ投光する。2. Description of the Related Art Conventionally, a spatial optical communication device having an optical scanning function as shown in FIG. 5 has been known. The light emitted from the light emitting element 1 containing information is made into a small-diameter, substantially parallel light beam by the lens group 2 having a positive power, and the rotary mirror having the axis perpendicular to the optical axis O1 of this light beam as the rotation axis. It is reflected by 3 and is emitted from the apparatus to the outside through a beam expander 6 which is composed of a lens group 4 having a negative power and a lens group 5 having a positive power.
【0003】走査信号発生部7は走査信号をミラー駆動
制御部8に送り、この信号に基づいて投光角可変部9に
設置された回転ミラー3の角度制御を行い、対向する相
手側装置で最適な受光が行えるように一次元光走査を行
う。The scanning signal generator 7 sends a scanning signal to the mirror drive controller 8 and controls the angle of the rotary mirror 3 installed in the projection angle varying unit 9 based on this signal, so that the opposing device on the opposite side can control it. One-dimensional optical scanning is performed so that optimum light reception can be performed.
【0004】図6は二次元走査機能を有する空間光通信
装置の斜視図であり、図5と同一の符号は同一の部材を
示している。発光素子1からの出射光はレンズ群2を通
り、互いに直交する第1の回転ミラー10aと第2の回
転ミラー10bにより反射され、ビームエクスパンダ6
を通って相手側装置へ投光される。このとき、第1の回
転ミラー10a、第2の回転ミラー10bはそれぞれモ
ータ11a、11bの駆動により投光角を可変して、相
手側装置で最適受光状態となるよう走査される。FIG. 6 is a perspective view of a spatial light communication device having a two-dimensional scanning function, and the same reference numerals as those in FIG. 5 denote the same members. Light emitted from the light emitting element 1 passes through the lens group 2 and is reflected by the first rotating mirror 10a and the second rotating mirror 10b which are orthogonal to each other, and the beam expander 6
The light is emitted to the other device through the light. At this time, the first rotary mirror 10a and the second rotary mirror 10b change the light projection angles by driving the motors 11a and 11b, respectively, and are scanned so that the other device has the optimum light receiving state.
【0005】図7、図8は対向設置した装置間で光通信
を行う双方向光通信装置の従来例の構成図、斜視図を示
し、上述と同様の二次元走査機能を有する。図7におい
て、受光素子12からの送信光はレンズ群13を通り送
受信光分離素子14で反射され、送受光角可変部15に
入射し、図8の第1の回転ミラー16a、第2の回転ミ
ラー16bで反射され、レンズ群17、18から成るビ
ームエクスパンダ19を通って相手側装置へ投光され
る。このとき、第1の回転ミラー16a、第2の回転ミ
ラー16bは、それぞれモータ20a、20bを駆動に
より投光角が可変される。FIG. 7 and FIG. 8 show a configuration diagram and a perspective view of a conventional example of a bidirectional optical communication device for performing optical communication between devices installed opposite to each other, and have the same two-dimensional scanning function as described above. In FIG. 7, the transmission light from the light receiving element 12 passes through the lens group 13, is reflected by the transmission / reception light separation element 14, enters the transmission / reception angle varying portion 15, and is rotated by the first rotating mirror 16a and the second rotating mirror 16a in FIG. The light is reflected by the mirror 16b, passes through the beam expander 19 including the lens groups 17 and 18, and is projected to the partner device. At this time, the projection angles of the first rotary mirror 16a and the second rotary mirror 16b are changed by driving the motors 20a and 20b, respectively.
【0006】相手側装置から伝送される受信光はビーム
エクスパンダ19に入射し、送受光角可変部15で反射
し、送受信光分離素子14、受信光分岐ミラー21、レ
ンズ群22を通って本信号検出用受光素子23に受光さ
れる。また、受信光分岐ミラー21で反射した一部の光
束は、レンズ群24を通り位置検出用受光素子25に受
光されて光軸ずれ信号となって信号制御部26に入力さ
れ、信号制御部26はミラー駆動用制御部27を介して
送受光角可変部15のモータ20a、20bを駆動し、
光軸ずれの補正を行う。Received light transmitted from the other device enters the beam expander 19, is reflected by the transmission / reception angle variable unit 15, passes through the transmission / reception light separation element 14, the reception light splitting mirror 21, and the lens group 22 to form a main beam. The light is received by the light receiving element 23 for signal detection. Further, a part of the light flux reflected by the reception light splitting mirror 21 passes through the lens group 24 and is received by the position detection light receiving element 25 to be an optical axis deviation signal, which is input to the signal control unit 26 and the signal control unit 26. Drives the motors 20a and 20b of the variable angle transmitter / receiver 15 via the mirror drive controller 27,
Correct the optical axis shift.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、上述の
従来例において光ビームの走査を行う場合に、図5に示
すように回転ミラー3を傾けてゆくと、投光光軸O2がビ
ームエクスパンダ6の光学系の光軸O1から外れ、投光角
0°のときの投光ビームL1から投光角ωのときの投光ビ
ームL2に変化して図5の斜線で示す部分だけとなる。こ
の結果、図9の斜線部に示すように、相手側装置Aの受
信地点における投光ビームの拡がり範囲が出射角0°の
ときに比べて狭くなって所謂ビームのけられが発生し、
光走査制御誤差や装置の揺れの程度次第では、投光ビー
ムの広がり範囲が相手側装置から外れてしまい、受光不
能になるという問題を生ずる。However, in the case of scanning the light beam in the above-mentioned conventional example, when the rotary mirror 3 is tilted as shown in FIG. 5, the projection optical axis O2 is changed to the beam expander 6. Deviating from the optical axis O1 of the optical system of No. 2 and changing from the projection beam L1 when the projection angle is 0 ° to the projection beam L2 when the projection angle is ω, only the portion shown by the diagonal lines in FIG. As a result, as shown by the hatched portion in FIG. 9, the spread range of the projected beam at the reception point of the partner device A becomes narrower than when the emission angle is 0 °, so-called beam eclipse occurs,
Depending on the optical scanning control error and the degree of shake of the device, the spread range of the projected beam may deviate from the other device, resulting in a problem that it becomes impossible to receive light.
【0008】このビームのけられの問題を解決するため
に、ビームエクスパンダ6を大きくすると、装置の大型
化・重量増加・コストアップという問題が生じ、更にビ
ームのけられを少なくする目的で、回転ミラー3の振れ
角を小さくしてビームエクスパンダ6のアフォーカル比
を1:1に近付けるようにしても、同様に回転ミラー3
及び投光光学系のレンズ群2が大型化し、重量の増大や
コストアップという問題が生ずる。If the beam expander 6 is enlarged in order to solve the beam eclipse problem, problems such as an increase in the size, weight and cost of the device occur, and the beam eclipse is further reduced. Even if the deflection angle of the rotating mirror 3 is reduced to bring the afocal ratio of the beam expander 6 close to 1: 1, the rotating mirror 3 is also similarly rotated.
In addition, the lens group 2 of the projection optical system becomes large in size, which causes a problem of weight increase and cost increase.
【0009】また、図7、図8に示す従来例でも同様の
問題がある。Further, the conventional examples shown in FIGS. 7 and 8 have the same problem.
【0010】本発明の第1の目的は、上述の問題を解消
し、投光角可変部以降の光学系における光ビームのけら
れを軽減した空間光通信装置を提供することにある。A first object of the present invention is to solve the above-mentioned problems and to provide a spatial optical communication device in which the eclipse of the light beam in the optical system after the projection angle varying unit is reduced.
【0011】本発明の第2の目的は、正確な光ビームの
位置合わせを行って、双方向通信が可能な空間光通信装
置を提供することにある。A second object of the present invention is to provide a spatial optical communication device capable of two-way communication by accurately aligning a light beam.
【0012】[0012]
【課題を解決するための手段】上記目的を達成するため
の第1発明に係る空間光通信装置は、投光角可変部と、
該投光角可変部の出射光側に配置した拡大光学系とを有
する投光手段を備え、前記投光角可変部は投光角を可変
とし、該投光角の角度変化量に応じて光軸方向に沿って
前記投光角可変部の所定量の移動を可能としたことを特
徴とする。A spatial optical communication device according to a first aspect of the present invention for achieving the above object comprises a projection angle varying section,
Projection means having a magnifying optical system arranged on the outgoing light side of the projection angle variable section, wherein the projection angle variable section varies the projection angle, and the projection angle is variable according to the angle change amount of the projection angle. It is characterized in that the light projection angle varying unit can be moved by a predetermined amount along the optical axis direction.
【0013】また、第2発明に係る空間光通信装置は、
投光光学系と本信号検出光学系と角度誤差検出手段と送
受光角可変光学系と送受共通光学系とを有し、双方向に
通信を行う空間光通信装置において、前記投光光学系と
本信号検出光学系と送受光角可変光学系の3つの光学系
の光軸を送受光角可変部において一致させ、前記送受光
角可変部の相手側装置への出入射光側に前記送受共通光
学系を配置し、前記角度誤差検出手段の出力により前記
送受光角可変部は送受光角を可変とし、該送受光角の角
度変化量に応じて光軸に沿って前記送受光角可変部の所
定量の移動を可能としたことを特徴とする。The spatial optical communication device according to the second invention is
A spatial optical communication device having a light projecting optical system, a main signal detecting optical system, an angle error detecting means, a variable light transmitting / receiving angle optical system, and a common optical transmitting / receiving optical system, wherein the light projecting optical system and the light projecting optical system are provided. The optical axes of the three optical systems of the present signal detection optical system and the transmission / reception angle variable optical system are made to coincide with each other in the transmission / reception angle variable section, and the common optical transmission / reception is provided on the outgoing / incident light side of the partner apparatus of the transmission / reception angle variable section. The transmission / reception angle variable unit changes the transmission / reception angle according to the output of the angle error detection means, and the transmission / reception angle variable unit of the transmission / reception angle variable unit is arranged along the optical axis according to the angle change amount of the transmission / reception angle. It is characterized in that a predetermined amount of movement is possible.
【0014】[0014]
【作用】上述の構成を有する第1発明の空間光通信装置
は、投光手段からの光ビームを投光角可変部を経由する
ことにより、光ビームの投光角を変化させ、この変化量
に応じて光軸方向に沿って投光角可変部を所定量移動さ
せて、光ビームを拡大光学系を介して相手側装置へ投光
する。In the spatial optical communication device of the first invention having the above-mentioned structure, the projection angle of the light beam is changed by passing the light beam from the projection means through the projection angle variable section, and the amount of change. According to the above, the light projection angle varying unit is moved by a predetermined amount along the optical axis direction, and the light beam is projected to the partner device via the expansion optical system.
【0015】また、第2発明の空間光通信装置は、投光
光学系からの光ビームを送受光角可変部、送受共通光学
系を介して相手側装置へ投光し、相手側装置からの受信
光を送受共通光学系、送受光角可変部を介して本信号検
出手段に受光する際に、角度誤差検出手段による検出信
号に基づいて送受光角可変部において送受光の角度を変
化させ、この変化量に応じて光軸方向に沿って送受光角
可変部を所定量移動させて双方向通信光ビームの光軸の
位置合わせをする。Further, the spatial optical communication device of the second invention projects the light beam from the light projecting optical system to the partner device through the sending / receiving angle varying unit and the common light receiving / transmitting optical system, and the partner device sends the light beam. When the received light is received by the signal detecting means via the common optical system for transmitting and receiving and the variable angle section for transmitting and receiving light, the angle of transmitting and receiving angle is changed in the variable angle section for transmitting and receiving light based on the detection signal by the angle error detecting means, According to this change amount, the transmitting / receiving angle variable portion is moved by a predetermined amount along the optical axis direction to align the optical axis of the bidirectional communication light beam.
【0016】[0016]
【実施例】本発明を図1〜図4に図示の実施例に基づい
て詳細に説明する。図1は第1の実施例の構成図を示
し、発光素子30から出射するレーザー光束の光軸O3上
に、正パワーを有するレンズ群31、回転ミラー32が
配列され、回転ミラー32は光軸O3上に垂直な軸を回転
軸として回転するだけでなく、レンズ群31の方向へ光
軸O3に沿って平行移動できるようになっている。この回
転ミラー32の反射方向の光路O4上に、負パワーを有す
るレンズ群33と正パワーを有するレンズ群34から成
るビームエクスパンダ35が配置されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the embodiments shown in FIGS. FIG. 1 is a block diagram of the first embodiment, in which a lens group 31 having positive power and a rotating mirror 32 are arranged on an optical axis O3 of a laser beam emitted from a light emitting element 30, and the rotating mirror 32 has an optical axis. Not only can it rotate about an axis perpendicular to O3 as a rotation axis, but it can also move parallel to the direction of the lens group 31 along the optical axis O3. A beam expander 35 including a lens group 33 having negative power and a lens group 34 having positive power is arranged on the optical path O4 in the reflection direction of the rotating mirror 32.
【0017】回転ミラー32と、回転ミラー32を駆動
する駆動手段とから投光角可変部36が形成され、投光
角可変部36にはミラー駆動用制御部37の出力が接続
され、ミラー駆動用制御部37には走査信号発生部38
の出力が接続されているA light projection angle varying section 36 is formed by the rotary mirror 32 and a driving means for driving the rotary mirror 32. The output of a mirror driving control section 37 is connected to the light projecting angle varying section 36 to drive the mirror. The scanning control unit 37 includes a scanning signal generation unit 38.
Output of is connected
【0018】発光素子30から出射された光ビームは、
レンズ群31によりほぼ平行光とされて投光角可変部3
6に入射し、その内部に設けられた回転ミラー32によ
り反射されて、ビームエクスパンダ35のレンズ群33
及びレンズ群34を介してほぼ平行光の光ビームL1とし
て相手側装置へ投光される。The light beam emitted from the light emitting element 30 is
The light projection angle changing unit 3 converts the light into substantially parallel light by the lens group 31.
6 and is reflected by a rotating mirror 32 provided therein, and a lens group 33 of a beam expander 35.
And, it is projected to the other device as a light beam L1 of substantially parallel light through the lens group 34.
【0019】例えば、レンズ群33の焦点距離を−40
mm、レンズ群34の焦点距離を160mm、レンズ群
33とレンズ群34の主点間隔を120mmとなる条件
で、ビームエクスパンダ35を構成すると、装置外部へ
の投光角1°は回転ミラー32側で4°に相当する。ま
た、回転ミラー32の振れ角1°は、回転ミラー32側
の光ビーム角度変化量で2°に相当する。従って、装置
外部への投光角をω、回転ミラー32の回転角をθとす
ると、次の式(1) なる関係がある。 ω=2θ・・・ (1)For example, the focal length of the lens group 33 is -40.
mm, the focal length of the lens group 34 is 160 mm, and the principal point distance between the lens group 33 and the lens group 34 is 120 mm. When the beam expander 35 is configured, a projection angle of 1 ° to the outside of the apparatus is 1 °. Corresponds to 4 ° on the side. Further, the deflection angle of 1 ° of the rotating mirror 32 corresponds to 2 ° in the change amount of the light beam angle on the rotating mirror 32 side. Therefore, when the projection angle to the outside of the device is ω and the rotation angle of the rotating mirror 32 is θ, the following equation (1) is established. ω = 2θ (1)
【0020】また、投光角0°のときの回転ミラー32
の回転中心位置からビームエクスパンダ35のレンズ群
33の主点位置までの距離をL、回転ミラー32の回転
中心の投光光学系側の光軸O3方向に沿った移動量をdと
すると、式(2) の関係がある。 d=L・ tan(4ω)・・・ (2)The rotating mirror 32 when the projection angle is 0 °
Let L be the distance from the rotation center position to the principal point position of the lens group 33 of the beam expander 35, and d be the amount of movement of the rotation center of the rotating mirror 32 along the optical axis O3 on the projection optical system side. There is a relationship of formula (2). d = L ・ tan (4ω) ・ ・ ・ (2)
【0021】従って、回転ミラー32をθだけ回転し、
dだけ光軸O3方向に沿って平行移動させれば、投光ビー
ムによるビームエクスパンダ35でのけられが最も少な
くなり、投光角ωのときの投光ビームL2が、図2に示す
ように相手側装置Aを上下左右ほぼ均等に照射するよう
にすることができる。例えば、図1において投光角ωを
1°にすれば、式(1) からミラー回転角θは2°とな
り、L=50mmとした場合に、式(2) からミラー移動
量dが3.5mmとなるようにすれば、投光ビームのけ
られを最小にすることができる。Therefore, the rotating mirror 32 is rotated by θ,
If the light beam is moved in parallel along the direction of the optical axis O3 by d, the beam expander 35 will have the least vignetting, and the projected beam L2 at the projected angle ω will be as shown in FIG. In addition, it is possible to irradiate the partner device A substantially evenly in the vertical and horizontal directions. For example, when the projection angle ω is 1 ° in FIG. 1, the mirror rotation angle θ is 2 ° from the formula (1), and when L = 50 mm, the mirror movement amount d is 3. If it is set to 5 mm, the eclipse of the projection beam can be minimized.
【0022】なお、相手側装置が移動して通信距離が変
化するような場合には、回転ミラー32の回転動作と連
動させて、図1に示すレンズ群31、レンズ群33、レ
ンズ群34の全体又は一部を光軸O3又はO4に沿って移動
させるような投光ビーム発散角可変動作を行って、投光
ビーム発散角を近距離では広く、遠距離では狭くするこ
とにより、相手側装置における受信光強度を安定化さ
せ、より高品質な受信信号を出力させるようにすること
ができる。When the other device moves and the communication distance changes, the lens group 31, the lens group 33, and the lens group 34 shown in FIG. By performing a variable operation of the projection beam divergence angle such that the whole or a part of the projection beam is moved along the optical axis O3 or O4, the projection beam divergence angle is widened at a short distance and narrowed at a long distance. It is possible to stabilize the received light intensity in and to output a higher quality received signal.
【0023】図3は第2の実施例の構成を示す斜視図で
あり、一次元走査機能を備えた第1の実施例に対し、こ
の第2の実施例は二次元走査機能を備えた空間光通信装
置である。ここで、投光角可変部39以外は第1の実施
例と同じであり、同一の符号は同一の部材を示してい
る。FIG. 3 is a perspective view showing the structure of the second embodiment. In contrast to the first embodiment having a one-dimensional scanning function, this second embodiment has a space having a two-dimensional scanning function. It is an optical communication device. Here, the parts other than the projection angle changing part 39 are the same as those in the first embodiment, and the same reference numerals indicate the same members.
【0024】発光素子30から出射する光束の光軸O5上
にレンズ群31が配置され、その前方に投光角可変部3
9が配置されている。この第2の実施例の投光角可変部
39には2枚の第1、第2の回転ミラー40a、40b
が設けられ、回転ミラー40a、40bの回転軸は互い
に直交している。The lens group 31 is arranged on the optical axis O5 of the light beam emitted from the light emitting element 30, and the projection angle varying section 3 is arranged in front of it.
9 are arranged. The projection angle varying unit 39 of the second embodiment has two first and second rotary mirrors 40a and 40b.
Is provided, and the rotation axes of the rotating mirrors 40a and 40b are orthogonal to each other.
【0025】第1、第2の回転ミラー40a、40bが
配置される装置内に、それぞれ固定台41a、41bが
設けられ、固定台41a、41b上にそれぞれモータ4
2a、42bが設けられている。モータ42a、42b
の回転軸にはそれぞれ摺動台43a、43bが設けられ
ており、モータ42a、42bが回転することにより、
それぞれ光軸O5、光軸O6方向に摺動台43a、43bが
平行移動するようになっている。Fixed units 41a and 41b are provided in the apparatus in which the first and second rotating mirrors 40a and 40b are arranged, and the motors 4 are provided on the fixed units 41a and 41b, respectively.
2a and 42b are provided. Motor 42a, 42b
The sliding shafts 43a and 43b are respectively provided on the rotating shafts of, and the rotation of the motors 42a and 42b causes
The slides 43a and 43b are adapted to move in parallel in the directions of the optical axis O5 and the optical axis O6, respectively.
【0026】更に、摺動台43a、43b上にはそれぞ
れモータ44a、44bが設けられ、モータ44a、4
4bの回転軸にそれぞれ第1の回転ミラー40a、第2
の回転ミラー40bが固定され、回転ミラー40a、4
0bをそれぞれY軸、X軸方向に回転させるようになっ
ている。そして、第2の回転ミラー40bの反射方向の
光軸O7上には、レンズ群33とレンズ群34から成るビ
ームエクスパンダ35が配置されている。Further, motors 44a and 44b are provided on the slide bases 43a and 43b, respectively.
The first rotating mirror 40a and the second rotating mirror 40a
Rotating mirror 40b is fixed, and rotating mirrors 40a, 4
0b is rotated in the Y-axis direction and the X-axis direction, respectively. A beam expander 35 including a lens group 33 and a lens group 34 is arranged on the optical axis O7 in the reflection direction of the second rotating mirror 40b.
【0027】発光素子30からのレーザー光は、レンズ
群31を介して投光角可変部39に入射し、第1の回転
ミラー40aと第2の回転ミラー40bを反射して、ビ
ームエクスパンダ35から相手側装置に投光される。The laser light from the light emitting element 30 is incident on the projection angle varying unit 39 through the lens group 31, is reflected by the first rotary mirror 40a and the second rotary mirror 40b, and is expanded by the beam expander 35. Is emitted from the other device.
【0028】いま、投光ビームの出射角が0°のとき、
第1の回転ミラー40aの光軸O5との交点と、第2の回
転ミラー40bの光軸O7との交点との間の距離を50m
m、第1の回転ミラー40aの光軸O5との交点とビーム
エクスパンダ35のレンズ群33の主点位置との間の距
離を50mmに設定すると、X軸方向に投光ビームを1
°走査する場合は、第1の実施例と同様に第1の回転ミ
ラー40aの回転角θを2°とし、第1の回転ミラー4
0aの移動量を3.5mmとすればよい。また、Y軸方
向に投光ビームを1°走査する場合は、第2の回転ミラ
ー40bの回転角θを2°とし、式(2) のLは100m
mとなるから、第2の回転ミラー40bの移動量を7m
mとすればよい。Now, when the emission angle of the projection beam is 0 °,
The distance between the intersection with the optical axis O5 of the first rotating mirror 40a and the intersection with the optical axis O7 of the second rotating mirror 40b is 50 m.
m, if the distance between the intersection of the optical axis O5 of the first rotating mirror 40a and the principal point position of the lens group 33 of the beam expander 35 is set to 50 mm, the projected beam is set to 1 in the X-axis direction.
In the case of the scanning, the rotation angle θ of the first rotating mirror 40a is set to 2 ° as in the first embodiment, and the first rotating mirror 4 is rotated.
The moving amount of 0a may be 3.5 mm. Further, when scanning the projection beam by 1 ° in the Y-axis direction, the rotation angle θ of the second rotating mirror 40b is set to 2 °, and L in the equation (2) is 100 m.
Therefore, the moving amount of the second rotating mirror 40b is 7 m.
It should be m.
【0029】従って、式(1) 、式(2) の関係を保持しな
がら、第1の回転ミラー40aと第2の回転ミラー40
bを駆動させるようにすれば、従来例のようなビームエ
クスパンダ35において生じたけられを減少させること
ができ、より広い二次元範囲での光走査を効率よく行う
ことが可能となる。Therefore, the first rotary mirror 40a and the second rotary mirror 40 are maintained while maintaining the relationship of the expressions (1) and (2).
By driving b, it is possible to reduce the eclipse generated in the beam expander 35 as in the conventional example, and it is possible to efficiently perform optical scanning in a wider two-dimensional range.
【0030】図4は第3の実施例の双方向空間光通信装
置の斜視図を示し、送受光角可変部に第2の実施例の投
光角可変部39の機構を採用している。レーザーダイオ
ードから成る発光素子45からの受信光の進行方向に、
正パワーのレンズ群46、ビームスプリッタから成る送
受信光分離素子47、第1の回転ミラー48a、第2の
回転ミラー48b等から成る送受信光角可変部49、負
パワーのレンズ群50と正パワーのレンズ群51から成
るビームエクスパンダ52が順次に配列されている。FIG. 4 is a perspective view of a bidirectional spatial optical communication apparatus according to the third embodiment, in which the mechanism of the projection angle varying section 39 of the second embodiment is adopted as the transmission / reception angle varying section. In the traveling direction of the received light from the light emitting element 45 composed of a laser diode,
A lens group 46 of positive power, a transmission / reception light splitting element 47 composed of a beam splitter, a transmission / reception light angle varying section 49 composed of a first rotating mirror 48a, a second rotating mirror 48b, etc., a lens group 50 of negative power and a positive power. A beam expander 52 including a lens group 51 is sequentially arranged.
【0031】送受光角可変部49において固定台53
a、53bが装置に固定され、固定台53a、53b上
にはそれぞれモータ54a、54bが設けられている。
モータ54a、54bの回転軸には摺動台55a、55
bが設けられ、モータ54a、54bが回転すると、摺
動台55a、55bはそれぞれ光軸O9、光軸O10 に平行
に移動するようになっている。摺動台55a、55b上
にはモータ56a、56bが設けられ、モータ56a、
56bの回転軸にそれぞれ第1の回転ミラー48a、第
2の回転ミラー48bが固定されており、それぞれY
軸、X軸方向に回転するようになっている。The fixed table 53 in the variable angle unit 49 for transmitting and receiving light
a and 53b are fixed to the apparatus, and motors 54a and 54b are provided on the fixed bases 53a and 53b, respectively.
The slides 55a, 55 are attached to the rotary shafts of the motors 54a, 54b.
b is provided, and when the motors 54a and 54b rotate, the slide bases 55a and 55b move in parallel with the optical axis O9 and the optical axis O10, respectively. Motors 56a and 56b are provided on the slides 55a and 55b, respectively.
The first rotating mirror 48a and the second rotating mirror 48b are fixed to the rotating shafts of 56b, respectively, and Y
It is designed to rotate in the axial and X-axis directions.
【0032】一方、相手側装置からの受信光の送受信光
分離素子47の通過方向の光軸O9上には、入射光の10
%を反射し90%を透過するハーフミラーから成る受信
光分岐ミラー57、正パワーのレンズ群58、本信号検
出用受光素子59が順次に配列され、受信光分岐ミラー
57の反射方向には、正パワーのレンズ群60、位置検
出用受光素子61が配置されている。位置検出用受光素
子61の出力は信号処理部62に接続されて角度誤差検
出手段が形成されており、信号処理部62の出力はミラ
ー駆動用制御部63を介して送受光角可変部49に接続
されている。On the other hand, on the optical axis O9 in the direction of passage of the transmitted / received light separation element 47 of the received light from the other device, the incident light 10
The receiving light splitting mirror 57, which is a half mirror that reflects% of light and transmits 90% of light, a lens group 58 of positive power, and a light receiving element 59 for detecting this signal, are sequentially arranged. A lens group 60 having a positive power and a light receiving element 61 for position detection are arranged. The output of the position detecting light receiving element 61 is connected to the signal processing unit 62 to form an angle error detecting means, and the output of the signal processing unit 62 is sent to the transmitting / receiving angle changing unit 49 via the mirror driving control unit 63. It is connected.
【0033】発光素子45から出射するレーザー光はレ
ンズ群46によりほぼ平行光となり、送受信光分離素子
47に反射されて送受光角可変部49に入射する。送受
光角可変部49の2枚の回転ミラー48a、48bに反
射された光ビームは、ビームエクスパンダ52のレンズ
群50、51によってほぼ平行光となって、相手側装置
へ投光される。The laser light emitted from the light emitting element 45 becomes almost parallel light by the lens group 46, is reflected by the transmission / reception light separation element 47, and is incident on the transmission / reception angle variable section 49. The light beams reflected by the two rotary mirrors 48a and 48b of the transmission / reception angle varying unit 49 are converted into substantially parallel light by the lens groups 50 and 51 of the beam expander 52 and are projected to the partner device.
【0034】相手側装置からの通信光は受信光としてビ
ームエクスパンダ52に入射して送受光角可変部49に
至り、第1の回転ミラー48a、第2の回転ミラー48
b、送受信光分離素子47を透過して受信光分岐ミラー
57に入射する。ここで、受信光の約90%は受信光分
岐ミラー57を透過し、レンズ群58を介して本信号検
出用受光素子59に受光される。また、残りの約10%
の光は受信光分岐ミラー57で反射され、レンズ群60
を介して位置検出受光素子61に受光される。Communication light from the other device is incident on the beam expander 52 as received light and reaches the transmission / reception angle variable section 49, where the first rotary mirror 48a and the second rotary mirror 48 are provided.
b, the light is transmitted through the transmission / reception light separating element 47 and is incident on the reception light splitting mirror 57. Here, about 90% of the received light passes through the received light splitting mirror 57 and is received by the light receiving element 59 for detecting this signal via the lens group 58. The remaining 10%
Light is reflected by the receiving light splitting mirror 57, and the lens group 60
The light is received by the position detection light receiving element 61 via.
【0035】発光素子45から正パワーを持つレンズ群
46に取り込まれるレーザー光は、偏光比で約100:
1〜500:1のほぼ直線偏光となり、図4の紙面に対
し垂直方向に偏光している。従って、送信光は偏光ビー
ムスプリッタである送受信光分離素子47の貼り合わせ
面に対して平行となる位置関係の所謂S偏光となり、約
99%のレーザー光が貼り合わせ面で反射される。一
方、受信光はこれに直交するP偏光となっており、約9
6%を透過するような多層薄膜が送受信光分離素子47
の貼り合わせ面に蒸着されている。The laser light taken into the lens group 46 having a positive power from the light emitting element 45 has a polarization ratio of about 100:
It becomes a substantially linearly polarized light of 1 to 500: 1 and is polarized in the direction perpendicular to the paper surface of FIG. Therefore, the transmitted light becomes so-called S-polarized light having a positional relationship parallel to the bonding surface of the transmitting / receiving light separating element 47 which is a polarization beam splitter, and about 99% of the laser light is reflected by the bonding surface. On the other hand, the received light is P-polarized light orthogonal to this,
A multi-layered thin film that transmits 6% is a transmission / reception light separation element 47.
Is vapor-deposited on the bonding surface of.
【0036】このように、同一構造の送受信装置を対向
配置させて送受信を行う場合は、送受信光分離素子47
において互いの光ビームの偏光方向が直交するようする
ために、通信用光学系側の光軸O9を鉛直方向に対して4
5度の角度を成すようにする。As described above, in the case of transmitting and receiving by placing the transmitting and receiving devices having the same structure facing each other, the transmitting and receiving light separating element 47.
In order to make the polarization directions of the light beams orthogonal to each other, the optical axis O9 on the side of the communication optical system is set to 4 with respect to the vertical direction.
Make an angle of 5 degrees.
【0037】広帯域化・高速応答が可能な大容量通信を
行う場合には、本信号検出用受光素子59として、例え
ばアバランシェ・フォトダイオードのような有効受光域
が直径1mm程度の小さな受光素子が使われる。そし
て、位置検出用受光素子61の中心にレーザー光のスポ
ットの中心が位置したときに、送信光が相手側装置を受
信可能な強度分布内の有効受光域を外れないようにする
必要がある。このために、装置の組立段階において、本
信号検出用受光素子59と位置検出用受光素子61と
は、送信光の光軸O9に対してμm単位で位置ずれが調整
されている。When performing large-capacity communication capable of wide band and high-speed response, a small light receiving element such as an avalanche photodiode having an effective light receiving area of about 1 mm in diameter is used as the light receiving element 59 for signal detection. Be seen. Then, when the center of the spot of the laser light is located at the center of the position detection light receiving element 61, it is necessary to prevent the transmitted light from deviating from the effective light receiving area within the intensity distribution that can be received by the partner device. Therefore, in the assembly stage of the device, the positional deviation between the signal detection light receiving element 59 and the position detection light receiving element 61 is adjusted in units of μm with respect to the optical axis O9 of the transmitted light.
【0038】位置検出用受光素子61の受光面上での受
信光のビームスポットの位置ずれ情報は、信号処理部6
2を介して光軸ずれ補正信号としてミラー駆動制御部6
3に送られ、ここから送受光角可変部49の駆動部にミ
ラー駆動用信号が送られる。この信号に基づいて、駆動
部のモータ56a及びモータ56bが回転し、第1の回
転ミラー48a及び第2a回転ミラー48bがそれぞれ
の回転軸の周りに回転する。2つの回転ミラー48a、
48bの回転軸は互いに直交しているので、位置検出用
受光素子61の受光面上での受信光ビームスポットの移
動量は互いに独立した直交2成分に分離することがで
き、これを利用して位置検出用受光素子61の受光面の
中心近傍に、ビームスポットの中心を迅速に位置合わせ
ることができる。Information on the positional deviation of the beam spot of the received light on the light receiving surface of the position detecting light receiving element 61 is obtained by the signal processing unit 6.
Mirror drive control unit 6 as an optical axis deviation correction signal via
3, and a mirror drive signal is sent from there to the drive unit of the light transmission / reception angle varying unit 49. Based on this signal, the motors 56a and 56b of the drive unit rotate, and the first rotary mirror 48a and the second a rotary mirror 48b rotate about their respective rotation axes. Two rotating mirrors 48a,
Since the rotation axes of 48b are orthogonal to each other, the amount of movement of the received light beam spot on the light receiving surface of the position detection light receiving element 61 can be separated into two orthogonal components that are independent of each other. The center of the beam spot can be quickly positioned near the center of the light receiving surface of the position detection light receiving element 61.
【0039】このように、空間を隔てて対向する双方向
空間光通信装置は、相手側装置からの受信光を受光素子
の中心で受光するための自己姿勢補正動作を継続的に行
っているので、双方の送信光の強度分布の中心が相手側
のビーム取込口に常に一致するようにされている。As described above, the bidirectional spatial optical communication device facing each other across the space continuously performs the self-posture correction operation for receiving the light received from the partner device at the center of the light receiving element. , The centers of the intensity distributions of the transmitted lights of both sides are always matched with the beam inlet of the other side.
【0040】図3に示す投光角可変部39と同様の機構
を、図4の送受光角可変部49として使用することによ
り、第1及び第2の実施例で説明したと同様の原理で、
従来例よりも大きな角度範囲の光軸ずれを補正すること
が可能となり、装置の大きな揺れに対しても送信光が相
手側装置を外れることのないので、信頼性の高い双方向
空間光通信を実現することができる。By using a mechanism similar to the projection angle varying unit 39 shown in FIG. 3 as the transmission / reception angle varying unit 49 of FIG. 4, the same principle as described in the first and second embodiments is obtained. ,
It is possible to correct the optical axis deviation in a wider angle range than the conventional example, and the transmitted light does not leave the partner device even if the device shakes significantly. Therefore, reliable bidirectional spatial optical communication can be achieved. Can be realized.
【0041】なお、図4に示す第3の実施例では、一般
的には通信を行う2つの装置を対向設置して使用した
が、特に遠距離通信を行う場合には、ビームエクスパン
ダ52への入射角が変化すると、送信光のけられや光線
収差の変化等の原因となり、このため相手側受信地点に
おいて送信光のビーム径が変化し、受光量の低下や送信
光のビーム外れなどが発生する。このような場合には、
第1の回転ミラー48a、第2の回転ミラー48bのう
ちの回転量の大きい方の回転ミラーの回転動作と連動さ
せて、レンズ群46、レンズ群50、レンズ群51の全
体又は一部を光軸O9又はO10 に沿って移動させる送信光
ビーム発散角可変動作を行い、送信光を必要最小限のビ
ーム径とすることにより、更に信頼性の高い通信を行う
ことができる。In the third embodiment shown in FIG. 4, two devices for communication are generally installed opposite to each other. However, especially for long-distance communication, the beam expander 52 is used. If the incident angle changes, the transmitted light may be eclipsed or the ray aberration may be changed.Therefore, the beam diameter of the transmitted light may change at the receiving point on the other side, resulting in a decrease in the amount of received light or a beam deviation of the transmitted light. appear. In such cases,
The whole or a part of the lens group 46, the lens group 50, and the lens group 51 is optically operated by interlocking with the rotation operation of the one of the first rotating mirror 48a and the second rotating mirror 48b having the larger rotation amount. By performing a transmission light beam divergence angle variable operation of moving along the axis O9 or O10 and making the transmission light a minimum required beam diameter, it is possible to perform more reliable communication.
【0042】[0042]
【発明の効果】以上説明したように第1発明に係る空間
光通信装置は、投光角可変部を投光角の角度変化量に応
じて光軸方向に沿って所定量移動させることにより、光
走査範囲をより広くすることができ、光ビームのけられ
を軽減することができる。As described above, in the spatial optical communication device according to the first aspect of the present invention, the projection angle variable unit is moved by a predetermined amount along the optical axis direction according to the angle change amount of the projection angle. The light scanning range can be made wider, and the eclipse of the light beam can be reduced.
【0043】また、第2発明に係る空間光通信装置は、
双方向空間光通信において送受光角可変部を送受光角の
角度変化量に応じて光軸方向に沿って所定量移動させる
ことにより、風や設置場所の振動等により装置が揺れた
場合に、光ビームの外れによる通信断絶を生じ難くする
ことができ、また対向設置時に光走査を行って互いの装
置光軸を合わせる場合に、最初の装置の位置決めをより
迅速かつ容易に行うことができる。The spatial optical communication device according to the second invention is
In bidirectional spatial optical communication, when the device is shaken by wind or vibration of the installation place by moving the light-transmitting and receiving angle variable unit by a predetermined amount along the optical axis direction according to the angle change amount of the light-receiving and receiving angle, The communication disconnection due to the light beam deviation can be made less likely to occur, and the positioning of the first device can be performed more quickly and easily when optical scanning is performed and the optical axes of the devices are aligned with each other.
【図1】第1の実施例の構成図である。FIG. 1 is a configuration diagram of a first embodiment.
【図2】投光ビームの説明図である。FIG. 2 is an explanatory diagram of a projected beam.
【図3】第2の実施例の斜視図である。FIG. 3 is a perspective view of a second embodiment.
【図4】第3の実施例の斜視図である。FIG. 4 is a perspective view of a third embodiment.
【図5】従来例の構成図である。FIG. 5 is a configuration diagram of a conventional example.
【図6】二次元走査機能を有する従来例の斜視図であ
る。FIG. 6 is a perspective view of a conventional example having a two-dimensional scanning function.
【図7】従来例の双方向空間光通信装置の構成図であ
る。FIG. 7 is a configuration diagram of a conventional bidirectional spatial optical communication device.
【図8】斜視図である。FIG. 8 is a perspective view.
【図9】投光ビームの説明図である。FIG. 9 is an explanatory diagram of a projected beam.
30、45 発光素子 32、40a、40b、48a、48b 回転ミラー 35、52 ビームエクスパンダ 36、39 投光角可変部 37、63 ミラー駆動用制御部 38 走査信号発生部 47 送受信光分離素子 49 送受光角可変部 57 受信光分岐ミラー 59 本信号検出用受光素子 61 位置検出用受光素子 62 信号処理部 30, 45 Light emitting element 32, 40a, 40b, 48a, 48b Rotating mirror 35, 52 Beam expander 36, 39 Projection angle changing section 37, 63 Mirror drive control section 38 Scanning signal generating section 47 Transmission / reception light separating element 49 Transmission Light receiving angle changing unit 57 Received light splitting mirror 59 Light receiving element for main signal detection 61 Light receiving element for position detection 62 Signal processing unit
Claims (7)
光側に配置した拡大光学系とを有する投光手段を備え、
前記投光角可変部は投光角を可変とし、該投光角の角度
変化量に応じて光軸方向に沿って前記投光角可変部の所
定量の移動を可能としたことを特徴とする空間光通信装
置。1. A light projecting means having a projecting angle varying section and a magnifying optical system arranged on the outgoing light side of the projecting angle varying section,
The light projection angle changing unit is configured to change the light projection angle, and is capable of moving a predetermined amount of the light projection angle changing unit along the optical axis direction according to an angle change amount of the light projection angle. Space optical communication device.
ーム発散角を所定量変化させる投光ビーム発散角可変手
段を備えた請求項1に記載の空間光通信装置。2. The spatial optical communication device according to claim 1, further comprising: a projection beam divergence angle varying means for changing a projection beam divergence angle by a predetermined amount according to an angle change amount of the projection angle.
ラーは光軸に垂直な軸を回転軸として回転可能とし、該
回転角度に応じて光軸方向に沿って所定量の移動を可能
とした請求項1に記載の空間光通信装置。3. The projection angle varying unit has a mirror, and the mirror is rotatable about an axis perpendicular to the optical axis as a rotation axis, and moves a predetermined amount along the optical axis direction according to the rotation angle. The spatial optical communication device according to claim 1, which enables the above.
する2つのミラーを有し、これら2つのミラーは光軸に
垂直な軸を回転軸として回転可能とし、これらの回転角
度に応じて光軸方向に沿って所定量の移動を可能とした
請求項1に記載の空間光通信装置。4. The variable projection angle unit has two mirrors whose rotation axes are orthogonal to each other, and these two mirrors can rotate about an axis perpendicular to the optical axis as a rotation axis. The spatial optical communication device according to claim 1, wherein the spatial optical communication device is capable of moving a predetermined amount along the optical axis direction.
差検出手段と送受光角可変光学系と送受共通光学系とを
有し、双方向に通信を行う空間光通信装置において、前
記投光光学系と本信号検出光学系と送受光角可変光学系
の3つの光学系の光軸を送受光角可変部において一致さ
せ、前記送受光角可変部の相手側装置への出入射光側に
前記送受共通光学系を配置し、前記角度誤差検出手段の
出力により前記送受光角可変部は送受光角を可変とし、
該送受光角の角度変化量に応じて光軸に沿って前記送受
光角可変部の所定量の移動を可能としたことを特徴とす
る空間光通信装置。5. A spatial optical communication device comprising a light projecting optical system, a main signal detecting optical system, an angle error detecting means, a variable optical angle transmission / reception optical system, and a common optical transmission / reception optical system for bidirectional communication. The optical axes of the three optical systems of the light projecting optical system, the present signal detecting optical system, and the variable light-transmitting / receiving angle optical system are made to coincide in the variable light-transmitting / receiving angle portion, and the light-emitting / light-incident side of the variable light transmitting / receiving angle portion to the partner device. The transmission / reception common optical system is arranged, and the transmission / reception angle variable unit makes the transmission / reception angle variable by the output of the angle error detection means.
A spatial optical communication device, characterized in that it is possible to move the transmitting / receiving angle varying unit by a predetermined amount along the optical axis according to the angle change amount of the transmitting / receiving angle.
交する2つのミラーを有し、これら2つのミラーは光軸
に垂直な軸を回転軸として回転可能とし、これらの回転
角度に応じて、光軸方向に沿って所定量の移動を可能と
した請求項5に記載の空間光通信装置。6. The transmission / reception angle variable unit has two mirrors whose rotation axes are orthogonal to each other, and these two mirrors can rotate about an axis perpendicular to the optical axis as a rotation axis. The spatial optical communication device according to claim 5, wherein the spatial optical communication device is capable of moving a predetermined amount along the optical axis direction.
ム発散角を所定量移動変化させる光ビーム発散角可変手
段を備えた請求項5に記載の空間光通信装置。7. The spatial optical communication device according to claim 5, further comprising a light beam divergence angle varying means for moving and changing the light beam divergence angle by a predetermined amount according to the angle change amount of the light projection angle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32969194A JP3220344B2 (en) | 1994-12-01 | 1994-12-01 | Space optical communication equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32969194A JP3220344B2 (en) | 1994-12-01 | 1994-12-01 | Space optical communication equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08163041A true JPH08163041A (en) | 1996-06-21 |
JP3220344B2 JP3220344B2 (en) | 2001-10-22 |
Family
ID=18224199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32969194A Expired - Fee Related JP3220344B2 (en) | 1994-12-01 | 1994-12-01 | Space optical communication equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3220344B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1152556A2 (en) * | 2000-05-01 | 2001-11-07 | Agilent Technologies, Inc. (a Delaware corporation) | Self-aligning infra-red communication link |
JP2002347272A (en) * | 2001-05-24 | 2002-12-04 | Dainippon Printing Co Ltd | Recording/erasing device for reversible thermal recording medium |
JP2011186330A (en) * | 2010-03-10 | 2011-09-22 | Toshiba Corp | Laser beam scanning apparatus |
US11329721B2 (en) | 2020-06-09 | 2022-05-10 | Tamron Co., Ltd. | Communication device, optical axis direction adjusting method, and communication system |
-
1994
- 1994-12-01 JP JP32969194A patent/JP3220344B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1152556A2 (en) * | 2000-05-01 | 2001-11-07 | Agilent Technologies, Inc. (a Delaware corporation) | Self-aligning infra-red communication link |
EP1152556A3 (en) * | 2000-05-01 | 2004-01-07 | Agilent Technologies, Inc. (a Delaware corporation) | Self-aligning infra-red communication link |
US6738583B1 (en) | 2000-05-01 | 2004-05-18 | Agilent Technologies, Inc. | Self-aligning infra-red communication link |
JP2002347272A (en) * | 2001-05-24 | 2002-12-04 | Dainippon Printing Co Ltd | Recording/erasing device for reversible thermal recording medium |
JP2011186330A (en) * | 2010-03-10 | 2011-09-22 | Toshiba Corp | Laser beam scanning apparatus |
US11329721B2 (en) | 2020-06-09 | 2022-05-10 | Tamron Co., Ltd. | Communication device, optical axis direction adjusting method, and communication system |
Also Published As
Publication number | Publication date |
---|---|
JP3220344B2 (en) | 2001-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6384944B1 (en) | Integral transmitter-receiver optical communication apparatus | |
JP2005229253A (en) | Spatial light transmission apparatus | |
WO2004068746A1 (en) | Optical antenna | |
JPH08163041A (en) | Special light communication equipment | |
JP4701454B2 (en) | Spatial optical communication method and spatial optical communication apparatus | |
JPH05133716A (en) | Bi-directional spatial optical communication device | |
JP2002196270A (en) | Laser lithography system | |
US6701093B1 (en) | Integral transmitter-receiver optical communication apparatus and a crosstalk preventive device therefor | |
JPH08204640A (en) | Optical space transmitter | |
JP2006173688A (en) | Spatial light transmission apparatus | |
JP3192359B2 (en) | Space optical communication equipment | |
JPH07175021A (en) | Optical spatial communication device | |
JP3870197B2 (en) | Optical space transmission equipment | |
JP2518066B2 (en) | Laser beam direction control device | |
JPH0888602A (en) | Space optical communication equipment | |
JP3362308B2 (en) | Integrated transmission and reception optical communication device | |
JP4520414B2 (en) | Optical path correction control device for optical space communication system | |
JPH09251067A (en) | Infrared image sensor | |
JP3870198B2 (en) | Optical space transmission equipment | |
JPH0878303A (en) | Prism equipment for correction and exposure system to which prism equipment is applied | |
JP3339015B2 (en) | Integrated transmission and reception optical communication device | |
JPH0346582A (en) | Laser beam direction controller | |
JPH05134207A (en) | Two-way spatial optical communication device | |
JP2000101517A (en) | Transmission/reception integrated optical communication equipment | |
JP2000171293A (en) | Light emitting and receiving apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070810 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080810 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080810 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090810 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090810 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130810 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |