JPH08155379A - Transfer method of fine particle film - Google Patents
Transfer method of fine particle filmInfo
- Publication number
- JPH08155379A JPH08155379A JP6304092A JP30409294A JPH08155379A JP H08155379 A JPH08155379 A JP H08155379A JP 6304092 A JP6304092 A JP 6304092A JP 30409294 A JP30409294 A JP 30409294A JP H08155379 A JPH08155379 A JP H08155379A
- Authority
- JP
- Japan
- Prior art keywords
- fine particle
- film
- solid secondary
- secondary substrate
- particle film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Laminated Bodies (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
(57)【要約】
【目的】 微粒子膜を固体2次基板上へ円滑、かつ、均
質に転写付着することができる微粒子膜の転写付着方法
を提供する。
【構成】 固体2次基板の表面をエネルギー線照射によ
り活性化するか、または疎水化処理し、疎水面を生成す
ることを特徴とする。あるいは、固体2次基板の表面に
特異的結合リガンド膜を配設するか、固体2次基板の表
面にチオール基を吸着させることにより変性蛋白質を生
成させて微粒子膜を転写付着させる。もしくは、超微粒
子にエネルギー線を照射して活性ラジカルを生成させて
転写付着させる。
(57) [Abstract] [PROBLEMS] To provide a method for transferring and attaching a fine particle film onto a solid secondary substrate, which is capable of transferring and attaching the fine particle film smoothly and uniformly. [Structure] A surface of a solid secondary substrate is activated by irradiation with energy rays or is subjected to a hydrophobic treatment to generate a hydrophobic surface. Alternatively, a specific binding ligand film is provided on the surface of the solid secondary substrate, or a thiol group is adsorbed on the surface of the solid secondary substrate to generate a denatured protein and transfer and attach the fine particle film. Alternatively, the ultrafine particles are irradiated with energy rays to generate active radicals and transfer-attach them.
Description
【0001】[0001]
【産業上の利用分野】この発明は、微粒子膜の固体2次
基板への転写付着方法に関するものである。さらに詳し
くは、この発明は、各種の機能材料として、電子デバイ
ス、センサー、分子素子、生体適合材等として有用な微
粒子膜の固体基板への付着転写方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for transferring and attaching a fine particle film to a solid secondary substrate. More specifically, the present invention relates to a method for depositing and transferring a fine particle film onto a solid substrate, which is useful as an electronic device, a sensor, a molecular element, a biocompatible material, etc. as various functional materials.
【0002】[0002]
【従来の技術とその課題】従来より、この発明の発明者
らによって、次世代の機能材料の高度展開のための微粒
子膜の形成についての検討が進められている。この過程
において、ナノメートルオーダー、ミクロンメーターオ
ーダーの微粒子を、液面上もしくは固体基板上に凝集配
列させて膜状構造とした二次元の微粒子膜の形成方法が
技術的に確立されてきている。また、この微粒子膜の多
層構造化による3次元化についての検討も進んでいる。2. Description of the Related Art Conventionally, the inventors of the present invention have studied the formation of a fine particle film for advanced development of next-generation functional materials. In this process, a method of forming a two-dimensional fine particle film having a film-like structure by aggregating nanometer-order and micron-order particles on a liquid surface or a solid substrate has been technically established. Further, studies are also underway on three-dimensionalization of the fine particle film by forming a multilayer structure.
【0003】しかしながら、このような注目すべき技術
的進歩ではあるが、液面上に形成した微粒子膜について
は、このものを固体2次基板に付着転写することが必要
になり、このための方策については必ずしも満足できる
手段が確立されていないのが実情であった。すなわち、
液体面上に展開した微粒子膜を固体の2次基板に転写付
着する際には、その固体2次基板の表面は転写付着され
る微粒子膜に対し付着性や粘着性を有していなければな
らない。微粒子膜の粒子が大きい場合は、固体2次基板
表面の凸凹が問題にならないため、従来より2次基板表
面に粘着テープを張りつけたり、接着剤を塗布したりす
ることにより表面に付着性、粘着性を与え、粒子膜を転
写付着することができる。しかしながら、微粒子膜を構
成する粒子が小さい蛋白質粒子(1nm〜100nm)
等の微粒子を転写付着する場合には、固体2次基板の表
面の凸凹が大きく問題となり、滑らかな表面でないと粘
着テープや接着剤による処理を行うことができず、微粒
子を転写付着することが実際上困難であった。However, although it is such a notable technological advancement, it is necessary to adhere and transfer the fine particle film formed on the liquid surface to the solid secondary substrate, which is a measure for this. As for the situation, the actual situation is that a satisfactory method has not been established. That is,
When the fine particle film developed on the liquid surface is transferred and attached to a solid secondary substrate, the surface of the solid secondary substrate must have adhesiveness or adhesiveness to the fine particle film to be transferred and attached. . If the particles of the fine particle film are large, the unevenness of the surface of the solid secondary substrate does not pose a problem. Therefore, by sticking an adhesive tape or applying an adhesive on the surface of the secondary substrate, adhesion and adhesion to the surface can be improved. It is possible to impart the property to transfer and attach the particle film. However, protein particles (1 nm to 100 nm) in which the particles forming the fine particle film are small
When transferring and adhering fine particles such as, the unevenness of the surface of the solid secondary substrate becomes a serious problem, and unless the surface is smooth, the treatment with an adhesive tape or an adhesive cannot be performed, and the fine particles may be transferred and adhered. It was actually difficult.
【0004】そこでこの発明は、上記のような従来技術
の欠点を解決するために創案されたものであり、新しい
微粒子膜の転写付着方法を提供することを目的としてい
る。Therefore, the present invention was devised to solve the above-mentioned drawbacks of the prior art, and an object thereof is to provide a new method for transferring and attaching a fine particle film.
【0005】[0005]
【課題を解決するための手段】上記の課題を解決するも
のとして、この発明は、液体面上に展開した微粒子分散
液から生成させた微粒子膜を固体2次基板に付着転写さ
せる方法であって、固体2次基板の表面をエネルギー線
照射により活性化して微粒子膜を付着させることを特徴
とする微粒子膜の転写付着方法を提供する。As a solution to the above problems, the present invention is a method for adhering and transferring a fine particle film produced from a fine particle dispersion liquid spread on a liquid surface onto a solid secondary substrate. Provided is a method for transferring and attaching a fine particle film, which comprises activating the surface of a solid secondary substrate by irradiation with energy rays to attach the fine particle film.
【0006】さらにまた、この発明は、固体2次基板の
表面を疎水化処理して疎水面(疎水膜)を生成させて転
写付着させること、固体2次基板の表面に特異的結合リ
ガンド膜を生成させて転写付着させること、固体2次基
板の表面に吸着させた変性蛋白質を生成させて転写付着
させること、さらには微粒子にエネルギー線を照射して
活性ラジカルを生成させて転写付着させることを特徴と
する微粒子膜の転写付着方法をも提供する。Furthermore, according to the present invention, the surface of the solid secondary substrate is subjected to a hydrophobic treatment to form a hydrophobic surface (hydrophobic film) for transfer and adhesion, and a specific binding ligand film is formed on the surface of the solid secondary substrate. To generate and transfer and attach, to generate and transfer and attach denatured protein adsorbed on the surface of a solid secondary substrate, and to irradiate fine particles with energy rays to generate active radicals and transfer and attach. Also provided is a method of transferring and depositing a featured particulate film.
【0007】[0007]
【作用】この発明においては、上記の通りの手段によっ
てたとえば固体2次基板の表面をUV照射や、真空中に
おけるプラズマ処理や、イオン・スパッタリング処理を
施すことによりこの固体2次基板の表面を活性化して活
性面を生成させ、この活性面に微粒子膜を転写付着する
ことができる。In the present invention, the surface of the solid secondary substrate is activated by UV irradiation, plasma treatment in vacuum, or ion sputtering treatment, for example, by the means as described above. It can be converted into an active surface, and the fine particle film can be transferred and attached to the active surface.
【0008】また、固体2次基板の表面を疎水化処理す
ることにより固体2次基板の疎水面(疎水膜)を生成さ
せ、この疎水面(疎水膜)上に疎水結合により微粒子膜
を転写付着することができる。さらにまた、固体2次基
板の表面に抗体、アゼチン、ストレプトアゼチン等の特
異的結合リガンドを一様に付着させることによりリガン
ド膜を生成させ、このリガンド膜との結合により固体2
次基板表面に付着させたリガンドと同じ特異的結合リガ
ンドを持つ蛋白質粒子等のような微粒子膜を転写付着す
ることができる。Further, a hydrophobic surface (hydrophobic film) of the solid secondary substrate is generated by subjecting the surface of the solid secondary substrate to a hydrophobic treatment, and a fine particle film is transferred and attached onto the hydrophobic surface (hydrophobic film) by hydrophobic bonding. can do. Furthermore, a ligand film is formed by uniformly adhering a specific binding ligand such as an antibody, azetin, streptazetin or the like on the surface of the solid secondary substrate, and the solid film is formed by binding with the ligand film.
A fine particle film such as protein particles having the same specific binding ligand as the ligand attached to the surface of the next substrate can be transferred and attached.
【0009】あるいは、固体2次基板の表面にチオール
基等により吸着させた変性蛋白質を配設し、この変性蛋
白質により固体2次基板表面と微粒子との接触する部位
であるシステイン残基を遺伝子工学的に導入させること
により微粒子を転写付着することができる。さらにま
た、微粒子にUV等のエネルギー線を照射することによ
り活性ラジカルを生成させ、この活性ラジカルを付着反
応に用いることにより微粒子膜を固体2次基板上に転写
付着することができる。Alternatively, a denatured protein adsorbed by a thiol group or the like is arranged on the surface of the solid secondary substrate, and the cysteine residue, which is a site where the surface of the solid secondary substrate comes into contact with the fine particles is genetically engineered by this denatured protein. The fine particles can be transferred and attached by introducing them selectively. Furthermore, by irradiating the fine particles with an energy ray such as UV to generate active radicals, and using the active radicals in the attachment reaction, the fine particle film can be transferred and attached to the solid secondary substrate.
【0010】もちろん、この発明においては、微粒子の
種類に特に限定はなく、有機ポリマー、天然または合成
蛋白質等の高分子物質、セラミックス、金属、それらの
複合体であってよい。その種類によって、付着転写の手
段が選択されることになる。また、微粒子の大きさは、
ナノメートル、あるいはミクロンメートルの微粒子とす
ることができる。付着転写の対象となるこれらの微粒子
の膜は、微粒子が2次元に凝集した構造、あるいはそれ
らの3次元集積構造等であってもよい。In the present invention, of course, the type of the fine particles is not particularly limited, and may be an organic polymer, a polymer substance such as a natural or synthetic protein, a ceramic, a metal, or a complex thereof. Depending on the type, the means of adhesion transfer will be selected. Also, the size of the fine particles is
It can be nanometer or micrometer fine particles. The film of these fine particles to be subjected to the adhesion transfer may have a structure in which the fine particles are two-dimensionally aggregated, or a three-dimensional integrated structure thereof.
【0011】固体2次基板についても各種のものが採用
される。たとえばシリコン等の半導体、金属、グラファ
イト、カーボン膜、ガラス、その他セラミック、有機ポ
リマー、木材、繊維等の表面であってよい。微粒子膜そ
のものについては、水銀、水、その他有機溶媒の表面
に、微粒子分散液を展開し、分散液媒体を蒸発、吸引等
によって除去することで、微粒子を2次元に凝集配列さ
せたもの、あるいはその結晶化構造、それらの3次元構
造を適宜に対象とすることができる。Various types of solid secondary substrates are also adopted. For example, it may be the surface of a semiconductor such as silicon, metal, graphite, a carbon film, glass, other ceramics, organic polymers, wood, fibers and the like. Regarding the fine particle film itself, a fine particle dispersed in a two-dimensional manner by spreading the fine particle dispersion on the surface of mercury, water, or other organic solvent and removing the dispersion medium by evaporation, suction, or the like, or The crystallized structure and those three-dimensional structures can be appropriately targeted.
【0012】[0012]
【実施例】以下、実施例を示し、さらに詳しく、この発
明について説明する。もちろんこの発明は以下の例によ
って限定されるものではない。実施例1 図1は、イオン・スパッタリング処理を施したカーボン
膜に転写付着されたポリスチレン微粒子(平均粒径約4
0nm)の膜の透過型電子顕微鏡の像を示したものであ
る。また、図2は、イオン・スパッタリング処理を施し
たカーボン膜に転写付着されたフェリチン蛋白質粒子
(平均粒径20nm)の膜の透過型電子顕微鏡の像を示
したものである。EXAMPLES The present invention will be described in more detail below with reference to examples. Of course, the present invention is not limited to the following examples. Example 1 FIG. 1 shows polystyrene fine particles (average particle size of about 4) transferred and attached to a carbon film subjected to ion sputtering treatment.
(0 nm) is a transmission electron microscope image of the film. FIG. 2 shows a transmission electron microscope image of a film of ferritin protein particles (average particle size 20 nm) transferred and attached to a carbon film that has been subjected to an ion sputtering treatment.
【0013】いずれの場合も、まず、へき開したばかり
の新鮮なマイカ表面にカーボンを真空蒸着させることに
より薄いカーボン膜を作成し、このカーボン膜を蒸留水
表面にてマイカ表面から剥離し、銅メッシュの上にすく
いとる。このすくいとったカーボン膜表面に常法に従っ
て、Ar(アルゴン)イオンによりイオン・スパッタリ
ングを施す。イオン・スパッタリング処理の後すぐに、
このカーボン膜を水銀や水、あるいは有機溶媒などの液
体表面に展開された上記微粒子膜に数秒から数分間上か
ら押しつけることにより超微粒子薄膜を固体2次基板で
あるカーボン膜に転写付着させる。もちろん、カーボン
膜に代えてSiやグラファイト等の固体2次基板への転
写付着も可能となる。実施例2 図3は、疎水化処理を施したSi基板に疎水結合により
転写付着された蛋白質粒子膜の走査型電子顕微鏡の像を
示したものである。In any case, first, a thin carbon film is formed by vacuum-depositing carbon on a freshly cleaved mica surface, and the carbon film is separated from the mica surface on the distilled water surface to form a copper mesh. Scoop on top. Ion sputtering is performed on the surface of the scooped carbon film by Ar (argon) ions according to a conventional method. Immediately after the ion sputtering process,
The carbon film is pressed from above for a few seconds to a few minutes onto the fine particle film developed on the surface of a liquid such as mercury, water, or an organic solvent to transfer and adhere the ultrafine particle thin film to the carbon film which is the solid secondary substrate. Of course, it is possible to transfer and attach Si or graphite to a solid secondary substrate instead of the carbon film. Example 2 FIG. 3 shows an image of a scanning electron microscope of a protein particle film transferred and attached by hydrophobic bonding to a Si substrate that has been subjected to a hydrophobic treatment.
【0014】すなわち、固体2次基板であるSi基板を
1−20%のHF水溶液に浸し薄いSiO2 被膜をはぎ
とることにより疎水化処理を施す。この疎水化処理によ
り露出されたSi面、つまりSi基板の疎水面を水表面
上に展開されたフェリチン蛋白質粒子膜に数秒から数分
間上から押しつけることにより疎水面と蛋白質粒子膜を
疎水結合させて転写付着させる。実施例3 図4は、疎水化処理によりITOガラス上に電界重合し
たポリピロール膜上に疎水結合により転写付着されたフ
ェリチン蛋白質粒子膜の走査型電子顕微鏡の像を示した
ものである。That is, the Si substrate, which is a solid secondary substrate, is dipped in a 1-20% HF aqueous solution and the thin SiO 2 coating is stripped off to perform a hydrophobic treatment. The hydrophobic surface and the protein particle film are hydrophobically bound by pressing the exposed Si surface, that is, the hydrophobic surface of the Si substrate, against the ferritin protein particle film spread on the water surface from above for several seconds to several minutes. Transfer and attach. Example 3 FIG. 4 shows an image of a scanning electron microscope of a ferritin protein particle film transferred and attached by a hydrophobic bond to a polypyrrole film electropolymerized on ITO glass by a hydrophobic treatment.
【0015】すなわち、まず、ポリピロール膜を生成す
る電極であるITOガラスと参照電極である白金を希薄
なピロール水溶液に浸漬し、この電極に1.2V以下の
直流電圧を印加することにより電界重合を行う。この電
界重合によりITOガラス上に疎水膜であるポリピロー
ル膜を生成する。生成されたポリピロール膜厚はピロー
ル水溶液の濃度と直流電圧の印加時間により調整する。
ポリピロール膜を十分に乾かした後、水表面上に展開さ
れたフェリチン蛋白質粒子膜に数秒から数分間上から押
しつけることにより疎水結合させて転写付着させる。ポ
リピロール膜(疎水膜)を生成する電極には、ITO膜
だけではなく、金、白金など導電性を有するものを用い
ることができる。実施例4 図5は、疎水化処理によりガラス面上に付着されたカゼ
イン膜の疎水面に転写付着されたポリスチレン粒子膜の
走査型電子顕微鏡の像を示したものである。That is, first, ITO glass, which is an electrode for forming a polypyrrole film, and platinum, which is a reference electrode, are immersed in a dilute aqueous solution of pyrrole, and a DC voltage of 1.2 V or less is applied to this electrode to effect electric field polymerization. To do. By this electric field polymerization, a polypyrrole film which is a hydrophobic film is formed on the ITO glass. The produced polypyrrole film thickness is adjusted by the concentration of the pyrrole aqueous solution and the application time of the DC voltage.
After the polypyrrole film is sufficiently dried, the polypyrrole film is pressed against the ferritin protein particle film developed on the water surface from above for a few seconds to a few minutes to be hydrophobically bonded and transfer-attached. As the electrode for forming the polypyrrole film (hydrophobic film), not only the ITO film but also a conductive material such as gold or platinum can be used. Example 4 FIG. 5 shows a scanning electron microscope image of a polystyrene particle film transferred and adhered to the hydrophobic surface of the casein film adhered on the glass surface by the hydrophobic treatment.
【0016】すなわちまず、親水基と疎水基の両方を同
じ鎖に持つ高分子であり、且つ界面化学的性質を持つカ
ゼインを水面上に展開し、展開されたカゼイン膜を親水
固体の表面(ガラス面)上に引き上げ法により付着させ
ることによりカゼイン膜の疎水面を表に出させる。この
ガラス面上のカゼイン膜の疎水面を水表面上に展開され
たポリスチレン粒子膜に数秒から数分間上から押しつけ
ることにより疎水結合させてポリスチレン粒子膜を転写
付着する。That is, first, casein, which is a polymer having both a hydrophilic group and a hydrophobic group in the same chain, and which has surface chemical properties is spread on the water surface, and the spread casein film is used as a surface of a hydrophilic solid (glass). The hydrophobic surface of the casein film is exposed by adhering it onto the surface by pulling up. The hydrophobic surface of the casein film on the glass surface is pressed against the polystyrene particle film developed on the water surface from above for several seconds to several minutes to cause hydrophobic bonding and transfer and attachment of the polystyrene particle film.
【0017】[0017]
【発明の効果】この発明により、以上詳しく説明した通
り、上記の例に限られることなく、微粒子膜の固体基板
への円滑、かつ均質な転写付着が可能とされる。As described in detail above, according to the present invention, it is possible to smoothly and uniformly transfer and attach a fine particle film to a solid substrate without being limited to the above example.
【図1】イオン・スパッタリング処理を施したカーボン
膜に転写付着されたポリスチレン粒子膜の透過型電子顕
微鏡像(TEM像:加速電圧100kV、直接観察)の
図面に代わる写真である。FIG. 1 is a photograph replacing a drawing of a transmission electron microscope image (TEM image: accelerating voltage 100 kV, direct observation) of a polystyrene particle film transferred and attached to a carbon film that has been subjected to an ion sputtering treatment.
【図2】イオン・スパッタリング処理を施したカーボン
膜に転写付着された蛋白質粒子膜の透過型電子顕微鏡像
(TEM像:加速電圧100kV、ウラニルアセテート
染色)の図面に代わる写真である。FIG. 2 is a photograph replacing a drawing of a transmission electron microscope image (TEM image: accelerating voltage 100 kV, uranyl acetate stain) of a protein particle film transferred and attached to a carbon film subjected to ion sputtering treatment.
【図3】疎水化処理を施したSi基板に疎水結合により
転写付着された蛋白質粒子膜の走査型電子顕微鏡像(S
EM像:加速電圧1kV、直接観察)の図面に代わる写
真である。FIG. 3 is a scanning electron microscope image (S) of a protein particle film transferred and attached by hydrophobic bonding to a Si substrate that has been subjected to a hydrophobic treatment.
EM image: acceleration voltage 1 kV, direct observation).
【図4】疎水化処理によりITOガラス上に電界重合し
たポリピロール膜に疎水結合により転写付着された蛋白
質粒子膜の走査型電子顕微鏡像(SEM像:加速電圧1
kV、直接観察)の図面に代わる写真である。FIG. 4 is a scanning electron microscope image (SEM image: accelerating voltage 1) of a protein particle film transferred and attached by hydrophobic bonding to a polypyrrole film electropolymerized on ITO glass by a hydrophobic treatment.
kV, direct observation).
【図5】疎水化処理によりガラス面上に付着されたガラ
ス膜の疎水面に転写付着されたポリスチレン粒子膜の走
査型電子顕微鏡像(SEM像:加速電圧1kV、直接観
察)の図面に代わる写真である。FIG. 5 is a photograph replacing a drawing of a scanning electron microscope image (SEM image: accelerating voltage 1 kV, direct observation) of a polystyrene particle film transferred and attached to a hydrophobic surface of a glass film attached to a glass surface by a hydrophobic treatment. Is.
Claims (5)
成させた微粒子膜を固体2次基板に付着転写させる方法
であって、固体2次基板の表面をエネルギー線照射によ
り活性化して微粒子膜を付着させることを特徴とする微
粒子膜の転写付着方法。1. A method of adhering and transferring a fine particle film produced from a fine particle dispersion liquid spread on a liquid surface to a solid secondary substrate, wherein the surface of the solid secondary substrate is activated by irradiation of energy rays. A method for transferring and attaching a fine particle film, which comprises depositing
成させた微粒子膜を固体2次基板に付着転写させる方法
であって、固体2次基板の表面を疎水化処理して疎水面
を生成させ、次いで微粒子膜を付着させることを特徴と
する微粒子膜の転写付着方法。2. A method for depositing and transferring a fine particle film produced from a fine particle dispersion liquid spread on a liquid surface onto a solid secondary substrate, wherein the surface of the solid secondary substrate is subjected to a hydrophobic treatment to form a hydrophobic surface. And then depositing the fine particle film.
成させた微粒子膜を固体2次基板に付着転写させる方法
であって、固体2次基板の表面に特異的結合リガンド膜
を配設し、次いで微粒子膜を付着させることを特徴とす
る微粒子膜の転写付着方法。3. A method of adhering and transferring a fine particle film produced from a fine particle dispersion liquid spread on a liquid surface to a solid secondary substrate, wherein a specific binding ligand film is provided on the surface of the solid secondary substrate. Then, a method for transferring and attaching a fine particle film, which comprises depositing a fine particle film next.
成させた微粒子膜を固体2次基板に付着転写させる方法
であって、固体2次基板の表面に吸着させた変性蛋白質
膜を配設し、次いで微粒子膜を付着させることを特徴と
する超微粒子の転写付着方法。4. A method for depositing and transferring a fine particle film produced from a fine particle dispersion liquid spread on a liquid surface onto a solid secondary substrate, wherein a denatured protein film adsorbed on the surface of the solid secondary substrate is provided. Then, a method for transferring and attaching ultrafine particles, which comprises depositing a fine particle film.
成させた微粒子膜を固体2次基板に付着転写させる方法
であって、微粒子にエネルギー線を照射して活性ラジカ
ルを生成させ、次いで微粒子膜を付着させることを特徴
とする超微粒子の転写付着方法。5. A method of depositing and transferring a fine particle film produced from a fine particle dispersion liquid spread on a liquid surface onto a solid secondary substrate, wherein fine particles are irradiated with energy rays to generate active radicals, and then fine particles are generated. A method for transferring and attaching ultrafine particles, which comprises depositing a film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6304092A JP2915812B2 (en) | 1994-12-07 | 1994-12-07 | Transfer adhesion method of fine particle film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6304092A JP2915812B2 (en) | 1994-12-07 | 1994-12-07 | Transfer adhesion method of fine particle film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08155379A true JPH08155379A (en) | 1996-06-18 |
JP2915812B2 JP2915812B2 (en) | 1999-07-05 |
Family
ID=17928930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6304092A Expired - Fee Related JP2915812B2 (en) | 1994-12-07 | 1994-12-07 | Transfer adhesion method of fine particle film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2915812B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003040025A1 (en) * | 2001-11-08 | 2003-05-15 | Matsushita Electric Industrial Co., Ltd. | Micrograin film and process for producing the same |
US7129047B2 (en) | 2000-03-16 | 2006-10-31 | Matsushita Electric Industrial Co., Ltd. | Method for manufacturing a nucleotide detector |
US7732005B2 (en) | 2004-05-25 | 2010-06-08 | Hitachi, Ltd. | Method for producing recording medium, recording medium employing said method, and information recording and reproducing apparatus |
JP2015507353A (en) * | 2011-12-15 | 2015-03-05 | ダウ グローバル テクノロジーズ エルエルシー | Method of forming a photoelectric device having a stabilized metal oxide layer |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006223931A (en) * | 2005-02-15 | 2006-08-31 | Soken Chem & Eng Co Ltd | Two-dimensional particle aligned member, two-dimensional void aligned porous member and manufacturing method of them |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63226290A (en) * | 1987-03-17 | 1988-09-20 | Nitto Electric Ind Co Ltd | Method for recovery and purification of useful substance and apparatus therefor |
JPS63242373A (en) * | 1987-03-31 | 1988-10-07 | Ricoh Co Ltd | Film forming method |
JPH0226669A (en) * | 1988-07-13 | 1990-01-29 | Fujitsu Ltd | Method for producing dioxypyrimidine derivative thin film |
JPH0271873A (en) * | 1988-09-05 | 1990-03-12 | Japan Atom Energy Res Inst | Manufacturing method of monomolecular cumulative film |
JPH0214854B2 (en) * | 1984-05-15 | 1990-04-10 | Koronbia Univ | |
JPH0555534B2 (en) * | 1990-05-30 | 1993-08-17 | Hitachi Ltd | |
JPH05307179A (en) * | 1991-03-15 | 1993-11-19 | Toshiba Corp | Production of monomolecular film and production of monomolecular piled up film |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6260476B2 (en) | 2013-10-10 | 2018-01-17 | 京セラドキュメントソリューションズ株式会社 | Image forming apparatus |
-
1994
- 1994-12-07 JP JP6304092A patent/JP2915812B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0214854B2 (en) * | 1984-05-15 | 1990-04-10 | Koronbia Univ | |
JPS63226290A (en) * | 1987-03-17 | 1988-09-20 | Nitto Electric Ind Co Ltd | Method for recovery and purification of useful substance and apparatus therefor |
JPS63242373A (en) * | 1987-03-31 | 1988-10-07 | Ricoh Co Ltd | Film forming method |
JPH0226669A (en) * | 1988-07-13 | 1990-01-29 | Fujitsu Ltd | Method for producing dioxypyrimidine derivative thin film |
JPH0271873A (en) * | 1988-09-05 | 1990-03-12 | Japan Atom Energy Res Inst | Manufacturing method of monomolecular cumulative film |
JPH0555534B2 (en) * | 1990-05-30 | 1993-08-17 | Hitachi Ltd | |
JPH05307179A (en) * | 1991-03-15 | 1993-11-19 | Toshiba Corp | Production of monomolecular film and production of monomolecular piled up film |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7129047B2 (en) | 2000-03-16 | 2006-10-31 | Matsushita Electric Industrial Co., Ltd. | Method for manufacturing a nucleotide detector |
WO2003040025A1 (en) * | 2001-11-08 | 2003-05-15 | Matsushita Electric Industrial Co., Ltd. | Micrograin film and process for producing the same |
US7037728B2 (en) | 2001-11-08 | 2006-05-02 | Matsushita Electric Industrial Co., Ltd. | Fine particle film and producing method of the same |
US7399642B2 (en) | 2001-11-08 | 2008-07-15 | Matsushita Electric Industrial Co., Ltd. | Fine particle film and producing method of the same |
US7732005B2 (en) | 2004-05-25 | 2010-06-08 | Hitachi, Ltd. | Method for producing recording medium, recording medium employing said method, and information recording and reproducing apparatus |
JP2015507353A (en) * | 2011-12-15 | 2015-03-05 | ダウ グローバル テクノロジーズ エルエルシー | Method of forming a photoelectric device having a stabilized metal oxide layer |
Also Published As
Publication number | Publication date |
---|---|
JP2915812B2 (en) | 1999-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8475869B2 (en) | Selective nanoparticle assembly systems and methods | |
Sato et al. | Nanoscale colloidal particles: Monolayer organization and patterning | |
KR101100380B1 (en) | Surface treatment method for treating the surface of the substrate with high hydrophobicity | |
KR100499594B1 (en) | Method for forming ordered structure of fine metal particles | |
CN109689329A (en) | Method and apparatus for producing large-area monolayer films of solution-dispersed nanomaterials | |
CN113295670A (en) | Preparation method of micro-fluidic chip detection device based on SERS substrate | |
TW200530041A (en) | Bonding structure and method for bonding members | |
CN101427357B (en) | Nanoparticle implantation | |
JPH08155379A (en) | Transfer method of fine particle film | |
CN115304096B (en) | Wafer-level film forming method, film and application of indium oxide nano-particles | |
TW201438247A (en) | Single electron transistor having uniform pattern arrangement of nano particles and manufacturing method thereof | |
CN1733596A (en) | Methods for Isolating and Replacing Nanoparticles | |
Lamping et al. | Hybrid TiO 2/metal nanoparticle microstructures made by microcontact printing, absorption and electroless deposition | |
JP5278666B2 (en) | Manufacturing method of ultrafine particle thin film | |
Vidoni et al. | Self-assembly of gold nanoclusters on molecularly modified GaAs | |
US20230378265A1 (en) | Structure and field effect transistor | |
JP3884658B2 (en) | Manufacturing method of fine particle integrated substrate | |
JPH09264823A (en) | Sample holding substrate and method therefor | |
JP2000143705A (en) | Polymer thin film and manufacturing method thereof | |
Rehacek et al. | Treatment of TiO2 surface for deposition of gold nanoparticles from colloidal suspension | |
RU2693546C2 (en) | Method for deposition of colloidal nanoparticles of gold on surface of silicon semiconductor plates | |
JP5519956B2 (en) | Conductive member and manufacturing method thereof | |
KR101068146B1 (en) | How to improve adhesion between substrates | |
JP2022171568A (en) | Method for manufacturing metal wiring | |
JP2022043723A (en) | Metal wiring manufacturing method and kit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090416 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100416 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110416 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110416 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120416 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120416 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |