[go: up one dir, main page]

JPH08159611A - Water cooled condenser - Google Patents

Water cooled condenser

Info

Publication number
JPH08159611A
JPH08159611A JP30052294A JP30052294A JPH08159611A JP H08159611 A JPH08159611 A JP H08159611A JP 30052294 A JP30052294 A JP 30052294A JP 30052294 A JP30052294 A JP 30052294A JP H08159611 A JPH08159611 A JP H08159611A
Authority
JP
Japan
Prior art keywords
condenser
heat transfer
refrigerant
water
gas refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30052294A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yabe
一義 矢部
Mitsuru Komatsu
満 小松
Tetsuo Shimoide
哲雄 下出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Shimizu Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Shimizu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Shimizu Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP30052294A priority Critical patent/JPH08159611A/en
Publication of JPH08159611A publication Critical patent/JPH08159611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

(57)【要約】 【構成】水冷式冷凍装置の水冷式シェルアンドチューブ
凝縮器2において、凝縮能力の大きい凝縮器と凝縮器胴
部内径を同一として凝縮能力の小さい凝縮器を設計する
場合、必要な凝縮能力を得るために、冷却水通路を区分
する仕切部付近のガス冷媒と接触している伝熱管8の配
列が波形となるよう、ガス冷媒との接触面での伝熱管7
の密度を減少させる。 【効果】上部に配列された伝熱管で凝縮され流下する液
冷媒によるガス冷媒と接触する伝熱管での熱交換性能の
低下を極力避けることで、凝縮されて凝縮器内に溜まる
液冷媒の液面を高くする必要がなくなり、従来より冷媒
封入量を減少させることができる。
(57) [Summary] [Structure] In the water-cooled shell-and-tube condenser 2 of a water-cooled refrigeration system, when designing a condenser having a large condensation capacity and a condenser having a small condensation capacity with the same inner diameter of the condenser body, In order to obtain the necessary condensing capacity, the heat transfer tubes 7 at the contact surface with the gas refrigerant are arranged so that the arrangement of the heat transfer tubes 8 in contact with the gas refrigerant in the vicinity of the partition that divides the cooling water passage becomes wavy.
Reduce the density of. [Effect] Liquid refrigerant liquid that is condensed and accumulated in the condenser by avoiding as much as possible the deterioration of heat exchange performance in the heat transfer pipe that comes into contact with the gas refrigerant due to the liquid refrigerant that is condensed by the heat transfer pipes arranged in the upper part and flows down. It is not necessary to make the surface high, and the amount of refrigerant enclosed can be reduced as compared with the conventional case.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水冷式冷凍装置に関す
る。
FIELD OF THE INVENTION The present invention relates to a water-cooled refrigeration system.

【0002】[0002]

【従来の技術】特開平4−116358 号公報に記載の凝縮器
において、凝縮能力の大きい凝縮器と凝縮器胴部内径を
同一として凝縮能力の小さい凝縮器を設計する場合、上
部に配列された伝熱管で凝縮され流下する液冷媒による
ガス冷媒と接触する伝熱管での熱交換性能の低下を極力
避け、必要な凝縮能力を得るためには、ガス冷媒と接触
する伝熱管をどのように間引いて、配列させるのが最善
であるかという問題点があった。また、その性能低下分
を、凝縮されて凝縮器内に溜まる液冷媒の液面を高くし
て、冷媒を過冷却する液冷媒で漬かる下部の伝熱管で補
うため、冷媒封入量を増加させなければならなかった。
2. Description of the Related Art In the condenser described in Japanese Patent Laid-Open No. 4-116358, when a condenser having a large condensing capacity and a condenser having a small condensing capacity with the same inner diameter of the condenser body are designed, they are arranged in the upper part. How to thin out the heat transfer tubes that are in contact with the gas refrigerant in order to avoid the deterioration of heat exchange performance in the heat transfer tubes that are in contact with the gas refrigerant due to the liquid refrigerant that is condensed and flows down in the heat transfer tubes and obtain the necessary condensation capacity. Then, there was a problem that it is best to arrange them. In addition, since the lowering of the performance is compensated by the heat transfer tube in the lower part that is submerged in the liquid refrigerant that supercools the refrigerant by increasing the liquid surface of the liquid refrigerant that is condensed and accumulated in the condenser, the amount of refrigerant to be filled must be increased. I had to do it.

【0003】[0003]

【発明が解決しようとする課題】従来の水冷式冷凍装置
の水冷式シェルアンドチューブ凝縮器において、複数の
独立した冷凍サイクルで排熱側の冷却水通路が共通とな
る場合、外形寸法の制約上、長手方向に短く、円周方向
に太くした複数個の凝縮器を直列に組合わせて、冷凍装
置をまとめることになる。この形の凝縮器において、外
形寸法の制約上、長手方向に短く、円周方向に太くする
ことにより、伝熱面積を確保し、排熱側冷却水の水速の
増加を抑えるために、伝熱管本数が増えることになり、
これに伴い伝熱管の段数も増えることになる。このと
き、下部に配列された伝熱管の熱交換性能は、上部に配
列された伝熱管で凝縮され流下する液冷媒が、外表面を
覆い、液膜の厚さが増加するため、液冷媒の影響がない
場合と比較して、伝熱管の外表面形状、及び流下する液
冷媒量にもよるが、6〜9割まで低下することになる。
したがって、ガス冷媒と接触している伝熱管での熱交換
は、凝縮器上部から伝熱管外表面で繰り返されるため、
下部伝熱管へ移るに連れ、伝熱管外表面へ流下する凝縮
液の付着量も増加し、凝縮器全体での熱交換性能の低下
は大きいものとなる。このため、凝縮能力の大きい凝縮
器と凝縮器胴部内径を同一として凝縮能力の小さい凝縮
器を設計する場合、上部に配列された伝熱管で凝縮され
流下する液冷媒によるガス冷媒と接触する伝熱管での熱
交換性能の低下を極力避け、必要な凝縮能力を得るに
は、ガス冷媒と接触する伝熱管をどのように間引いて、
配列させるのが最善であるかという問題点があった。ま
た、その性能低下分を、凝縮されて凝縮器内に溜まる液
冷媒の液面を高くして、冷媒を過冷却する液冷媒で漬か
る下部の伝熱管で性能低下分を補うため、冷媒封入量を
増加させなければならないという問題点があった。
In the conventional water-cooled shell-and-tube condenser of the water-cooled refrigeration system, when a plurality of independent refrigerating cycles share a common cooling water passage on the exhaust heat side, the external dimensions are restricted. A plurality of condensers that are short in the longitudinal direction and thick in the circumferential direction are combined in series to form a refrigeration system. In this type of condenser, in order to secure the heat transfer area and suppress the increase in the water speed of the exhaust heat side cooling water by shortening it in the longitudinal direction and thickening it in the circumferential direction due to the restrictions on the external dimensions, The number of heat tubes will increase,
Along with this, the number of stages of heat transfer tubes also increases. At this time, the heat exchange performance of the heat transfer tubes arranged in the lower part is that the liquid refrigerant condensed and flowed down in the heat transfer tubes arranged in the upper part covers the outer surface and the thickness of the liquid film increases, so Compared with the case where there is no influence, it will be reduced to 60 to 90% depending on the outer surface shape of the heat transfer tube and the amount of liquid refrigerant flowing down.
Therefore, heat exchange in the heat transfer tube in contact with the gas refrigerant is repeated on the outer surface of the heat transfer tube from the upper part of the condenser,
As it moves to the lower heat transfer tube, the amount of the condensed liquid flowing down to the outer surface of the heat transfer tube also increases, and the heat exchange performance of the entire condenser deteriorates significantly. For this reason, when designing a condenser with a large condensing capacity and a condenser with a small condensing capacity by making the inner diameter of the condenser body the same, the transfer of the liquid refrigerant that is condensed by the heat transfer tubes arranged in the upper part and is in contact with the gas refrigerant. In order to avoid the deterioration of heat exchange performance in the heat tube as much as possible and to obtain the necessary condensing capacity, how to thin out the heat transfer tube that is in contact with the gas refrigerant,
There was a problem whether it was best to arrange them. In addition, the amount of reduced performance is increased by increasing the liquid level of the liquid refrigerant that is condensed and accumulated in the condenser, and the lower heat transfer tube that is immersed in the liquid refrigerant that supercools the refrigerant compensates for the decreased performance. There was a problem that it had to be increased.

【0004】本発明は、凝縮能力の大きい凝縮器と凝縮
器胴部内径を同一として凝縮能力の小さい凝縮器を設計
する場合、必要な凝縮能力を得るために、冷却水通路を
区分する仕切部付近のガス冷媒と接触している伝熱管配
列が波形となるよう、ガス冷媒との接触面での伝熱管本
数を減少させることにより、上部に配列された伝熱管で
凝縮され流下する液冷媒によるガス冷媒と接触する伝熱
管での熱交換性能の低下を極力避けることにある。ま
た、その性能低下を防ぐことにより、凝縮されて凝縮器
内に溜まる液冷媒の液面を高くして、冷媒を過冷却する
液冷媒で漬かる下部の伝熱管で性能低下分を補う必要が
なくなり、従来より冷媒封入量を減少させることが可能
となる。
According to the present invention, when a condenser having a large condensing capacity and a condenser having a small condensing capacity with the same inner diameter of the condenser body are designed, a partitioning section for dividing the cooling water passage is obtained in order to obtain a necessary condensing capacity. By reducing the number of heat transfer tubes at the contact surface with the gas refrigerant so that the heat transfer tube arrangement that is in contact with the nearby gas refrigerant has a wavy shape, the liquid refrigerant that is condensed and flows down by the heat transfer tubes arranged in the upper part It is to avoid the deterioration of the heat exchange performance in the heat transfer tube that comes into contact with the gas refrigerant as much as possible. In addition, by preventing the performance deterioration, the liquid level of the liquid refrigerant that is condensed and accumulated in the condenser is raised, and it is not necessary to supplement the performance deterioration with the lower heat transfer tube that is immersed in the liquid refrigerant that supercools the refrigerant. Therefore, it becomes possible to reduce the amount of refrigerant to be filled in as compared with the conventional case.

【0005】[0005]

【課題を解決するための手段】上記目的は水冷式シェル
アンドチューブ凝縮器において、凝縮能力の大きい凝縮
器と凝縮器胴部内径を同一として凝縮能力の小さい凝縮
器を設計する場合、冷却水通路を区分する仕切部付近の
ガス冷媒と接触している伝熱管配列が波形となるよう、
ガス冷媒との接触面での伝熱管密度を減少させることに
より達成される。
In the water-cooled shell-and-tube condenser, when a condenser having a large condensing capacity and a condenser having a same condensing body inner diameter and a small condensing capacity are designed, a cooling water passage is provided. So that the arrangement of the heat transfer tubes in contact with the gas refrigerant near the partition that divides the
This is achieved by reducing the heat transfer tube density at the contact surface with the gas refrigerant.

【0006】[0006]

【作用】圧縮機,水冷式シェルアンドチューブ凝縮器,
水冷却器,膨張弁で構成される冷凍サイクルを有する水
冷式冷凍装置において、凝縮能力の大きい凝縮器と凝縮
器胴部内径を同一として凝縮能力の小さい凝縮器を設計
する場合、必要な凝縮能力を得るために、冷却水通路を
区分する仕切部付近のガス冷媒と接触している伝熱管配
列が波形となるよう、ガス冷媒との接触面での伝熱管本
数を減少させる。これにより、上部に配列された伝熱管
で凝縮され流下する液冷媒によるガス冷媒と接触する伝
熱管での熱交換性能の低下が避けられる。したがって、
この性能低下を防ぐことにより、凝縮されて凝縮器内に
溜まる液冷媒の液面を高くして、冷媒を過冷却する液冷
媒で漬かる下部の伝熱管で性能低下分を補う必要がなく
なり、従来より冷媒封入量を減少させることが可能とな
る。また、排熱側の冷却水通路は、凝縮器の端から流入
し凝縮器内を通過し、反対側の端で折り返し凝縮器内
を、再度、通過し流出するという2通路となっている
が、冷却水通路を区分する仕切部付近の伝熱管を波形に
減少させているので、1通路当りの伝熱管本数は同じと
なり、1通路当りの熱交換性能のバランスは保たれるこ
とになる。
[Operation] Compressor, water-cooled shell and tube condenser,
In a water-cooled refrigeration system with a refrigeration cycle consisting of a water cooler and an expansion valve, when designing a condenser with a large condensation capacity and a condenser with a small condensation capacity with the same inner diameter of the condenser body, the required condensation capacity In order to obtain the above, the number of heat transfer tubes at the contact surface with the gas refrigerant is reduced so that the heat transfer tube arrangement in contact with the gas refrigerant in the vicinity of the partition section that divides the cooling water passage has a wavy shape. As a result, the heat exchange performance of the heat transfer tubes that are in contact with the gas refrigerant due to the liquid refrigerant that is condensed and flows down by the heat transfer tubes arranged above is avoided. Therefore,
By preventing this performance deterioration, the liquid surface of the liquid refrigerant that is condensed and accumulated in the condenser is raised, and there is no need to compensate for the performance deterioration with the lower heat transfer tube that is immersed in the liquid refrigerant that supercools the refrigerant. It is possible to further reduce the amount of refrigerant enclosed. Further, the cooling water passage on the exhaust heat side has two passages that flow in from the end of the condenser, pass through the inside of the condenser, and return at the end on the opposite side to pass through the inside of the condenser again and flow out. Since the number of heat transfer tubes near the partition that divides the cooling water passage is reduced to a corrugated shape, the number of heat transfer tubes per passage is the same, and the balance of heat exchange performance per passage is maintained.

【0007】[0007]

【実施例】以下、本発明の一実施例を説明する。EXAMPLE An example of the present invention will be described below.

【0008】図1は、本発明を実施する水冷式冷凍装置
の構成図である。
FIG. 1 is a block diagram of a water-cooled refrigerating apparatus for carrying out the present invention.

【0009】図2は、本発明の水冷式シェルアンドチュ
ーブ凝縮器の断面図である。
FIG. 2 is a sectional view of the water-cooled shell-and-tube condenser of the present invention.

【0010】その構成は、圧縮機1,水冷式シェルアン
ドチューブ凝縮器2,膨張弁3,水冷却器4からなる冷
凍サイクルであり、水冷式シェルアンドチューブ凝縮器
2は、図2に詳細を示す断面図となる構造となってい
る。
The structure is a refrigeration cycle consisting of a compressor 1, a water-cooled shell-and-tube condenser 2, an expansion valve 3, and a water-cooler 4. The water-cooled shell-and-tube condenser 2 is shown in detail in FIG. The structure is as shown in the sectional view.

【0011】圧縮機1で圧縮された高温高圧のガス冷媒
は、冷媒入口5より凝縮器内に流入する。このガス冷媒
は、上部に配列された伝熱管6と熱交換し、凝縮化され
滴下する。滴下した液冷媒は、中心部に配列された伝熱
管7を伝わりながら、液冷媒の液面9まで達する。そし
て、凝縮器下部に溜まった液冷媒は、冷媒出口10から
流出し、膨張弁3を通り、水冷却器4へ流入し圧縮機1
へ戻る。
The high-temperature high-pressure gas refrigerant compressed by the compressor 1 flows into the condenser through the refrigerant inlet 5. This gas refrigerant exchanges heat with the heat transfer tubes 6 arranged in the upper part, is condensed and drops. The dropped liquid refrigerant reaches the liquid surface 9 of the liquid refrigerant while being transmitted through the heat transfer tubes 7 arranged in the central portion. Then, the liquid refrigerant accumulated in the lower part of the condenser flows out from the refrigerant outlet 10, passes through the expansion valve 3, flows into the water cooler 4, and enters the compressor 1
Return to.

【0012】本発明によれば、凝縮能力の大きい凝縮器
と凝縮器胴部内径を同一として凝縮能力の小さい凝縮器
を設計する場合、必要な凝縮能力を得るために、冷却水
通路を区分する仕切部付近のガス冷媒と接触している伝
熱管配列が波形となるよう、ガス冷媒との接触面での伝
熱管密度を減少させることにより、上部に配列された伝
熱管で凝縮され流下する液冷媒によるガス冷媒と接触す
る伝熱管での熱交換性能の低下が極力避けられる。ま
た、その性能低下を防ぐことにより、凝縮されて凝縮器
内に溜まる液冷媒の液面を高くして、冷媒を過冷却する
液冷媒で漬かる下部の伝熱管で性能低下分を補う必要が
なくなり、従来より冷媒封入量を減少させることが可能
となる。
According to the present invention, when a condenser having a large condensing capacity and a condenser having a small condensing capacity with the same inner diameter of the condenser body are designed, the cooling water passages are divided in order to obtain a necessary condensing capacity. Liquid that is condensed and flows down by the heat transfer tubes arranged in the upper part by reducing the density of the heat transfer tubes at the contact surface with the gas refrigerant so that the heat transfer tube arrangement in contact with the gas refrigerant near the partition becomes wavy. It is possible to avoid a decrease in heat exchange performance in the heat transfer tube that comes into contact with the gas refrigerant due to the refrigerant. In addition, by preventing the performance deterioration, the liquid level of the liquid refrigerant that is condensed and accumulated in the condenser is raised, and it is not necessary to supplement the performance deterioration with the lower heat transfer tube that is immersed in the liquid refrigerant that supercools the refrigerant. Therefore, it becomes possible to reduce the amount of refrigerant to be filled in as compared with the conventional case.

【0013】[0013]

【発明の効果】本発明によれば、凝縮能力の大きい凝縮
器と凝縮器胴部内径を同一として凝縮能力の小さい凝縮
器を設計する場合、必要な凝縮能力を得るために、冷却
水通路を区分する仕切部付近のガス冷媒と接触している
伝熱管配列が波形となるよう、ガス冷媒との接触面での
伝熱管本数を減少させることにより、上部に配列された
伝熱管で凝縮され流下する液冷媒によるガス冷媒と接触
する伝熱管での熱交換性能の低下が極力避けられる。ま
た、その性能低下を防ぐことにより、凝縮されて凝縮器
内に溜まる液冷媒の液面を高くして、冷媒を過冷却する
液冷媒で漬かる下部での伝熱管で補う必要がなくなり、
従来より冷媒封入量を減少させることが可能となる。
According to the present invention, when designing a condenser having a large condensing capacity and a condenser having a small condensing capacity with the same inner diameter of the condenser body, a cooling water passage is provided to obtain a necessary condensing capacity. By reducing the number of heat transfer tubes at the contact surface with the gas refrigerant so that the heat transfer tube arrangement that is in contact with the gas refrigerant near the partitioning section becomes wavy, it is condensed by the heat transfer tubes arranged above and flows down. The deterioration of the heat exchange performance in the heat transfer tube in contact with the gas refrigerant due to the liquid refrigerant is prevented as much as possible. Also, by preventing the performance degradation, the liquid surface of the liquid refrigerant that is condensed and accumulated in the condenser is raised, and there is no need to supplement it with a heat transfer tube in the lower part that is immersed in the liquid refrigerant that supercools the refrigerant,
It is possible to reduce the amount of refrigerant enclosed as compared with the conventional case.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する水冷式冷凍装置のブロック
図。
FIG. 1 is a block diagram of a water-cooled refrigeration system embodying the present invention.

【図2】本発明の水冷式シェルアンドチューブ凝縮器の
断面図。
FIG. 2 is a sectional view of the water-cooled shell-and-tube condenser of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…水冷式シェルアンドチューブ凝縮器、
3…膨張弁、4…水冷却器、5…冷媒入口、6,7,8
…伝熱管、9…液面、10…冷媒出口。
1 ... Compressor, 2 ... Water-cooled shell and tube condenser,
3 ... Expansion valve, 4 ... Water cooler, 5 ... Refrigerant inlet, 6, 7, 8
... Heat transfer tube, 9 ... Liquid level, 10 ... Refrigerant outlet.

フロントページの続き (72)発明者 下出 哲雄 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内Front Page Continuation (72) Inventor Tetsuo Shimoda 390 Muramatsu, Shimizu City, Shizuoka Prefecture, Hitachi, Ltd. Air Conditioning Systems Division

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機,凝縮器,水冷却器,膨張弁を含む
水冷式冷凍装置の水冷式シェルアンドチューブ凝縮器に
おいて、凝縮能力の大きい凝縮器と凝縮器胴部内径を同
一として凝縮能力の小さい凝縮器を設計する場合、必要
な凝縮能力を得るために、冷却水通路を区分する仕切部
付近のガス冷媒と接触している伝熱管配列が波形となる
よう、ガス冷媒との接触面での伝熱管密度を減少させた
ことを特徴とする水冷式シェルアンドチューブ凝縮器。
1. A water-cooled shell-and-tube condenser of a water-cooled refrigeration system including a compressor, a condenser, a water cooler, and an expansion valve, wherein the condenser having a large condensing capacity and the condensing capacity of the condenser body have the same inner diameter. When designing a condenser with a small size, in order to obtain the necessary condensing capacity, the contact surface with the gas refrigerant must be arranged so that the heat transfer tube arrangement that is in contact with the gas refrigerant near the partition that divides the cooling water passage becomes wavy. A water-cooled shell-and-tube condenser characterized by a reduced heat transfer tube density.
JP30052294A 1994-12-05 1994-12-05 Water cooled condenser Pending JPH08159611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30052294A JPH08159611A (en) 1994-12-05 1994-12-05 Water cooled condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30052294A JPH08159611A (en) 1994-12-05 1994-12-05 Water cooled condenser

Publications (1)

Publication Number Publication Date
JPH08159611A true JPH08159611A (en) 1996-06-21

Family

ID=17885836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30052294A Pending JPH08159611A (en) 1994-12-05 1994-12-05 Water cooled condenser

Country Status (1)

Country Link
JP (1) JPH08159611A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100498211B1 (en) * 2000-10-24 2005-07-01 미츠비시 쥬고교 가부시키가이샤 Condenser for refrigerating machine
CN102980332A (en) * 2012-12-04 2013-03-20 重庆美的通用制冷设备有限公司 Heat recovery shell and tube condenser
CN108917160A (en) * 2018-07-12 2018-11-30 红塔烟草(集团)有限责任公司 A kind of system that plate heat exchanger is used as central air-conditioning refrigeration subsidiary engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100498211B1 (en) * 2000-10-24 2005-07-01 미츠비시 쥬고교 가부시키가이샤 Condenser for refrigerating machine
US7028762B2 (en) 2000-10-24 2006-04-18 Mitsubishi Heavy Industries, Ltd. Condenser for refrigerating machine
CN102980332A (en) * 2012-12-04 2013-03-20 重庆美的通用制冷设备有限公司 Heat recovery shell and tube condenser
CN108917160A (en) * 2018-07-12 2018-11-30 红塔烟草(集团)有限责任公司 A kind of system that plate heat exchanger is used as central air-conditioning refrigeration subsidiary engine

Similar Documents

Publication Publication Date Title
US6523365B2 (en) Accumulator with internal heat exchanger
US5479985A (en) Heat exchanger
US6769269B2 (en) Multistage gas and liquid phase separation condenser
JP3056151B2 (en) Heat exchanger
US5592830A (en) Refrigerant condenser with integral receiver
JPH109713A (en) Refrigerant condensing device and refrigerant condenser
US20070056718A1 (en) Heat exchanger and duplex type heat exchanger
JP2003028539A (en) Heat exchanger and refrigerating cycle system
JPH08159611A (en) Water cooled condenser
JP3926854B2 (en) Air-cooled condenser
CN112880243A (en) Flat tube cascade condenser and air conditioning unit
JP3764904B2 (en) Refrigerating cycle and method for determining receiver volume of refrigeration cycle
GB2344413A (en) Refrigerators having freezing and cooling compartment evaporators
JP2005106329A (en) Subcool type condenser
JP3367235B2 (en) Refrigeration cycle of vehicle air conditioner
KR20070102172A (en) Heat exchanger with condenser and oil cooler
GB2386940A (en) Accumulator with an internal heat exchanger
CN215373042U (en) Flat tube overlapping type condenser and air conditioning unit
KR100723810B1 (en) Heat exchanger
CN210921674U (en) Shell and tube condenser and water chilling unit
JP3129721B2 (en) Refrigerant condenser and method of setting the number of tubes of refrigerant condenser
JPH0783539A (en) Turbo refrigerator
JPH07218040A (en) Water cooled condenser
JP2000314574A (en) Capacitor with receiver tank
JPH08200887A (en) Water cooled condenser