JPH08160292A - Triplet lens system - Google Patents
Triplet lens systemInfo
- Publication number
- JPH08160292A JPH08160292A JP29972694A JP29972694A JPH08160292A JP H08160292 A JPH08160292 A JP H08160292A JP 29972694 A JP29972694 A JP 29972694A JP 29972694 A JP29972694 A JP 29972694A JP H08160292 A JPH08160292 A JP H08160292A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- equation
- object side
- triplet
- focal length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Lenses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は後置絞りを有するトリプ
レットレンズ系に関し,特に,インスタントカメラ等の
普及型の大判カメラに最適な,構成が単純でコンパクト
な撮影レンズに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a triplet lens system having a rear diaphragm, and more particularly to a simple and compact photographing lens suitable for a wide-format large-format camera such as an instant camera.
【0002】[0002]
【従来の技術】所謂インスタントカメラ等の普及型の大
判カメラの場合,小型カメラと比較して相対的に大きな
イメージサークルが要求される一方で,小型化やレンズ
自体或いは組み立てコストの低価格化が強く要望されて
いる。先ず,レンズ自体の小型化や低価格化の要望に応
えながら,F9乃至F17程度の明るさと画角55゜程
度のカバーリングパワーの要望に応えるため,一般に3
群3枚構成のトリプレットレンズ系が選ばれることが多
く,更に組み立てコストの低減を図るため,絞りをレン
ズ系の後段に配置する後置絞りが採用されることが多
い。2. Description of the Related Art In the case of popular large-format cameras such as so-called instant cameras, a relatively large image circle is required as compared with a small camera, while miniaturization and lowering of the lens itself or assembly cost are required. There is a strong demand. First, in order to meet the demands for brightness of about F9 to F17 and covering power of about 55 ° in view angle while satisfying the demand for downsizing and cost reduction of the lens itself, generally, 3
A triplet lens system having a group of three elements is often selected, and in order to further reduce the assembling cost, a post diaphragm in which the diaphragm is arranged in the latter stage of the lens system is often adopted.
【0003】[0003]
【発明が解決しようとする課題】上述の様な後置絞りを
有するトリプレットレンズ系は,一般的に小型且つ低価
格化の要望に応えるものではあるが,インスタントカメ
ラの様な普及型のカメラの場合には,更なるコストダウ
ンという要望が強く,研削成形を必要とする光学ガラス
の採用に変えて,大量生産に適する射出成形が可能なプ
ラスチックレンズの採用が要望されている。しかしなが
ら,屈折光学系を構成する材料として使用することので
きるプラスチックは,屈折率やアッベ数において選択の
幅が極めて狭く,単色の収差と色収差とを同時に補正す
ることが困難であるという問題があった。The triplet lens system having the rear diaphragm as described above generally meets the demand for downsizing and cost reduction, but it is used for a popular type camera such as an instant camera. In this case, there is a strong demand for further cost reduction, and in place of the optical glass that requires grinding and molding, it is desired to use a plastic lens that can be injection-molded suitable for mass production. However, plastics that can be used as a material for forming a refractive optical system have a very narrow selection range in terms of refractive index and Abbe number, and there is a problem that it is difficult to simultaneously correct monochromatic aberration and chromatic aberration. It was
【0004】[0004]
【課題を解決するための手段】本発明はこの様な問題点
に鑑みてなされたものであり,製造コストを低減するた
めに光学系の一部にプラスチックレンズを採用しなが
ら,各収差が良好に補正されたコンパクトな後置絞りの
トリプレットレンズ系を提供することを目的とするもの
である。SUMMARY OF THE INVENTION The present invention has been made in view of such problems, and a plastic lens is used as a part of an optical system in order to reduce the manufacturing cost, but each aberration is favorable. It is an object of the present invention to provide a triplet lens system having a post-correction and a compact rear diaphragm.
【0005】要約すれば本発明のトリプレットレンズ系
は,物体側から順に,物体側に凸面を向けた正の屈折力
を有するメニスカス形状の第1レンズと,負の屈折力を
有する第2レンズと,正の屈折力を有する第3レンズ
と,後置絞りとを有すると共に,レンズ系の一部にプラ
スチックレンズを含み,以下の数7乃至数9に規定する
条件を満足することにより,上記目的を達成するもので
あり,より望ましくは上記を前提として数10乃至数1
2に規定する条件を満足することにより,より良好な収
差補正を達成せんとするものである。In summary, the triplet lens system of the present invention comprises, in order from the object side, a meniscus-shaped first lens having a positive refractive power with a convex surface facing the object side, and a second lens having a negative refractive power. By having a third lens having a positive refracting power and a rear diaphragm, including a plastic lens in a part of the lens system, and satisfying the conditions defined by the following formulas 7 to 9, Is achieved, and more preferably, the above is premised on several 10 to several 1.
By satisfying the condition specified in 2, it is intended to achieve better aberration correction.
【0006】[0006]
【数7】 (Equation 7)
【0007】[0007]
【数8】 (Equation 8)
【0008】[0008]
【数9】 [Equation 9]
【0009】[0009]
【数10】 [Equation 10]
【0010】[0010]
【数11】 [Equation 11]
【0011】[0011]
【数12】 (Equation 12)
【0012】但し,上記の数式において,fは全体の焦
点距離,f1は第1レンズの焦点距離,f2は第2レン
ズの焦点距離,f3は第3レンズの焦点距離,f12は
第1レンズと第2レンズの合成焦点距離,ν1は第1レ
ンズのアッベ数,ν3は第3レンズのアッベ数,R5は
物体側より5番目の面の曲率半径,T1は物体側より1
番目の軸上面間距離,T4は物体側より4番目の軸上面
間距離を各々示すものとする。However, in the above formula, f is the entire focal length, f1 is the focal length of the first lens, f2 is the focal length of the second lens, f3 is the focal length of the third lens, and f12 is the first lens. Composite focal length of the second lens, ν1 is the Abbe number of the first lens, ν3 is the Abbe number of the third lens, R5 is the radius of curvature of the fifth surface from the object side, and T1 is 1 from the object side.
The fourth axial upper surface distance, T4, represents the fourth axial upper surface distance from the object side.
【0013】[0013]
【作用】即ち,本発明が前提とする様な後置絞りのトリ
プレットレンズ系の第2レンズ及び第3レンズを光学用
プラスチックで構成した場合,非球面形状の採用が容易
になると共に製造コストを低廉化することが可能となる
が,選択し得るプラスチックのアッベ数や屈折率の幅が
極めて限定されるため一般に色補正が困難になるが,本
発明では第1レンズ及び第2レンズの合成焦点距離を上
記の数7に規定する範囲に限定することにより,良好な
色収差の補正,特に軸上色収差の補正を実現するととも
にバックフォーカスを短縮してレンズの小型化を達成す
ることを特徴とするものである。That is, when the second lens and the third lens of the triplet lens system of the rear diaphragm as the premise of the present invention are made of optical plastic, the aspherical shape can be easily adopted and the manufacturing cost can be reduced. Although it is possible to reduce the cost, color correction is generally difficult because the Abbe number and the range of refractive index of the plastic that can be selected are extremely limited. However, in the present invention, the synthetic focus of the first lens and the second lens is used. By limiting the distance to the range defined by the above formula 7, it is possible to achieve good correction of chromatic aberration, in particular correction of axial chromatic aberration, and also to shorten the back focus and achieve size reduction of the lens. It is a thing.
【0014】[0014]
【実施例】以下図面を参照して本発明の1実施例を詳細
に説明する。図1乃至図5は各々本発明の第1実施例乃
至第5実施例に係るトリプレットレンズ系の光軸断面図
を示すものであり,各々の図に示す様に本発明ののトリ
プレットレンズ系は,物体側から順に,物体側に凸面r
1を向けた正の屈折力を有するメニスカス形状の第1レ
ンズ1と,プラスチックからなり負の屈折力を有する第
2レンズ2と,プラスチックからなり正の屈折力を有す
る第3レンズ3と,後置絞りr7とを有すると共に,上
述の数7乃至数12に規定する条件を満足している。
尚,図1乃至図5においてr1からr7は境界面を示し
ている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. 1 to 5 are cross-sectional views of optical axes of triplet lens systems according to first to fifth embodiments of the present invention. As shown in the respective drawings, the triplet lens system of the present invention is , Convex from the object side to the object side r
1, a meniscus-shaped first lens 1 having positive refractive power, a second lens 2 made of plastic and having negative refractive power, a third lens 3 made of plastic and having positive refractive power, and In addition to having the aperture stop r7, it satisfies the conditions defined in the above formulas 7 to 12.
1 to 5, r1 to r7 indicate boundary surfaces.
【0015】先ず,数7に規定する条件は,軸上色収差
の補正及びレンズの小型化に関与する条件であり,第1
レンズ1及び第2レンズ2の合成焦点距離が数7に規定
する上限値を越えると採用し得るプラスチックのアッベ
数νや屈折率Tの制約から軸上色収差の補正が困難にな
り,又,数7に規定する下限値を越えるとバックフォー
カスが長くなりすぎレンズ系の小型化が困難になってし
まう。First, the condition defined by the equation (7) is a condition involved in correction of axial chromatic aberration and miniaturization of the lens.
If the combined focal length of the lens 1 and the second lens 2 exceeds the upper limit value defined in the formula 7, it becomes difficult to correct the axial chromatic aberration due to the restrictions of the Abbe number ν and the refractive index T of the plastic that can be adopted. If the lower limit value defined in 7 is exceeded, the back focus becomes too long and it becomes difficult to downsize the lens system.
【0016】次に,数8に規定する条件は,数7に規定
する条件のもとで倍率色収差や色収差の補正を良好にす
るためのものである。数8に規定する上限値を超えると
F線の倍率色収差がプラス側に過剰になり,下限値を越
えるとF線の軸上色収差がプラス側に過剰になってペッ
ツバール和を小さくするために第2レンズの負のパワー
を小さくした場合に色収差の補正が困難になる。Next, the condition defined by the equation (8) is for improving the correction of lateral chromatic aberration and chromatic aberration under the condition defined by the equation (7). Exceeding the upper limit defined in Eq. 8 causes lateral chromatic aberration of the F line to become excessive on the plus side, and exceeding the lower limit causes axial chromatic aberration of the F line to become excessive on the plus side to reduce the Petzval sum. When the negative power of the two lenses is reduced, it becomes difficult to correct chromatic aberration.
【0017】更に,数9に規定する条件は,高画角域で
の非点隔差やレンズの小型化に関与する条件であり,第
1レンズ1と第2レンズ2の焦点距離の比が数9に規定
する上限値を越えるとペッツバール和を十分に小さくす
ることができなくなり高画角での非点隔差が大きくな
る。又,下限値を越えると歪曲収差を補正するため,第
1レンズの正のパワーが弱くなり,レンズ系の小型化が
困難になる。そして,これらの数7乃至数9に規定する
条件を満足した上で,各収差を更に良好に補正するため
には数10乃至数12に規定する条件を満足することが
望ましい。Further, the condition defined by the equation 9 is a condition relating to the astigmatic difference in the high angle of view and the miniaturization of the lens, and the ratio of the focal lengths of the first lens 1 and the second lens 2 is several. If the value exceeds the upper limit defined in 9, the Petzval sum cannot be made sufficiently small and the astigmatic difference at a high angle of view becomes large. Further, when the value goes below the lower limit, distortion aberration is corrected, the positive power of the first lens becomes weak, and it becomes difficult to downsize the lens system. After satisfying the conditions defined by these formulas 7 to 9, it is desirable to satisfy the conditions defined by formulas 10 to 12 in order to further correct each aberration.
【0018】先ず,数10に規定する条件は,レンズ系
の小型化,球面収差の適正な補正,光量の確保等に関与
する条件である。第1境界面r1と第2境界面r2との
軸上面間隔T1が数10に規定する上限値を越えるとレ
ンズ系の小型化が困難になり,更に球面収差が補正不足
になる。又,軸上面間隔T1が数10に規定する下限値
を越えると球面収差が補正過剰になり,更に,光量の確
保が困難になる。First, the conditions defined by the equation (10) are conditions involved in downsizing of the lens system, proper correction of spherical aberration, securing of light quantity, and the like. If the axial upper surface distance T1 between the first boundary surface r1 and the second boundary surface r2 exceeds the upper limit defined by the expression 10, it becomes difficult to downsize the lens system, and the spherical aberration is insufficiently corrected. Further, if the axial upper surface interval T1 exceeds the lower limit value defined in the equation 10, spherical aberration is overcorrected, and it becomes difficult to secure the light quantity.
【0019】次に,数11に規定する条件は,像面湾曲
やコマ収差や歪曲収差,非点隔差の補正等に関与する条
件である。第4境界面r4と第5境界面r5との軸上面
間隔T4が数11に規定する上限値を超えると像面湾曲
が補正不足となるととにも,画面周辺でコマ収差が大き
く発生する。又,軸上面間隔T4が数11に規定する下
限値を超えると歪曲収差及び非点隔差が増大するととも
に,画面中帯から周辺にコマ収差が発生する。Next, the condition defined by the equation 11 is a condition relating to correction of field curvature, coma aberration, distortion aberration, astigmatism and the like. When the axial upper surface distance T4 between the fourth boundary surface r4 and the fifth boundary surface r5 exceeds the upper limit value defined in the equation 11, the field curvature is insufficiently corrected, and a large coma aberration occurs around the screen. Further, when the axial upper surface interval T4 exceeds the lower limit value defined by the equation 11, distortion and astigmatism increase, and coma occurs from the middle zone of the screen to the periphery.
【0020】更に,数12に規定する条件は数7及び数
8に規定する条件のもとで球面収差と非点収差をより良
好に補正するためのものである。第5境界面r5の曲率
半径が数12に規定する上限値を超えると球面収差と像
面湾曲が補正不足になり,第5境界面r5の曲率半径が
数12に規定する下限値を越えると球面収差が補正過剰
となり,又,非点収差が増大し,サジタル像面とメリデ
ィオナル像面の隔差が大きく,補正困難となる。Furthermore, the condition defined by the formula 12 is for better correcting the spherical aberration and the astigmatism under the condition defined by the formulas 7 and 8. If the radius of curvature of the fifth boundary surface r5 exceeds the upper limit value defined by the equation 12, spherical aberration and field curvature are undercorrected, and if the radius of curvature of the fifth boundary surface r5 exceeds the lower limit value defined by the equation 12. Spherical aberration is overcorrected, astigmatism is increased, and the difference between the sagittal image surface and the meridional image surface is large, making correction difficult.
【0021】次に,上述の図1乃至図5に光軸断面を示
した実施例の具体的な数値を表1乃至表5に各々示すと
ともに,その収差線図を図6乃至図10に順次各々示
す。尚,これらの表中において,fは焦点距離,FはF
ナンバー,r1〜r7は各境界面の曲率半径,T1〜T
6は各境界面の軸上面間距離,Nd1からNd3は各レ
ンズの屈折率,νd1〜νd3は各レンズのアッベ数で
有り,非球面形状は光軸方向をX,光軸に直行する方向
をYとしたときに数13で示される。更に,収差線図に
おいて,dはd線,FはF線,SCはサインコンディシ
ョン,Sはサジタル像面,Mはメリディオナル像面を各
々示す。尚,数13においてrは近軸曲率半径,εは円
錐係数である。Next, specific numerical values of the embodiments whose optical axis cross sections are shown in FIGS. 1 to 5 are shown in Tables 1 to 5, respectively, and their aberration diagrams are sequentially shown in FIGS. 6 to 10. Each is shown. In these tables, f is the focal length and F is F
No., r1 to r7 are the radii of curvature of each boundary surface, T1 to T
6 is the distance between the axial upper surfaces of the respective boundary surfaces, Nd1 to Nd3 are the refractive indices of the lenses, νd1 to νd3 are the Abbe numbers of the lenses, and the aspherical shape is the optical axis direction X, and the direction orthogonal to the optical axis. When Y is set, it is represented by Expression 13. Further, in the aberration diagram, d is the d line, F is the F line, SC is the sine condition, S is the sagittal image plane, and M is the meridional image plane. In Equation 13, r is a paraxial radius of curvature and ε is a conic coefficient.
【0022】[0022]
【数13】 (Equation 13)
【0023】[0023]
【表1】 [Table 1]
【0024】[0024]
【表2】 [Table 2]
【0025】[0025]
【表3】 [Table 3]
【0026】[0026]
【表4】 [Table 4]
【0027】[0027]
【表5】 [Table 5]
【0028】[0028]
【発明の効果】上述の実施例及びその収差線図に見られ
る様に,本発明の後置絞りのトリプレットレンズ系は,
第2レンズ及び第3レンズに安価なプラスチックを採用
し,且つ,57度前後の画角を確保しても,諸収差が良
好に補正され,望遠比も概ね1程度でコンパクトなレン
ズ系を得ることができる。又,プラスチックの採用に伴
って,非球面の導入が極めて容易になり,球面系のレン
ズでは補正しきれない各収差の補正を可能となる。As can be seen from the above embodiment and its aberration diagram, the triplet lens system of the rear diaphragm of the present invention is
Even if an inexpensive plastic is used for the second lens and the third lens, and even if an angle of view of about 57 degrees is secured, various aberrations are corrected well, and the telephoto ratio is about 1 to obtain a compact lens system. be able to. Also, with the adoption of plastic, the introduction of an aspherical surface becomes extremely easy, and it becomes possible to correct each aberration that cannot be corrected by a spherical lens.
【図1】本発明の第1実施例に係るトリプレットレンズ
系の光軸断面図。FIG. 1 is an optical axis cross-sectional view of a triplet lens system according to Example 1 of the present invention.
【図2】本発明の第2実施例に係るトリプレットレンズ
系の光軸断面図。FIG. 2 is an optical axis sectional view of a triplet lens system according to a second example of the present invention.
【図3】本発明の第3実施例に係るトリプレットレンズ
系の光軸断面図。FIG. 3 is an optical axis sectional view of a triplet lens system according to a third example of the present invention.
【図4】本発明の第4実施例に係るトリプレットレンズ
系の光軸断面図。FIG. 4 is an optical axis sectional view of a triplet lens system according to a fourth example of the present invention.
【図5】本発明の第5実施例に係るトリプレットレンズ
系の光軸断面図。FIG. 5 is an optical axis sectional view of a triplet lens system according to a fifth example of the present invention.
【図6】本発明の第1実施例に係るトリプレットレンズ
系の収差線図。FIG. 6 is an aberration diagram of a triplet lens system according to Example 1 of the present invention.
【図7】本発明の第2実施例に係るトリプレットレンズ
系の収差線図。FIG. 7 is an aberration diagram of a triplet lens system according to Example 2 of the present invention.
【図8】本発明の第3実施例に係るトリプレットレンズ
系の収差線図。FIG. 8 is an aberration diagram of a triplet lens system according to Example 3 of the present invention.
【図9】本発明の第4実施例に係るトリプレットレンズ
系の収差線図。FIG. 9 is an aberration diagram of a triplet lens system according to Example 4 of the present invention.
【図10】本発明の第5実施例に係るトリプレットレン
ズ系の収差線図。FIG. 10 is an aberration diagram of a triplet lens system according to Example 5 of the present invention.
1 第1レンズ 2 第2レンズ 3 第3レンズ r1,r2,r3,r4,r5,r6,r7 境界面 1 1st lens 2 2nd lens 3 3rd lens r1, r2, r3, r4, r5, r6, r7 Boundary surface
Claims (3)
正の屈折力を有するメニスカス形状の第1レンズと,負
の屈折力を有する第2レンズと,正の屈折力を有する第
3レンズと,後置絞りとを有すると共に,レンズ系の一
部にプラスチックレンズを含み,以下の数1乃至数3に
規定する条件を満足することを特徴とするトリプレット
レンズ系。 【数1】 【数2】 【数3】 但し,f :全体の焦点距離 f1 :第1レンズの焦点距離 f2 :第2レンズの焦点距離 f3 :第3レンズの焦点距離 f12:第1レンズと第2レンズの合成焦点距離 ν1 :第1レンズのアッベ数 ν3 :第3レンズのアッベ数1. A meniscus-shaped first lens having a positive refractive power with a convex surface facing the object side, a second lens having a negative refractive power, and a third lens having a positive refractive power in order from the object side. A triplet lens system having a lens and a post diaphragm, including a plastic lens as part of the lens system, and satisfying the conditions defined in the following formulas 1 to 3. [Equation 1] [Equation 2] (Equation 3) Here, f: overall focal length f1: first lens focal length f2: second lens focal length f3: third lens focal length f12: first and second lens combined focal length ν1: first lens Abbe number ν3: Abbe number of the third lens
おいて,以下の数4乃至数6に規定する条件を満足する
ことを特徴とするトリプレットレンズ系。 【数4】 【数5】 【数6】 但し,f :全体の焦点距離 R5 :物体側より5番目の面の曲率半径 T1 :物体側より1番目の軸上面間距離 T4 :物体側より4番目の軸上面間距離2. The triplet lens system according to claim 1, wherein the triplet lens system satisfies the conditions defined by the following expressions 4 to 6. [Equation 4] (Equation 5) (Equation 6) Where f: overall focal length R5: radius of curvature of the fifth surface from the object side T1: distance between the first axial upper surfaces from the object side T4: distance between the fourth axial upper surfaces from the object side
レットレンズ系において,前記第1レンズはガラスで構
成され物体側に凸面を向けたメニスカス形状で正の屈折
力を有していて,前記第2レンズはプラスチックで構成
され両凹面で負の屈折力を有していて,前記第3レンズ
はプラスチックもしくはガラスで構成され両凸面で正の
屈折力を有していることを特徴とするトリプレットレン
ズ系。3. The triplet lens system according to claim 1, wherein the first lens is made of glass, has a meniscus shape with a convex surface facing the object side, and has a positive refractive power. The triplet lens is characterized in that the second lens is made of plastic and has a biconcave surface with a negative refracting power, and the third lens is made of plastic or glass and has a biconvex surface with a positive refracting power. system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29972694A JPH08160292A (en) | 1994-12-02 | 1994-12-02 | Triplet lens system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29972694A JPH08160292A (en) | 1994-12-02 | 1994-12-02 | Triplet lens system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08160292A true JPH08160292A (en) | 1996-06-21 |
Family
ID=17876226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29972694A Pending JPH08160292A (en) | 1994-12-02 | 1994-12-02 | Triplet lens system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08160292A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004004566A (en) * | 2002-03-25 | 2004-01-08 | Konica Minolta Holdings Inc | Imaging lens and imaging apparatus equipped with same, imaging unit and mobile terminal equipped with same |
JP2005257806A (en) * | 2004-03-09 | 2005-09-22 | Sony Corp | Imaging lens |
US10585262B2 (en) | 2015-02-04 | 2020-03-10 | Largan Precision Co., Ltd. | Optical lens assembly and image capturing device |
-
1994
- 1994-12-02 JP JP29972694A patent/JPH08160292A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004004566A (en) * | 2002-03-25 | 2004-01-08 | Konica Minolta Holdings Inc | Imaging lens and imaging apparatus equipped with same, imaging unit and mobile terminal equipped with same |
JP2005257806A (en) * | 2004-03-09 | 2005-09-22 | Sony Corp | Imaging lens |
JP4541729B2 (en) * | 2004-03-09 | 2010-09-08 | ソニー株式会社 | Imaging lens |
US10585262B2 (en) | 2015-02-04 | 2020-03-10 | Largan Precision Co., Ltd. | Optical lens assembly and image capturing device |
US12019210B2 (en) | 2015-02-04 | 2024-06-25 | Largan Precision Co., Ltd. | Optical lens assembly and image capturing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3062735B2 (en) | Super wide angle lens system using aspherical lens | |
US6038085A (en) | Super wide angle lens | |
JPH04267212A (en) | Ultra wide angle lens | |
JP2003131126A (en) | Wide angle lens | |
US6577451B2 (en) | Rear conversion lens | |
US4892398A (en) | Triplet type objective with a diaphragm arranged behind the lens system | |
JPH09113799A (en) | Retrofocus type photographic lens | |
US6900948B2 (en) | Single focus lens | |
JPH0721580B2 (en) | Wide-angle photographic lens with short overall length | |
JP2019040117A (en) | Wide-angle lens | |
US6014268A (en) | Two-group small zoom lens | |
JP4483058B2 (en) | Imaging lens | |
JPH04238312A (en) | Subminiature extremely wide-angle lens | |
JPH04246606A (en) | Super wide angle lens | |
JP2750775B2 (en) | Compact zoom lens | |
JPH07104183A (en) | Bright triplet lens | |
US4206976A (en) | Compact telephoto lens | |
JP2005316208A (en) | Imaging lens | |
JPH0933802A (en) | Wide-angle lens | |
JPH09218350A (en) | Retrofocus type lens | |
JPH08160292A (en) | Triplet lens system | |
US5764425A (en) | Telephoto lens | |
JP3038974B2 (en) | Small wide-angle lens | |
JPH06300969A (en) | Wide-angle aspherical zoom lens and video camera | |
JPH06109983A (en) | Wide visual field ocular lens |