[go: up one dir, main page]

JPH08159642A - Defrosting device of evaporator of cold air holding device - Google Patents

Defrosting device of evaporator of cold air holding device

Info

Publication number
JPH08159642A
JPH08159642A JP30210594A JP30210594A JPH08159642A JP H08159642 A JPH08159642 A JP H08159642A JP 30210594 A JP30210594 A JP 30210594A JP 30210594 A JP30210594 A JP 30210594A JP H08159642 A JPH08159642 A JP H08159642A
Authority
JP
Japan
Prior art keywords
evaporator
heater
defrosting
halogen heater
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30210594A
Other languages
Japanese (ja)
Inventor
Shinya Takagi
真也 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP30210594A priority Critical patent/JPH08159642A/en
Publication of JPH08159642A publication Critical patent/JPH08159642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Abstract

PURPOSE: To enable an efficient defrosting to be carried out for a short period of time by a method wherein a halogen heater is used as a heater. CONSTITUTION: As a defrosting heater, a cylindrical halogen heater 8 is arranged at an upper part of an evaporator 2 and further a recess-shaped reflection plate 9 is arranged at an upper part of it. With such an arrangement as above, a higher radiation energy than that of a far infra-red ray heater can be attained and a frosting is directly defrosted by a radiation heat, resulting in that the defrosting time is shortened. As the halogen heater 8, energy having a peak value of energy distribution set from a visible range to a near far infrared ray is used to cause an initial melting effect can be improved and a characteristic of the halogen heater 8 is realized by increasing a rate of permeation as the melting state is proceeded. Then, the evaporator 2 has a structure in which the surface of the connecting pipe 10 is provided with several fins 11 and then the surface is treated with a selective absorption surface treatment for efficiently absorbing energy radiated by the halogen heater 8 and for generating heat.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷蔵庫、冷蔵室、冷凍
庫、冷凍室等の保冷装置に使用されている蒸発器に付着
した霜を除去するための保冷装置用蒸発器の除霜装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defrosting device for an evaporator for a cooler for removing frost attached to an evaporator used in a cooler such as a refrigerator, a refrigerator, a freezer and a freezer. .

【0002】[0002]

【従来の技術】一般に、冷凍庫等の保冷装置に用いられ
ている蒸発器には、その表面に周囲の水分が冷却して霜
として付着し成長するという現象が見られる。蒸発器の
表面に霜が成長すると、蒸発器の機能が劣化するので、
蒸発器の近傍には付着した霜を融解除去するための除霜
装置が設けられている。
2. Description of the Related Art Generally, in an evaporator used in a cold storage device such as a freezer, a phenomenon in which ambient water is cooled and adheres as frost to grow on the surface of the evaporator is observed. When frost grows on the surface of the evaporator, the function of the evaporator deteriorates.
A defrosting device for melting and removing adhered frost is provided near the evaporator.

【0003】図4は、従来の家庭用冷凍冷蔵庫の上部を
示す正面図(図a)、および側断面図(図b)で、冷凍
室1内に設置されている蒸発器2の下部に、赤外線ヒー
タ3、保護カバー4およびドレインパン5からなる除霜
装置を配置した構成例を示している。
[0003] Fig. 4 is a front view (Fig. A) showing a top part of a conventional domestic refrigerator-freezer and a side sectional view (Fig. B), showing a lower part of an evaporator 2 installed in a freezer compartment 1. An example of a configuration in which a defrosting device including an infrared heater 3, a protective cover 4 and a drain pan 5 is arranged is shown.

【0004】常時は蒸発器2からの冷気がファン6を介
して冷凍室1内に送り込まれるが、蒸発器2の外周に霜
が付着すると、ファン6が停止して蒸発器2の下部に設
けた赤外線ヒータ3を通電する。
Normally, the cool air from the evaporator 2 is sent into the freezer compartment 1 via the fan 6, but if frost adheres to the outer periphery of the evaporator 2, the fan 6 stops and the cool air is provided below the evaporator 2. The infrared heater 3 is energized.

【0005】赤外線ヒータ3はその外周がガラス管によ
って被服保護されており、このガラス管の高温時に水滴
が接触して破損しないように、真上には金属性の保護カ
バー4が設けられている。
The infrared heater 3 has its outer periphery protected by a glass tube, and a metallic protective cover 4 is provided right above the glass tube so that water drops do not come into contact with and damage the glass tube when the temperature is high. .

【0006】赤外線ヒータ3が通電加熱されると、周囲
の空気が加熱され、対流によって上昇して、蒸発器2の
表面に付着した霜を融解する。融解した水滴は、ドレイ
ンパン5内に落下し、導管7を介して庫外に排出され
る。
When the infrared heater 3 is electrically heated, the surrounding air is heated and rises by convection to melt the frost adhering to the surface of the evaporator 2. The melted water drop falls into the drain pan 5 and is discharged to the outside of the refrigerator via the conduit 7.

【0007】[0007]

【発明が解決しようとする課題】従来の除霜装置は、主
に赤外線ヒータ3の表面部で加熱された空気が対流によ
り蒸発器2の表面部に到達して付近の霜を融解させるも
ので、熱伝導率の悪い空気を媒体としているため加熱効
率が悪く、加えて低温の冷凍庫内にかなりの熱漏洩を生
じるためエネルギー損失が大きく、投入したエネルギー
の割には長い除霜時間を要していた。このため、除霜消
費電力が大きなものとなるばかりか、次のような不都合
があった。
In the conventional defrosting apparatus, air heated mainly on the surface of the infrared heater 3 reaches the surface of the evaporator 2 by convection to melt the frost in the vicinity. The heating efficiency is poor because air with poor thermal conductivity is used as a medium, and considerable heat leakage occurs in the low-temperature freezer, resulting in a large energy loss, and a long defrosting time is required for the input energy. Was there. Therefore, not only the defrosting power consumption becomes large, but also the following disadvantages occur.

【0008】除霜時には冷却運転を停止するので、除
霜時間に比例して庫内が暖まり冷却負荷が増加する。こ
のため、除霜後に設定保冷温度まで冷却するための消費
電力が増大する。 除霜中の加熱空気の庫内流入により、除霜後の再冷却
熱負荷がその分増大する。 除霜中の冷却停止に除霜のための加熱空気の流入が加
わり、庫内の貯蔵食品等の温度上昇をもたらし、保冷品
の品質劣化の進行が加速される。
Since the cooling operation is stopped at the time of defrosting, the interior of the refrigerator warms up and the cooling load increases in proportion to the defrosting time. For this reason, the power consumption for cooling to the set cool temperature after defrosting increases. Due to the inflow of the heated air during defrosting, the recooling heat load after defrosting increases by that amount. The inflow of heated air for defrosting is added to the stop of cooling during defrosting, which causes a rise in the temperature of foods stored in the refrigerator and the like, which accelerates the deterioration of the quality of cold-insulated products.

【0009】このように、従来の除霜装置では、主に空
気を加熱昇温させることによって除霜するため、間接的
で熱損失が大きく、低効率なものであった。そこで、本
発明は短時間で効率よく霜を取り除くことができる保冷
装置用蒸発器の除霜装置を提供することを目的とする。
As described above, in the conventional defrosting apparatus, since the defrosting is mainly performed by heating and raising the temperature of air, it is indirect, large in heat loss, and low in efficiency. Therefore, it is an object of the present invention to provide a defrosting device for an evaporator for a cooler that can remove frost efficiently in a short time.

【0010】[0010]

【課題を解決するための手段】本発明は、蒸発器の近傍
にヒータを配設して蒸発器に付着した霜を融解除去する
除霜装置において、ヒータがハロゲンヒータであること
を特徴とする。
According to the present invention, a heater is a halogen heater in a defrosting apparatus for melting and removing frost adhering to an evaporator by disposing a heater near the evaporator. .

【0011】また、この場合、ハロゲンヒータはその波
長−放射エネルギー特性のピーク値が近赤外域に有るも
のであることを特徴とする。
Further, in this case, the halogen heater is characterized in that the peak value of its wavelength-radiation energy characteristic is in the near infrared region.

【0012】また、この場合、ハロゲンヒータは蒸発器
の上部に配設されることを特徴とする。
Further, in this case, the halogen heater is arranged above the evaporator.

【0013】また、この場合、蒸発器はその表面にハロ
ゲンヒータの放射エネルギーを選択的に吸収する選択吸
収性表面処理が施されていることを特徴とする。
Further, in this case, the evaporator is characterized in that the surface thereof is subjected to a selective absorption surface treatment for selectively absorbing the radiant energy of the halogen heater.

【0014】[0014]

【作用】本発明の構成において、ヒータとしてハロゲン
ヒータを用いることにより、赤外線ヒータに比較して1
2 〜105 倍の放射エネルギーが得られ、輻射熱によ
って直接霜が融解されるため除霜時間が短縮される。
In the structure of the present invention, by using the halogen heater as the heater, it is
Radiant energy of 0 2 to 10 5 times is obtained, and frost is directly melted by radiant heat, so that the defrosting time is shortened.

【0015】霜層は可視光域(0.34μm〜0.76
μm)では反射率が高く、近赤外域では吸収性があるの
で、波長−放射エネルギー特性のピーク値が近赤外域に
あるハロゲンヒータを用いることにより、初期融解効果
が高められ、融解の進行に伴う透過率の上昇によりハロ
ゲンヒータの特性が発揮される。
The frost layer is in the visible light range (0.34 μm to 0.76).
μm) has a high reflectance and absorbs in the near infrared region. Therefore, by using a halogen heater having a peak value of wavelength-radiation energy characteristics in the near infrared region, the initial melting effect is enhanced, and the progress of melting progresses. The characteristics of the halogen heater are exhibited due to the accompanying increase in transmittance.

【0016】また、ハロゲンヒータを蒸発器の上部に設
けることにより、蒸発器の上部の霜が先に融解し、その
融解水が滴下して下部の霜を順次融解するため、融解時
間が極めて短縮される。
Further, by providing the halogen heater on the upper portion of the evaporator, the frost on the upper portion of the evaporator is melted first, and the melted water is dropped to sequentially melt the frost on the lower portion, so that the melting time is extremely shortened. To be done.

【0017】また、蒸発器の表面に選択吸収性表面処理
を施すことにより、融解の進行に伴う透過率の上昇によ
り、選択吸収性表面処理層が直接加熱され、それにより
蒸発器全体が熱伝導により加熱される結果、内側からも
霜が融解され、除霜時間が短縮される。
Further, by subjecting the surface of the evaporator to the selective absorptive surface treatment, the selective absorptive surface treated layer is directly heated due to the increase in the transmittance with the progress of melting, whereby the entire evaporator is thermally conductive. As a result of being heated by, the frost is melted from the inside as well, and the defrosting time is shortened.

【0018】[0018]

【実施例】図1は、本発明による保冷装置用蒸発器の除
霜装置を、家庭用冷凍冷蔵庫の冷凍室内に適用した一実
施例を示す構成図で、(a)は正面図、(b)は側断面
図である。なお、図4に示す構成要素と同一部分には同
一符号を付し詳細説明は省略する。
FIG. 1 is a constitutional view showing an embodiment in which the defrosting device for an evaporator for a cold storage device according to the present invention is applied to a freezing chamber of a domestic refrigerator-freezer, in which (a) is a front view and (b) is ) Is a side sectional view. The same components as those shown in FIG. 4 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0019】本実施例は、除霜用ヒータとして従来の赤
外線ヒータに代えて円筒状のハロゲンヒータ8を使用
し、このハロゲンヒータ8を蒸発器2の上部に設け、さ
らにその上部に凹面状の反射板9を設けた構成を有す
る。
In this embodiment, a cylindrical halogen heater 8 is used as a defrosting heater in place of the conventional infrared heater, the halogen heater 8 is provided on the upper part of the evaporator 2, and a concave surface is provided on the upper part thereof. The reflector 9 is provided.

【0020】図2は、赤外線ヒータおよびハロゲンヒー
タの「波長(μm)−放射エネルギー(W/m2 ・μ
m)」特性曲線図で、この特性図から明らかなように、
ハロゲンヒータは赤外線ヒータの約102 〜105 倍の
エネルギーを放射することが分かる。本実施例のハロゲ
ンヒータ8としてはエネルギー分布のピーク値が0.3
4〜3.0μmの可視光域から近赤外域にあるものが用
いられる。
FIG. 2 shows “wavelength (μm) -radiant energy (W / m 2 · μ” of the infrared heater and the halogen heater.
m) ”characteristic curve diagram, as is clear from this characteristic diagram,
It can be seen that the halogen heater radiates about 10 2 to 10 5 times as much energy as the infrared heater. The halogen heater 8 of this embodiment has an energy distribution peak value of 0.3.
Those in the visible to near-infrared region of 4 to 3.0 μm are used.

【0021】とくに、霜層は可視光線域(0.34〜
0.76μm)で反射率が高く透過率が低いので、ピー
ク値が0.5μmの可視光域にあるハロゲンヒータAの
ような特性を有するものよりも、ピーク値が1.0μm
の近赤外域にあるハロゲンヒータBのような特性を有す
るものを用いるとよい。
Particularly, the frost layer is in the visible light range (0.34 to
0.76 μm), the reflectance is high and the transmittance is low, so that the peak value is 1.0 μm more than that having characteristics such as the halogen heater A in the visible light region having the peak value of 0.5 μm.
It is preferable to use a heater having characteristics such as the halogen heater B in the near infrared region.

【0022】すると、除霜開始時には霜の融解に対して
ハロゲンヒータのエネルギー効率が比較的に低いのであ
るが、近赤外域の吸収はあるので、霜の融解の進行に応
じて透過率が上昇し、ハロゲンヒータの特性が発揮され
る。
Then, at the start of defrosting, the energy efficiency of the halogen heater is relatively low against the melting of frost, but since there is absorption in the near infrared region, the transmittance increases as the melting of frost progresses. However, the characteristics of the halogen heater are exhibited.

【0023】図3は、蒸発器2の構成図で、(a)は正
面図、(b)は側面図である。同図に示すように、蒸発
器2は連続管10の表面に多数のフィン11を設けた構
造を有しており、その表面はハロゲンヒータ8が放射す
るエネルギーを効率よく吸収して発熱するための選択吸
収性表面処理が施されている。
3A and 3B are configuration diagrams of the evaporator 2. FIG. 3A is a front view and FIG. 3B is a side view. As shown in the figure, the evaporator 2 has a structure in which a large number of fins 11 are provided on the surface of a continuous tube 10. The surface efficiently absorbs the energy emitted by the halogen heater 8 to generate heat. The selective absorption surface treatment is applied.

【0024】選択吸収域はハロゲンヒータ8の放射エネ
ルギー波長の大部分である0.34〜3.0μmに一致
し、その吸収率は0.94で赤外域の3.0〜25.0
μmに対する放射率0.2程度のものが得られる。この
ため、効率よくハロゲンヒータ8の放射エネルギーを吸
収して熱に変換すると共に、赤外域の放射が非常に少な
く、吸収した熱を逃がさないことから効果的に蒸発器2
を加熱して除霜することができる。
The selective absorption region coincides with most of the radiant energy wavelength of the halogen heater 8, which is 0.34 to 3.0 μm, and the absorptance thereof is 0.94, which is 3.0 to 25.0 in the infrared region.
An emissivity of about 0.2 for μm can be obtained. Therefore, the radiant energy of the halogen heater 8 is efficiently absorbed and converted into heat, and the radiation in the infrared region is very small, and the absorbed heat is not released, so that the evaporator 2 can be effectively used.
Can be defrosted by heating.

【0025】この選択吸収性表面処理は、例えば太陽光
集熱器の集熱板の表面処理に用いられるものと同様で、
二次電解着色法、メッキ法、化成処理法、塗装法などに
より処理できる。蒸発器2がアルミ製である場合は、二
次電解法が最も適当であるが、選択吸着性塗料の塗装に
よることもできる。これらの処理による皮膜は1μm程
度の極薄いものであるので、蒸発器2の熱交換性能に悪
影響を及ぼす心配はない。
This selective absorptive surface treatment is similar to that used for the surface treatment of the heat collecting plate of the solar collector, for example,
It can be treated by a secondary electrolytic coloring method, a plating method, a chemical conversion treatment method, a coating method, or the like. When the evaporator 2 is made of aluminum, the secondary electrolysis method is most suitable, but the selective adsorption paint may be applied. Since the film formed by these treatments is as thin as about 1 μm, there is no fear of adversely affecting the heat exchange performance of the evaporator 2.

【0026】反射板9はハロゲンヒータ8の上部にその
背面を覆うように設けられた凹面状の反射板で、ハロゲ
ンヒータ8の放射エネルギーを有効に蒸発器2に照射す
るためのものである。蒸発器2の周囲壁面を反射率95
%程度のアルミ薄板などで被覆すると、蒸発器2の周囲
壁面に吸収、透過される量が少なくなり、その効果はさ
らに助成される。
The reflecting plate 9 is a concave reflecting plate provided on the upper portion of the halogen heater 8 so as to cover the rear surface thereof, and is for radiating the radiant energy of the halogen heater 8 to the evaporator 2 effectively. The surrounding wall surface of the evaporator 2 has a reflectance of 95.
If it is covered with an aluminum thin plate of about%, the amount absorbed and permeated by the peripheral wall surface of the evaporator 2 is reduced, and the effect is further promoted.

【0027】この構成において、通常運転時はファン6
が運転され、蒸発器2から発生した冷気が冷凍室1内に
送入される。この冷凍運転によって蒸発器2の表面部に
多量の霜が着霜し、除霜が必要になると、冷凍サイクル
の冷却運転とファン6の運転とが停止され、代わりに蒸
発器2の上部に配設されたハロゲンヒータ8に通電され
る。
In this structure, the fan 6 is operated during normal operation.
Is operated, and the cool air generated from the evaporator 2 is fed into the freezer compartment 1. When a large amount of frost forms on the surface of the evaporator 2 due to this refrigeration operation and defrosting is required, the cooling operation of the refrigeration cycle and the operation of the fan 6 are stopped, and instead, it is placed on the top of the evaporator 2. The halogen heater 8 provided is energized.

【0028】通電されたハロゲンヒータ8は、波長1μ
m付近に放射エネルギーのピーク値を有する可視光域か
ら近赤外域の光エネルギーを照射し、反射板9によって
反射して蒸発器2の最上列の霜がまず融解される。透過
度が増してくると濡れた霜(または氷)を透過した光エ
ネルギーは蒸発器2の表面をも加熱しはじめる。
The halogen heater 8 energized has a wavelength of 1 μm.
Light energy in the visible to near-infrared region having a peak value of radiant energy in the vicinity of m is irradiated and reflected by the reflection plate 9 so that the frost in the uppermost row of the evaporator 2 is first melted. As the transmittance increases, the light energy transmitted through the wet frost (or ice) also starts heating the surface of the evaporator 2.

【0029】かくして、蒸発器2の表面が露出すると、
その表面は光エネルギーの吸収率が高く、熱の放射率が
低い選択吸収性表面処理が施されているので、ハロゲン
ヒータ8の放射エネルギーは効率良く熱に変換され、蒸
発器2自体が加熱され、熱伝導により順次下列のフィン
11に付着した霜が融解され、融解水の滴下による除霜
効果も加わり除霜速度が順次加速される。
Thus, when the surface of the evaporator 2 is exposed,
Since the surface thereof is subjected to the selective absorptive surface treatment that has a high absorption rate of light energy and a low emissivity of heat, the radiant energy of the halogen heater 8 is efficiently converted into heat and the evaporator 2 itself is heated. , The frost attached to the fins 11 in the lower row is sequentially melted by heat conduction, and the defrosting effect by dropping the melted water is also added to sequentially accelerate the defrosting speed.

【0030】また、融解が進行するにつれて蒸発器2の
露出面積が増大するので、加熱される面積も増加し、霜
の融解は加速されながら完了する。かくして融解した水
は逐次ドレインパン6に落下して収集され、導管7を経
由して庫外に排出される。
Further, since the exposed area of the evaporator 2 increases as the melting progresses, the heated area also increases, and the melting of frost is completed while being accelerated. The water thus melted is successively dropped into the drain pan 6 and collected, and discharged via the conduit 7 to the outside of the refrigerator.

【0031】このように、本発明によれば、高エネルギ
ーなハロゲンヒータ8による除霜、ハロゲンヒータ8を
蒸発器2の上部に配設したことによる除霜融解水の滴下
による除霜、選択吸収性表面処理を施した蒸発器2の加
熱による内面側からの加熱融解による除霜のそれぞれ
が、各個にあるいは相乗的に作用し合って除霜時間が極
めて短縮される。
As described above, according to the present invention, defrosting by the high energy halogen heater 8, defrosting by arranging the halogen heater 8 above the evaporator 2 by dripping defrosting molten water, and selective absorption. The defrosting by heating and melting from the inner surface side by the heating of the evaporator 2 which has been subjected to the functional surface treatment acts individually or synergistically, and the defrosting time is extremely shortened.

【0032】なお、前述の実施例では、本発明を家庭用
冷凍冷蔵庫に適用する場合について説明したが、本発明
はこれに限定されるものではなく、例えば保冷車の蒸発
器の除霜、船舶の保冷庫の蒸発器の除霜、冷蔵倉庫また
は冷凍倉庫の蒸発器の除霜などに適用できるものであ
る。
In the above-described embodiment, the case where the present invention is applied to a home refrigerator / freezer has been described. However, the present invention is not limited to this. It can be applied to defrosting evaporators in cold storages, defrosting evaporators in refrigerated warehouses or frozen warehouses.

【0033】[0033]

【発明の効果】本発明によれば、除霜時間が極めて短縮
される結果、保冷装置の冷却停止による熱負荷、および
除霜用のヒータの熱漏洩による熱負荷が共に軽減され、
再冷却に要するエネルギーがその分軽減されて省エネル
ギーとなるばかりか、除霜の高効率化によって保冷装置
内の温度変動が小さくなるので保冷品の品質劣化の進行
を遅延できる効果が得られる。
According to the present invention, as a result of the extremely short defrosting time, the heat load due to the cooling stop of the cooler and the heat load due to the heat leakage of the defrosting heater are both reduced.
Not only is the energy required for recooling reduced by that much to save energy, but also the temperature fluctuations in the cooler are reduced due to the high efficiency of defrosting, so the effect of delaying the deterioration of the quality of the cooled product can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による除霜装置の一実施例を示す構成図
で、(a)は正面図、(b)は側断面図である。
FIG. 1 is a configuration diagram showing an embodiment of a defrosting device according to the present invention, (a) is a front view and (b) is a side sectional view.

【図2】ヒータの波長−放射エネルギー特性曲線図であ
る。
FIG. 2 is a wavelength-radiant energy characteristic curve diagram of a heater.

【図3】蒸発器の構成図で、(a)は正面図、(b)は
側面図である。
FIG. 3 is a configuration diagram of an evaporator, in which (a) is a front view and (b) is a side view.

【図4】従来の除霜装置の構成図で、(a)は正面図、
(b)は側断面図である。
FIG. 4 is a configuration diagram of a conventional defrosting device, (a) is a front view,
(B) is a side sectional view.

【符号の説明】[Explanation of symbols]

1 冷凍室 2 蒸発器 5 ドレインパン 6 ファン 7 導管 8 ハロゲンヒータ 9 反射板 1 Freezer 2 Evaporator 5 Drain pan 6 Fan 7 Conduit 8 Halogen heater 9 Reflector

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器の近傍にヒータを配設して前記蒸
発器に付着した霜を融解除去する除霜装置において、前
記ヒータがハロゲンヒータであることを特徴とする保冷
装置用蒸発器の除霜装置。
1. A defroster for arranging a heater in the vicinity of an evaporator to melt and remove frost adhering to the evaporator, wherein the heater is a halogen heater. Defroster.
【請求項2】 前記ハロゲンヒータは、その波長−放射
エネルギー特性のピーク値が近赤外域に有るものである
ことを特徴とする請求項1記載の保冷装置用蒸発器の除
霜装置。
2. The defroster for an evaporator for a cooler according to claim 1, wherein the halogen heater has a wavelength-radiation energy characteristic peak value in a near infrared region.
【請求項3】 前記ハロゲンヒータは、前記蒸発器の上
部に配設されることを特徴とする請求項1または2記載
の保冷装置用蒸発器の除霜装置。
3. The defroster for an evaporator for a cooler according to claim 1 or 2, wherein the halogen heater is disposed above the evaporator.
【請求項4】 前記蒸発器は、その表面に前記ハロゲン
ヒータの放射エネルギーを選択的に吸収する選択吸収性
表面処理が施されていることを特徴とする請求項1〜3
のいずれか記載の保冷装置用蒸発器の除霜装置。
4. The evaporator has a surface subjected to a selective absorptive surface treatment for selectively absorbing the radiant energy of the halogen heater.
7. A defrosting device for an evaporator for a cooler according to any one of 1.
JP30210594A 1994-12-06 1994-12-06 Defrosting device of evaporator of cold air holding device Pending JPH08159642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30210594A JPH08159642A (en) 1994-12-06 1994-12-06 Defrosting device of evaporator of cold air holding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30210594A JPH08159642A (en) 1994-12-06 1994-12-06 Defrosting device of evaporator of cold air holding device

Publications (1)

Publication Number Publication Date
JPH08159642A true JPH08159642A (en) 1996-06-21

Family

ID=17904998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30210594A Pending JPH08159642A (en) 1994-12-06 1994-12-06 Defrosting device of evaporator of cold air holding device

Country Status (1)

Country Link
JP (1) JPH08159642A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003170A (en) * 2005-05-24 2007-01-11 Denso Corp Ejector type cycle
JP2011007435A (en) * 2009-06-26 2011-01-13 Mitsubishi Electric Corp Refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003170A (en) * 2005-05-24 2007-01-11 Denso Corp Ejector type cycle
JP2011007435A (en) * 2009-06-26 2011-01-13 Mitsubishi Electric Corp Refrigerator

Similar Documents

Publication Publication Date Title
JPH1123135A (en) Refrigerator having defrosting device
US2592394A (en) Refrigerator defrost product disposal system
JP2010133590A (en) Refrigerator-freezer
KR102610474B1 (en) Evaporating unit and refrigerator having the same
CN103453718B (en) Refrigerator
JPH09105575A (en) Defrposting apparatus of evaporator for heat insulation apparatus
JPH08159642A (en) Defrosting device of evaporator of cold air holding device
JPH01163585A (en) Defrostation control method of refrigeration cycle
JP3626890B2 (en) refrigerator
JP3622611B2 (en) refrigerator
JP7012139B2 (en) refrigerator
RU230251U1 (en) Vacuum sublimation drying device
CN222634920U (en) Refrigerating apparatus
JP2851683B2 (en) Refrigerator with thawing room
RU2831147C1 (en) Vacuum sublimation drying unit
JPS62297680A (en) Refrigerator
JP2004020003A (en) Refrigerator
JPS60228876A (en) Refrigerator
JPH0428990A (en) Electric refrigerator
JPS5896974A (en) refrigerator
CN113758120A (en) Refrigerator and defrosting intelligent control system thereof
JP2004347219A (en) Refrigerator
JPS6373072A (en) Defrost device for refrigerator
RU1830438C (en) Air cooler for refrigerating chamber
JPH05256556A (en) Refrigerator