JPH08151820A - Damping coefficient adjustment type vibration control device - Google Patents
Damping coefficient adjustment type vibration control deviceInfo
- Publication number
- JPH08151820A JPH08151820A JP29713894A JP29713894A JPH08151820A JP H08151820 A JPH08151820 A JP H08151820A JP 29713894 A JP29713894 A JP 29713894A JP 29713894 A JP29713894 A JP 29713894A JP H08151820 A JPH08151820 A JP H08151820A
- Authority
- JP
- Japan
- Prior art keywords
- damping coefficient
- damping
- displacement
- beam frame
- omega
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
(57)【要約】
【目的】 簡単な制御機構により、建物の振動周期が変
動する場合や高次振動が卓越するような状況下において
も、装置による減衰付加を高く保ち、建物の安全性、快
適性を高めることができる減衰係数調整型制震装置を提
供する。
【構成】 柱・梁架構の梁32とブレース33との間に
可変減衰装置1を設置する。地震等の振動外力が作用し
たときの柱・梁架構の変位xを変位計34で計測し、制
御回路40に入力する。変位xを微分回路41で微分
し、応答加速度aを求める。変位xと加速度aから、振
動数同定回路42により柱・梁架構の振動周波数ωt を
求める。変位xおよび加速度aが小さい範囲について
は、誤差を考慮してωt の上下限を設け、ωt 制限回路
43によりωt をωt ’に置き換える。ωt ’の入力に
より、減衰係数演算回路44で、ct =Kb /〔ωt '
(1+N)1/2 〕の演算を行い、可変減衰装置1に対
し、減衰係数ct の指令を出力する。
(57) [Abstract] [Purpose] The simple control mechanism keeps the damping added by the device high even when the vibration cycle of the building fluctuates or in the situation where high-order vibration is dominant, and (EN) Provided is a damping coefficient adjusting type vibration damping device capable of enhancing comfort. [Structure] The variable damping device 1 is installed between a beam 32 and a brace 33 of a column / beam frame. The displacement x of the column / beam frame when an external vibration force such as an earthquake is applied is measured by the displacement meter 34 and input to the control circuit 40. The displacement x is differentiated by the differentiating circuit 41 to obtain the response acceleration a. From the displacement x and the acceleration a, the vibration frequency ω t of the column / beam frame is obtained by the frequency identification circuit 42. To the extent the displacement x and the acceleration a is small, in consideration of an error provided upper and lower limits of the omega t, replacing omega t in omega t 'by omega t limiting circuit 43. By inputting ω t ′, in the damping coefficient calculation circuit 44, ct = K b / [ω t '
(1 + N) performs an operation 1/2], with respect to the variable damping device 1 outputs a command of the damping coefficient c t.
Description
【0001】[0001]
【産業上の利用分野】本願発明は、地震や風等の振動外
力に対する構造物の応答について高い減衰性を与え、そ
の振動を低減するための減衰係数調整型制震装置に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a damping coefficient adjusting type damping device for imparting a high damping property to the response of a structure to an external vibration force such as an earthquake or wind and reducing the vibration.
【0002】[0002]
【従来の技術】制震構造物用可変減衰装置は、構造物の
架構内に設置し、個々の地震や風外力等の特性に応じて
装置の減衰係数を能動的に変化させることにより、その
減衰抵抗力で構造物の揺れを低減するものであり、コン
ピュータ等を用いた制御手段により構造物の減衰性を評
価した制御を行うことができる。2. Description of the Related Art A variable damping device for a seismic control structure is installed in a frame of a structure, and the damping coefficient of the device is actively changed according to the characteristics such as individual earthquakes and external wind forces. The damping resistance reduces the sway of the structure, and the control means using a computer or the like can perform the control in which the damping property of the structure is evaluated.
【0003】このような、制震構造物用可変減衰装置と
しては、例えば特開平2−289769号公報に記載さ
れたもの等がある。As such a variable damping device for a vibration control structure, there is, for example, the one described in JP-A-2-289769.
【0004】図4は、このような可変減衰装置の一例を
油圧回路図として示したもので、シリンダ2内で往復動
する両ロッド型のピストン3の左右に油圧室6を設け、
この左右の油圧室6内の圧油を弁により閉止し、または
流動させることにより、ピストン3を固定し、または左
右移動自在とする構成になっている。FIG. 4 shows an example of such a variable damping device as a hydraulic circuit diagram, in which hydraulic chambers 6 are provided on the left and right of a double rod type piston 3 which reciprocates in a cylinder 2.
By closing or flowing the pressure oil in the left and right hydraulic chambers 6 with a valve, the piston 3 is fixed or movable left and right.
【0005】そして、シリンダ2及びロッド4をそれぞ
れ構造物の柱・梁架構本体またはブレースや耐震壁等の
耐震要素に連結することで、柱・梁架構の変形に対し減
衰抵抗力を与える。Then, the cylinder 2 and the rod 4 are respectively connected to the main body of the column / beam frame of the structure or seismic resistant elements such as braces and seismic walls to provide damping resistance against deformation of the column / beam frame.
【0006】左右の油圧室6には、それぞれ油圧室6の
圧油の流出を阻止する流出阻止用チェック弁8及び油圧
室6への圧油の流入を阻止する流入阻止用チェック弁9
が設けられ、左右の流出阻止用チェック弁8どうしを連
結する流入用流路10と、左右の流入阻止用チェック弁
9どうしを連結する流出用流路11とが設けられてい
る。The left and right hydraulic chambers 6 respectively include an outflow prevention check valve 8 for preventing the pressure oil from flowing out of the hydraulic chamber 6 and an inflow prevention check valve 9 for preventing the pressure oil from flowing into the hydraulic chamber 6.
Is provided, and an inflow passage 10 that connects the left and right outflow prevention check valves 8 and an outflow passage 11 that connects the left and right inflow prevention check valves 9 are provided.
【0007】これら流入用流路10及び流出用流路11
の連結位置には流量制御弁12が設けられており、この
流量制御弁12の開度を変化させることにより、可変減
衰装置1の減衰係数cを調整することができる。These inflow channel 10 and outflow channel 11
A flow rate control valve 12 is provided at the connecting position of, and the damping coefficient c of the variable damping device 1 can be adjusted by changing the opening degree of the flow rate control valve 12.
【0008】また、この例で、流量制御弁12は、弁体
の一端側に入口ポート15と出口ポート16を有し、他
端側に背圧ポート17を有する大流量切換弁12aと、
背圧ポート17への圧油の流出を制御し得るシャットオ
フ弁12bとからなり、コンピュータ14からの指令を
受けて、シャットオフ弁12bが開閉し、これに伴って
大流量切換弁12aが作動し、大流量切換弁12aの開
度及びその開度に応じた装置の減衰係数cが調整制御さ
れる。Further, in this example, the flow rate control valve 12 has a large flow rate switching valve 12a having an inlet port 15 and an outlet port 16 on one end side of the valve body and a back pressure port 17 on the other end side.
A shut-off valve 12b capable of controlling the outflow of pressure oil to the back pressure port 17, and in response to a command from the computer 14, the shut-off valve 12b opens and closes, and the large flow rate switching valve 12a operates accordingly. Then, the opening degree of the large flow rate switching valve 12a and the damping coefficient c of the device according to the opening degree are adjusted and controlled.
【0009】すなわち、流量制御弁12の開度を調整
し、完全なロック状態と完全なフリー状態の間で連結状
態を微妙に調整することにより、種々の減衰係数cを与
え、減衰係数cと架構本体の振動状態に応じ、そのとき
の架構本体の固有周期及び架構本体の減衰定数hが与え
られることになる。That is, by adjusting the opening degree of the flow control valve 12 and finely adjusting the connection state between the completely locked state and the completely free state, various damping coefficients c are given, and the damping coefficients c and According to the vibration state of the frame body, the natural period of the frame body and the damping constant h of the frame body at that time are given.
【0010】また、流入用流路10または流出用流路1
1には、作動油の圧縮及び温度変化による容積変化を補
うなどの目的で、アキュムレータ19等が設けられてい
る。Further, the inflow passage 10 or the outflow passage 1
1 is provided with an accumulator 19 and the like for the purpose of compensating for volume change due to compression of hydraulic oil and temperature change.
【0011】[0011]
【発明が解決しようとする課題】可変減衰装置の減衰係
数cを変化させ、建物架構の応答を低減する場合、種々
のパラメータを用いた種々の制御則が考え得るが、減衰
係数cの変化に伴い柱・梁架構、さらには建物全体とし
ての各次固有振動数が変化したり、それに応じて減衰定
数hも変化し、また2次以上の高次の固有振動数が卓越
する場合等、制御則を複雑化させる種々の要因がある。When the damping coefficient c of the variable damping device is changed to reduce the response of the building frame, various control laws using various parameters can be considered. With such changes, the natural frequency of each order of the column / beam structure and the entire building changes, the damping constant h also changes accordingly, and when the natural frequency of higher than 2nd order is predominant. There are various factors that complicate the rule.
【0012】これに対し、建物内外あるいは装置部に設
置したセンサー等からの信号を基にコンピュータで複雑
な解析を行い、複雑な制御を行うということも可能であ
るが、コストがかかる他、装置の作動や制御に関する安
定性でも問題が生じやすい。On the other hand, it is possible to perform a complicated analysis by a computer based on a signal from a sensor or the like installed inside or outside the building or in a device section, but it is costly and the device is not required. Stability related to the operation and control of is likely to cause problems.
【0013】本願発明は、比較的簡単な制御機構によ
り、建物の振動周期が変動する場合や高次振動が卓越す
るような状況下においても、装置による減衰付加を高く
保ち、建物の安全性、快適性を高めることができる減衰
係数調整型制震装置を提供することを目的としたもので
ある。According to the present invention, the relatively simple control mechanism keeps the damping addition by the device high even when the vibration period of the building fluctuates or in the situation where the higher order vibration is predominant. It is an object of the present invention to provide a damping coefficient adjusting type vibration control device capable of enhancing comfort.
【0014】[0014]
【課題を解決するための手段】本願発明の減衰係数調整
型制震装置は、構造物の柱・梁架構と、柱・梁架構内に
設けたブレースあるいは耐震壁等の耐震要素との間に設
置した可変減衰装置と、柱・梁架構の応答を検知するセ
ンサー等の応答検知手段と、可変減衰装置の減衰係数を
応答検知手段によって得られた応答値に応じて調整する
ための制御手段とからなる制震装置において、制御手段
が、応答検知手段によって得られた応答値に基づいて柱
・梁架構の時々刻々の振動周波数ωt を同定する振動周
波数同定手段と、同定された振動周波数ωt において柱
・梁架構の減衰定数hを最大にする時々刻々の最適減衰
係数copt を下記(1) 式に基づいて算定する最適減衰係
数算定手段と、最適減衰係数算定手段の出力によって可
変減衰装置の減衰係数を最適減衰係数copt に制御する
減衰係数制御手段とからなる。The damping coefficient adjusting type vibration damping device of the present invention is provided between a column / beam frame of a structure and a seismic resistant element such as a brace or an earthquake resistant wall provided in the column / beam frame. The installed variable damping device, response detecting means such as a sensor for detecting the response of the pillar / beam frame, and control means for adjusting the damping coefficient of the variable damping device according to the response value obtained by the response detecting means. In the seismic control device, the control means identifies the vibration frequency ω t of the column / beam frame at every moment based on the response value obtained by the response detection means, and the identified vibration frequency ω t. At t , the optimum damping coefficient c opt that maximizes the damping coefficient h of the column / beam frame is calculated based on the following equation (1), and variable damping is performed by the output of the optimum damping coefficient calculating means. The damping factor of the device The damping coefficient control means controls the optimum damping coefficient c opt .
【0015】[0015]
【数3】 (Equation 3)
【0016】(ただし、N=Kb /Kf ) ここで、Kb は耐震要素のみの剛性、Kf は柱・梁架構
のみの剛性、ωt はある時刻における耐震要素を含む柱
・梁架構全体の振動周波数である。(Where N = K b / K f ) where K b is the rigidity of only the seismic resistant element, K f is the rigidity of only the column / beam structure, and ω t is the column / beam including the seismic resistant element at a certain time. The vibration frequency of the entire frame.
【0017】高層建物のある層の柱・梁架構と耐震要素
としてのブレースおよび可変減衰装置は、図2および図
3のようにモデル化することができる。この層が振動数
f(Hz)の正弦波加振を受けるときの層の複素剛性KC は
次式で表される。The pillar / beam frame of a layer of a high-rise building, the brace as a seismic element, and the variable damping device can be modeled as shown in FIGS. 2 and 3. The complex stiffness K C of the layer when this layer is subjected to sine wave excitation with a frequency f (Hz) is expressed by the following equation.
【0018】[0018]
【数4】 [Equation 4]
【0019】(ただし、ω=2πf) ここで、層の減衰定数hは次式で表すことができる。(Where ω = 2πf) Here, the damping constant h of the layer can be expressed by the following equation.
【0020】[0020]
【数5】 (Equation 5)
【0021】(ただし、KR =KC の実数部、KI =K
C の虚数部) hを最大にするcを求めるため、dh/dc=0とおく
と、(However, K R = K C real part, K I = K
(Imaginary part of C ) To find c that maximizes h, set dh / dc = 0
【0022】[0022]
【数6】 (Equation 6)
【0023】となる。It becomes
【0024】フレーム剛性Kf とブレース剛性Kb の
比、Kb /Kf =Nとおくと、(4) 式はIf the ratio of the frame rigidity K f to the brace rigidity K b is set as K b / K f = N, then equation (4) is
【0025】[0025]
【数7】 (Equation 7)
【0026】と表すことができる。It can be expressed as
【0027】従って、層の減衰定数hを最大にするc
opt は、Kf ,Kb ,ωの値により定まることがわか
る。このうち、Kf ,Kb は設計時の諸元により定まる
ため、振動周波数ω(=2πf)が同定できればよいこ
とになる。Therefore, c which maximizes the damping constant h of the layer
It can be seen that opt is determined by the values of K f , K b , and ω. Of these, K f and K b are determined by the specifications at the time of design, so it is sufficient if the vibration frequency ω (= 2πf) can be identified.
【0028】ωを同定する手段としてはいろいろ考えら
れるが、ここでは例えば以下に示すような簡便な方法
(本願の請求項2、3の発明に対応)を提案する。There are various possible means for identifying ω, but here, for example, the following simple method (corresponding to the inventions of claims 2 and 3 of the present application) is proposed.
【0029】今、装置部の振幅が、x=D sinωt であ
るとすると、速度vおよび加速度aは、v=ωD cosω
t 、a=−ω2 D sinωt となるため、次式によりωが
同定できる。同定したωをωt とすると、Now, assuming that the amplitude of the device section is x = D sinωt, the velocity v and the acceleration a are v = ωD cosω
Since t and a = −ω 2 D sin ωt, ω can be identified by the following equation. If the identified ω is ω t ,
【0030】[0030]
【数8】 (Equation 8)
【0031】となる。## EQU1 ##
【0032】ただし、xおよびaが非常に小さいときに
は、ωt の誤差が大きくなることが考えられるため、以
下の制限を設けて、ωt ' とする。However, when x and a are very small, the error of ω t may be large. Therefore, the following limit is set and ω t ′ is set.
【0033】 ωL ≦ωt ' ≦ωU …… (7) ここで、ωL は下限値であり、例えば建物の1次振動数
の1/2程度、ωU は上限値であり、例えば建物の3次
振動数程度とすることができる。もちろん、建物の条件
によって適切な下限値ωL 、上限値ωU を設定すればよ
い。Ω L ≦ ω t '≦ ω U (7) Here, ω L is a lower limit value, for example, about ½ of the primary frequency of the building, and ω U is an upper limit value, for example, It can be about the third frequency of the building. Of course, appropriate lower limit value ω L and upper limit value ω U may be set according to the condition of the building.
【0034】これを、(5) 式に代入すれば、ある時刻に
おいて装置がとるべき減衰係数ctは、By substituting this into the equation (5), the damping coefficient c t that the device should take at a certain time is
【0035】[0035]
【数9】 [Equation 9]
【0036】となる。It becomes
【0037】これにより、非常に簡便なシステムで大き
な効果を発揮する制震構造物が実現できる。As a result, it is possible to realize a seismic control structure that exerts great effects with a very simple system.
【0038】[0038]
【実施例】図1は、本願発明の実施例を示したもので、
図1(a) に示すように上層の梁32と逆V字型のブレー
ス33との間に可変減衰装置1を設置している。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the present invention.
As shown in FIG. 1 (a), the variable damping device 1 is installed between the upper beam 32 and the inverted V-shaped brace 33.
【0039】図中、34は変位計であり、柱・梁架構を
構成する梁32と耐震要素としてのブレース33との間
の水平変位xを測定する。In the figure, reference numeral 34 is a displacement gauge, which measures the horizontal displacement x between the beam 32 constituting the column / beam frame and the brace 33 as a seismic resistant element.
【0040】地震や風等の振動外力が作用したときの変
位xが、時々刻々制御回路40に入力され、この制御回
路40において、柱・梁架構の振動周波数ωt およびω
t において柱・梁架構の減衰定数hを最大にする時々刻
々の最適減衰係数copt (ct )を求めるための演算が
行われ、可変減衰装置1の減衰係数を出力された最適減
衰係数copt (ct )を与えるように制御することで、
柱・梁架構に対し、常に高い減衰性を付加することがで
きる。Displacement x when an external vibration force such as an earthquake or wind acts is input to the control circuit 40 every moment, and in this control circuit 40, the vibration frequencies ω t and ω of the column / beam frame.
calculation for obtaining the pillars, Harika構the damping constant h a momentary maximizing optimum damping coefficient c opt (c t) is performed at t, the optimum damping coefficient c which is output to the attenuation coefficient of the variable damping device 1 By controlling to give opt ( ct ),
It is possible to add a high damping property to the pillar / beam structure.
【0041】図1(b) のブロック図は制御回路40の具
体的な構成を示したもので、微分回路41、振動数同定
回路42、ωt 制限回路43、減衰係数演算回路44か
らなる。The block diagram of FIG. 1 (b) shows a specific configuration of the control circuit 40, which comprises a differentiation circuit 41, a frequency identification circuit 42, a ω t limiting circuit 43, and a damping coefficient calculation circuit 44.
【0042】変位計34から入力されてくる変位xを微
分回路41で微分することで、応答加速度aが求まる。The differential acceleration 41 is obtained by differentiating the displacement x input from the displacement meter 34 by the differentiating circuit 41.
【0043】振動数同定回路42は、前述した(6) 式の
演算を行う回路であり、変位xと微分回路41によって
与えられた加速度aから、柱・梁架構の応答における振
動周波数ωt が求まる。The frequency identification circuit 42 is a circuit for calculating the above-mentioned equation (6), and the vibration frequency ω t in the response of the column / beam frame is calculated from the displacement x and the acceleration a given by the differentiating circuit 41. I want it.
【0044】ωt 制限回路43は、前述した(7) 式の制
限条件を与え、ωt をωt ’に置き換える回路である。The ω t limiting circuit 43 is a circuit which applies the limiting condition of the above-mentioned equation (7) and replaces ω t with ω t '.
【0045】減衰係数演算回路44は、前述した(8) 式
の演算を行う回路であり、ωt ’またはωt を入力する
ことで、制御すべき可変減衰装置1の最適減衰係数c
opt (ct )を出力する。The damping coefficient calculation circuit 44 is a circuit for calculating the above-mentioned equation (8), and by inputting ω t 'or ω t , the optimum damping coefficient c of the variable damping device 1 to be controlled.
Output opt ( ct ).
【0046】[0046]
【発明の効果】装置部等に設けたセンサーを利用して柱
・梁架構内の時々刻々の振動周波数ωt を求め、同定さ
れた振動周波数ωt に基づいて簡単な制御機構により減
衰定数hを最大にする時々刻々の最適減衰係数copt を
装置に与えるため、建物の振動周期が変動する場合や高
次振動が卓越するような状況下においても、装置による
減衰付加を高く保ち、建物の安全性、快適性を高めるこ
とができる。The vibration frequency ω t in the column / beam frame is calculated every moment by using the sensor provided in the device section, and the damping constant h is obtained by the simple control mechanism based on the identified vibration frequency ω t. Since the optimum damping coefficient c opt that maximizes the value is given to the device, the damping addition by the device is kept high even when the vibration period of the building fluctuates or in the situation where high-order vibration is dominant. Safety and comfort can be improved.
【図1】 本願発明の一実施例を示したもので、(a) は
柱・梁架構に設置した装置の概要図、(b) は(a) におけ
る制御回路のブロック図である。1A and 1B show an embodiment of the present invention, in which FIG. 1A is a schematic view of an apparatus installed on a pillar / beam frame, and FIG. 1B is a block diagram of a control circuit in FIG. 1A.
【図2】 本願発明を適用した場合の高層建物の柱・梁
架構と可変減衰装置の位置関係を示す概要図である。FIG. 2 is a schematic diagram showing a positional relationship between a pillar / beam structure and a variable damping device of a high-rise building when the present invention is applied.
【図3】 1つの層をモデル化して示した図である。FIG. 3 is a diagram showing a model of one layer.
【図4】 従来の可変減衰装置の油圧回路図である。FIG. 4 is a hydraulic circuit diagram of a conventional variable damping device.
1…可変減衰装置、2…シリンダ、3…ピストン、4…
ピストンロッド、6…油圧室、8…流出阻止用チェック
弁、9…流入阻止用チェック弁、10…流入用流路、1
1…流出用流路、12…流量制御弁、13…弁開度コン
トローラ、14…コンピュータ、15…入口ポート、1
6…出口ポート、17…背圧ポート、18…変位計、1
9…アキュムレータ、31…柱、32…梁、33…ブレ
ース、34…変位計、40…制御回路、41…微分回
路、42…振動数同定回路、43…ωt 制限回路、44
…減衰係数演算回路1 ... Variable damping device, 2 ... Cylinder, 3 ... Piston, 4 ...
Piston rod, 6 ... Hydraulic chamber, 8 ... Outflow prevention check valve, 9 ... Inflow prevention check valve, 10 ... Inflow passage, 1
DESCRIPTION OF SYMBOLS 1 ... Outflow passage, 12 ... Flow control valve, 13 ... Valve opening controller, 14 ... Computer, 15 ... Inlet port, 1
6 ... Exit port, 17 ... Back pressure port, 18 ... Displacement meter, 1
9 ... Accumulator, 31 ... Pillar, 32 ... Beam, 33 ... Brace, 34 ... Displacement meter, 40 ... Control circuit, 41 ... Differentiation circuit, 42 ... Frequency identification circuit, 43 ... ω t limiting circuit, 44
... Attenuation coefficient calculation circuit
Claims (3)
内に設けた耐震要素との間に設置した可変減衰装置と、
前記柱・梁架構の応答を検知する応答検知手段と、前記
可変減衰装置の減衰係数を前記応答検知手段によって得
られた応答値に応じて調整するための制御手段とからな
る制震装置において、前記制御手段が、前記応答値に基
づいて前記柱・梁架構の時々刻々の振動周波数ωt を同
定する振動周波数同定手段と、同定された振動周波数ω
t において柱・梁架構の減衰定数hを最大にする時々刻
々の最適減衰係数copt を下記(1) 式に基づいて算定す
る最適減衰係数算定手段と、前記最適減衰係数算定手段
の出力によって前記可変減衰装置の減衰係数を最適減衰
係数copt に制御する減衰係数制御手段とからなること
を特徴とする減衰係数調整型制震装置。 【数1】 (ただし、N=Kb /Kf )1. A variable damping device installed between a pillar / beam frame of a structure and a seismic element provided in the pillar / beam frame,
In a vibration control device comprising a response detection means for detecting the response of the pillar / beam frame, and a control means for adjusting the damping coefficient of the variable damping device according to the response value obtained by the response detection means, The control means identifies the vibration frequency ω t of the pillar / beam frame based on the response value, and the identified vibration frequency ω t.
At t , the optimum damping coefficient c opt for maximizing the damping coefficient h of the column / beam frame is calculated based on the following equation (1), and the optimum damping coefficient calculating means outputs the optimum damping coefficient c opt. A damping coefficient adjusting type damping device, comprising: damping coefficient control means for controlling the damping coefficient of the variable damping device to an optimum damping coefficient c opt . [Equation 1] (However, N = K b / K f )
において、応答検知手段が前記可変減衰装置設置位置に
おける柱・梁架構と前記耐震要素間の変位xを測定する
変位計であり、振動周波数同定手段は前記変位計によっ
て連続的に測定される変位xから加速度aを求める微分
回路と、前記変位xおよび加速度aから下記(6) 式に基
づいて時々刻々の振動周波数ωt を同定する振動数同定
回路とからなることを特徴とする減衰係数調整型制震装
置。 【数2】 2. The damping coefficient adjusting type damping device according to claim 1, wherein the response detecting means is a displacement gauge for measuring a displacement x between the column / beam frame and the seismic resistant element at the variable damping device installation position, The vibration frequency identifying means identifies a momentary vibration frequency ω t from the displacement x and the acceleration a based on the following equation (6), and a differentiation circuit for obtaining the acceleration a from the displacement x continuously measured by the displacement meter. A damping coefficient adjusting type damping device, which is characterized by comprising a frequency identification circuit that operates. [Equation 2]
において、前記変位xおよび加速度aが所定の値より小
さい範囲について、所定の下限値ωL と上限値ωU を設
定し、上記振動周波数ωt に対し、下記(7) 式の制限に
よるωt ' を与える振動周波数制限回路を設け、前記
(1) 式についてωt の代わりにωt ' を用いることを特
徴とする減衰係数調整型制震装置。 ωL ≦ωt ' ≦ωU …… (7)3. The damping coefficient adjusting type damping device according to claim 2, wherein a predetermined lower limit value ω L and an upper limit value ω U are set for a range in which the displacement x and the acceleration a are smaller than a predetermined value, and to the vibration frequency omega t, provided the vibration frequency limiting circuit providing a omega t 'due to a limitation in the following equation (7), wherein
(1) attenuation coefficient adjusting type vibration control device, which comprises using the omega t 'instead of omega t for expression. ω L ≤ ω t '≤ ω U …… (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29713894A JPH08151820A (en) | 1994-11-30 | 1994-11-30 | Damping coefficient adjustment type vibration control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29713894A JPH08151820A (en) | 1994-11-30 | 1994-11-30 | Damping coefficient adjustment type vibration control device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08151820A true JPH08151820A (en) | 1996-06-11 |
Family
ID=17842706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29713894A Withdrawn JPH08151820A (en) | 1994-11-30 | 1994-11-30 | Damping coefficient adjustment type vibration control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08151820A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008224338A (en) * | 2007-03-10 | 2008-09-25 | Kajima Corp | Method and apparatus for measuring interlayer displacement of layered structure |
JP2014232889A (en) * | 2012-07-17 | 2014-12-11 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Lithography device and method |
-
1994
- 1994-11-30 JP JP29713894A patent/JPH08151820A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008224338A (en) * | 2007-03-10 | 2008-09-25 | Kajima Corp | Method and apparatus for measuring interlayer displacement of layered structure |
JP2014232889A (en) * | 2012-07-17 | 2014-12-11 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Lithography device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5065552A (en) | Active seismic response control system for use in structure | |
US5311709A (en) | Variable damping device for seismic response controlled structure | |
US5036633A (en) | Variable damping and stiffness structure | |
US20100200348A1 (en) | Liquid damper for reducing vertical and/or horizontal vibrations in a building or machine structure | |
Patten et al. | A primer on design of semiactive vibration absorbers (SAVA) | |
JPH08151820A (en) | Damping coefficient adjustment type vibration control device | |
JPH03217312A (en) | Suspension device | |
JP2513358B2 (en) | Active damping system using cylinder-locking device | |
JPH02289769A (en) | Variable damper for damping structure | |
Mrad et al. | Non-linear dynamic modeling of an automobile hydraulic active suspension system | |
JPH03217313A (en) | Suspension device | |
JP2513294B2 (en) | Active damping system for variable-stiffness structures with variable damping mechanism | |
JP2513296B2 (en) | Active damping system with variable stiffness and variable damping mechanism | |
JP2900831B2 (en) | Automatic damping coefficient vibration control device | |
JP2513297B2 (en) | Active damping system for variable-stiffness structures with variable damping mechanism | |
JP2900843B2 (en) | Automatic damping coefficient vibration control device | |
Thompson et al. | Force control in electrohydraulic active suspensions revisited | |
JP2959554B1 (en) | Hydraulic damper for vibration control and vibration control structure | |
JPH02248581A (en) | Variable damping device for seismic control structures | |
JP2001208578A (en) | Flow measurement device | |
Pedersen et al. | Investigation of separate meter-in separate meter-out control strategies for systems with over centre valves | |
JP2004150202A (en) | Damping system | |
JP2608209B2 (en) | Damping device | |
JP3039332B2 (en) | Testing method of variable damping device for damping structure | |
Zimmer et al. | Hierarchical model-based control of semi-active tuned liquid column dampers with variable geometry and liquid volume |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020205 |