JPH08147637A - Magnetoresistance magnetic head - Google Patents
Magnetoresistance magnetic headInfo
- Publication number
- JPH08147637A JPH08147637A JP6293073A JP29307394A JPH08147637A JP H08147637 A JPH08147637 A JP H08147637A JP 6293073 A JP6293073 A JP 6293073A JP 29307394 A JP29307394 A JP 29307394A JP H08147637 A JPH08147637 A JP H08147637A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- head
- yoke
- film
- magnetic layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 173
- 230000000694 effects Effects 0.000 claims description 43
- 239000000696 magnetic material Substances 0.000 claims description 16
- 230000001939 inductive effect Effects 0.000 claims description 14
- 230000008878 coupling Effects 0.000 abstract description 9
- 238000010168 coupling process Methods 0.000 abstract description 9
- 238000005859 coupling reaction Methods 0.000 abstract description 9
- 239000010408 film Substances 0.000 description 58
- 230000005415 magnetization Effects 0.000 description 11
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 9
- 239000010409 thin film Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000005290 antiferromagnetic effect Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052787 antimony Inorganic materials 0.000 description 3
- 239000003302 ferromagnetic material Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 229910015136 FeMn Inorganic materials 0.000 description 2
- 240000004050 Pentaglottis sempervirens Species 0.000 description 2
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 241000981595 Zoysia japonica Species 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910000702 sendust Inorganic materials 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018404 Al2 O3 Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910020647 Co-O Inorganic materials 0.000 description 1
- 229910020704 Co—O Inorganic materials 0.000 description 1
- 229910020707 Co—Pt Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910017061 Fe Co Inorganic materials 0.000 description 1
- 229910002551 Fe-Mn Inorganic materials 0.000 description 1
- 229910017344 Fe2 O3 Inorganic materials 0.000 description 1
- 229910017112 Fe—C Inorganic materials 0.000 description 1
- 229910017116 Fe—Mo Inorganic materials 0.000 description 1
- 229910017135 Fe—O Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 229910003286 Ni-Mn Inorganic materials 0.000 description 1
- 229910003289 NiMn Inorganic materials 0.000 description 1
- 229910018499 Ni—F Inorganic materials 0.000 description 1
- 229910018553 Ni—O Inorganic materials 0.000 description 1
- 229910004541 SiN Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910007541 Zn O Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3906—Details related to the use of magnetic thin film layers or to their effects
- G11B5/3916—Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
- G11B5/3919—Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B2005/3996—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Magnetic Heads (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁性媒体に記録された
信号磁界を読み取る磁気抵抗効果型磁気ヘッドに関し、
特に非磁性層を挟んだ2層以上の磁性層からなる人工格
子磁気抵抗効果膜を用いた磁気抵抗効果型磁気ヘッドに
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic resistance effect type magnetic head for reading a signal magnetic field recorded on a magnetic medium,
In particular, the present invention relates to a magnetoresistive effect magnetic head using an artificial lattice magnetoresistive effect film composed of two or more magnetic layers sandwiching a non-magnetic layer.
【0002】[0002]
【従来の技術】近年、磁気センサーの高感度化、及び磁
気記録における高密度化が進められており、これに伴い
磁気抵抗効果型磁気センサー(以下、MRセンサーとい
う)及び磁気抵抗効果型磁気ヘッド(以下、MRヘッド
という)の開発が盛んに進められている。MRセンサー
及びMRヘッドは、磁性材料からなる読み取りセンサー
部の抵抗変化により、外部磁界信号を読み出す訳である
が、記録媒体との相対速度が再生出力に依存しないこと
から、MRセンサーでは高感度が得られ、MRヘッドで
は高密度磁気記録においても高い出力が得られるという
特徴がある。2. Description of the Related Art In recent years, magnetic sensors have been made highly sensitive and magnetic recording has been made highly dense, and accordingly, magnetoresistive effect magnetic sensors (hereinafter referred to as MR sensors) and magnetoresistive effect magnetic heads. Development of (hereinafter referred to as MR head) has been actively pursued. The MR sensor and the MR head read the external magnetic field signal due to the resistance change of the reading sensor section made of a magnetic material. However, since the relative speed with the recording medium does not depend on the reproduction output, the MR sensor has high sensitivity. The MR head has a feature that a high output can be obtained even in high density magnetic recording.
【0003】最近、非磁性層を挟んだ2層以上の磁性薄
膜からなり、外部磁場で大きな磁気抵抗変化を示す人工
格子磁気抵抗効果膜が発表された(フィジカル レビュ
ーレター(Phys.Rev.Lett.)第61巻、2472頁、1
988年)。この人工格子磁気抵抗効果膜は、外部磁場
により数〜数十%の大きな抵抗変化率を示すため、人工
格子膜を使った高感度で高出力なMRヘッドが提案され
ている。また、以上のようなMRヘッドを用いるハード
ディスクドライブでは、高密度化や小型化が進み、それ
と共に媒体上で読み書きされる磁気信号エリアが小さく
なってきている。これに伴い、この信号を読み取るため
のMRヘッドのトラック幅が小さくなり、磁気抵抗効果
膜の寸法も小さくなっている。Recently, an artificial lattice magnetoresistive film has been announced which is composed of two or more magnetic thin films sandwiching a non-magnetic layer and exhibits a large magnetoresistive change in an external magnetic field (Phys. Rev. Lett. ) Vol. 61, p. 2472, 1
988). Since this artificial lattice magnetoresistive film exhibits a large resistance change rate of several to several tens of percent due to an external magnetic field, a highly sensitive and high output MR head using an artificial lattice film has been proposed. Further, in the hard disk drive using the MR head as described above, the densification and miniaturization are progressing, and along with this, the magnetic signal area read / written on the medium is becoming smaller. Along with this, the track width of the MR head for reading this signal becomes smaller, and the size of the magnetoresistive film becomes smaller.
【0004】しかし、上記の人工格子磁気抵抗効果膜で
は、非磁性層を挟んで磁性層同士が膜端で結合してお
り、この静磁結合の影響は、膜の寸法が小さくなればな
るほど相対的に大きくなる。静磁結合は、磁性層同士の
磁化の向きが反平行になるように働き、膜端において媒
体からの磁界による磁性層の磁化回転が起こらなくなる
ため、人工格子磁気抵抗効果膜の寸法が小さくなると、
MRヘッドの再生出力が小さくなる。However, in the above artificial lattice magnetoresistive effect film, the magnetic layers are bonded to each other with the non-magnetic layer sandwiched therebetween, and the effect of the magnetostatic coupling is relative as the size of the film becomes smaller. Will grow larger. Magnetostatic coupling works so that the magnetization directions of the magnetic layers are anti-parallel, and the magnetization rotation of the magnetic layer due to the magnetic field from the medium does not occur at the film edge, so that the size of the artificial lattice magnetoresistive effect film decreases. ,
The reproduction output of the MR head becomes small.
【0005】[0005]
【発明が解決しようとする課題】以上のように、人工格
子磁気抵抗効果膜を用いたMRヘッドでは、人工格子膜
端での磁性層同士の静磁結合の影響、あるいは膜中に流
すセンス電流による電流磁界の影響で、隣あった磁性層
の磁化の向きが十分平行、反平行にならないことから、
磁性媒体からの再生信号の波形対称性が悪く、また再生
出力もそれほど大きくならないという問題点があった。
本発明は、上記課題を解決するためになされたもので、
膜端における静磁結合の影響が小さい人工格子磁気抵抗
効果膜を実現して、再生信号の対称性が良く、再生出力
も大きなMRヘッドを提供することを目的とする。As described above, in the MR head using the artificial lattice magnetoresistive effect film, the influence of magnetostatic coupling between the magnetic layers at the artificial lattice film end or the sense current flowing in the film. Due to the influence of the current magnetic field due to, the magnetization directions of the adjacent magnetic layers are not sufficiently parallel or antiparallel,
There is a problem that the reproduction signal from the magnetic medium has poor waveform symmetry and the reproduction output does not become so large.
The present invention has been made to solve the above problems,
An object of the present invention is to provide an MR head having an artificial lattice magnetoresistive effect film in which the influence of magnetostatic coupling at the film edge is small, so that the reproduced signal has good symmetry and the reproduced output is large.
【0006】[0006]
【課題を解決するための手段】本発明は、磁性体からな
るヨークと、このヨーク上の一部に磁性媒体の磁界に対
して膜面が平行になるように形成された非磁性層及び磁
性層とを有し、上記ヨークを人工格子磁気抵抗効果膜の
1磁性層として兼用するものである。また、ギャップを
有する形状の磁性体からなるヨークと、このヨーク上の
一部に磁性媒体の磁界に対して膜面が平行になるように
形成された非磁性層及び磁性層と、ヨークの周りに巻か
れた記録用の信号電流を流すためのコイルとを有し、記
録用インダクティブヘッドと、ヨークを人工格子磁気抵
抗効果膜の1磁性層として兼用する再生用の磁気抵抗効
果型ヘッドとでヨークを共有するものである。According to the present invention, a yoke made of a magnetic material, a non-magnetic layer and a magnetic layer formed on a part of the yoke such that the film surface is parallel to the magnetic field of the magnetic medium. A layer, and the yoke is also used as one magnetic layer of the artificial lattice magnetoresistive effect film. In addition, a yoke made of a magnetic material having a gap, a non-magnetic layer and a magnetic layer formed on a part of the yoke such that the film surface is parallel to the magnetic field of the magnetic medium, and the circumference of the yoke. A recording inductive head, and a reproducing magnetoresistive head having a yoke also serving as one magnetic layer of the artificial lattice magnetoresistive film. It is to share the York.
【0007】また、磁性体からなる垂直磁気記録用のシ
ングルポールタイプのヨークと、このヨーク上の一部に
磁性媒体の磁界に対して膜面が平行になるように形成さ
れた非磁性層及び磁性層と、ヨークの周りに巻かれた記
録用の信号電流を流すためのコイルとを有し、垂直磁気
記録用のインダクティブヘッドと、ヨークを人工格子磁
気抵抗効果膜の1磁性層として兼用する再生用の磁気抵
抗効果型ヘッドとでヨークを共有するものである。Further, a single pole type yoke for perpendicular magnetic recording made of a magnetic material, a non-magnetic layer formed on a part of the yoke so that the film surface is parallel to the magnetic field of the magnetic medium, and It has a magnetic layer and a coil wound around a yoke for passing a recording signal current, and also serves as an inductive head for perpendicular magnetic recording and the yoke as one magnetic layer of the artificial lattice magnetoresistive effect film. The yoke is shared with the magnetoresistive head for reproduction.
【0008】[0008]
【作用】本発明によれば、ヨーク上の一部に非磁性層及
び磁性層を形成することにより、ヨークが人工格子磁気
抵抗効果膜の1磁性層として兼用されるので、人工格子
磁気抵抗効果膜の膜端における静磁結合やセンス電流磁
界の影響を小さくすることができる。また、ヨーク上の
一部に形成された非磁性層及び磁性層と、ヨークの周り
に巻かれたコイルとを設けることにより、記録用のイン
ダクティブヘッドと再生用の磁気抵抗効果型ヘッドとで
ヨーク及びギャップが共有される。また、垂直磁気記録
用のシングルポールタイプのヨーク上の一部に形成され
た非磁性層及び磁性層と、ヨークの周りに巻かれたコイ
ルとを設けることにより、垂直記録用のインダクティブ
ヘッドと再生用の磁気抵抗効果型ヘッドとでヨークが共
有される。According to the present invention, the yoke is also used as one magnetic layer of the artificial lattice magnetoresistive effect film by forming the non-magnetic layer and the magnetic layer on a part of the yoke. It is possible to reduce the influence of magnetostatic coupling at the film edge of the film and the sense current magnetic field. Further, by providing a non-magnetic layer and a magnetic layer formed on a part of the yoke and a coil wound around the yoke, the inductive head for recording and the magnetoresistive head for reproducing are provided with a yoke. And the gap is shared. Further, by providing a non-magnetic layer and a magnetic layer formed on a part of a single pole type yoke for perpendicular magnetic recording, and a coil wound around the yoke, an inductive head for perpendicular recording and a reproducing The yoke is shared with the magnetoresistive head for use.
【0009】[0009]
【実施例】図1は本発明の1実施例を示すMRヘッドの
模式断面図、図2、3はこのMRヘッドのヨーク上に形
成された人工格子磁気抵抗効果膜の詳細な断面図であ
る。図1において、1は磁性媒体5の信号磁界を高感度
に検出できるように、NiFe、NiFeCo、FeA
lSi等の軟磁性体で構成されているMRヘッドのヨー
ク、2はこのヨーク1上の一部に磁性媒体5の磁界に対
して膜面が平行になるように形成された、例えば2μm
×2μmの面積を有する人工格子磁気抵抗効果膜、3は
このMRヘッドのギャップである。1 is a schematic sectional view of an MR head showing an embodiment of the present invention, and FIGS. 2 and 3 are detailed sectional views of an artificial lattice magnetoresistive film formed on a yoke of the MR head. . In FIG. 1, 1 is NiFe, NiFeCo, FeA so that the signal magnetic field of the magnetic medium 5 can be detected with high sensitivity.
The MR head yoke 2 made of a soft magnetic material such as 1Si is formed on a part of the yoke 1 such that the film surface is parallel to the magnetic field of the magnetic medium 5, for example, 2 μm.
The artificial lattice magnetoresistive film 3 having an area of × 2 μm is the gap of this MR head.
【0010】図2、3において、21はCu等からなる
非磁性層、22はNiFe等からなる磁性層、23はF
eMn等からなる反強磁性層、24は厚さが5〜10オ
ングストロームのCo等の強磁性体からなる原子層、2
5はFe2 O3 等の比抵抗が高い材料からなる高比抵抗
磁性層、26はNiFe等からなる軟磁性層、27はC
o等からなる高保磁力強磁性層である。2 and 3, 21 is a non-magnetic layer made of Cu or the like, 22 is a magnetic layer made of NiFe or the like, and 23 is F.
An antiferromagnetic layer made of eMn or the like, 24 an atomic layer made of a ferromagnetic material such as Co having a thickness of 5 to 10 angstroms, 2
5 is a high resistivity magnetic layer made of a material having a high resistivity such as Fe2 O3, 26 is a soft magnetic layer made of NiFe, and 27 is C
It is a high coercive force ferromagnetic layer made of o or the like.
【0011】本実施例のMRヘッドは、ヨーク1の上
(図1〜3では左)に複数の膜を順次積層して、図2、
3に示したいずれかの構造を有する人工格子磁気抵抗効
果膜2を形成したものである。In the MR head of this embodiment, a plurality of films are sequentially laminated on the yoke 1 (left in FIGS. 1 to 3), and the MR head shown in FIG.
The artificial lattice magnetoresistive effect film 2 having any one of the structures shown in FIG.
【0012】本実施例の磁性層に用いる磁性体として
は、Fe、Ni、Co、Mn、Cr、Dy、Er、N
d、Tb、Tm、Ge、Gd等が好ましい。また、これ
らの元素を含む合金や化合物としては、例えばFe−S
i、Fe−Ni、Fe−Co、Fe−Gd、Ni−Fe
−Co、Ni−Fe−Mo、Fe−Al−Si(センダ
スト)、Fe−Y、Fe−Mn、Cr−Sb、Co系ア
モルファス、Co−Pt、Fe−Al、Fe−C、Mn
−Sb、Ni−Mn、Co−O、Ni−O、Fe−O、
Ni−F、フェライト等が好ましい。The magnetic material used in the magnetic layer of this embodiment is Fe, Ni, Co, Mn, Cr, Dy, Er, N.
d, Tb, Tm, Ge, Gd and the like are preferable. Examples of alloys and compounds containing these elements include Fe-S
i, Fe-Ni, Fe-Co, Fe-Gd, Ni-Fe
-Co, Ni-Fe-Mo, Fe-Al-Si (sendust), Fe-Y, Fe-Mn, Cr-Sb, Co-based amorphous, Co-Pt, Fe-Al, Fe-C, Mn.
-Sb, Ni-Mn, Co-O, Ni-O, Fe-O,
Ni-F, ferrite and the like are preferable.
【0013】各磁性層の膜厚の上限は、200オングス
トロームである。一方、磁性層の厚さの下限は特にない
が、4オングストローム以下はキュリー点が室温より低
くなって実用性がなくなる。また、膜厚を4オングスト
ローム以上とすれば、膜厚を均一に保つことが容易とな
り、飽和磁化の大きさが小さくなりすぎることもない。
膜厚を200オングストローム以上としても効果は落ち
ないが、膜厚の増加に伴って効果が増大することもな
く、膜の作製上むだが多く、不経済である。The upper limit of the film thickness of each magnetic layer is 200 Å. On the other hand, the lower limit of the thickness of the magnetic layer is not particularly limited, but if it is 4 angstroms or less, the Curie point becomes lower than room temperature, which makes it impractical. Further, when the film thickness is 4 angstroms or more, it becomes easy to keep the film thickness uniform, and the magnitude of saturation magnetization does not become too small.
Even if the film thickness is set to 200 angstroms or more, the effect does not decrease, but the effect does not increase as the film thickness increases, and it is wasteful in manufacturing the film, which is uneconomical.
【0014】なお、磁気抵抗効果素子中に存在する磁性
層の磁気特性を直接測定することはできないので、通
常、下記のようにして測定する。測定すべき磁性薄膜
を、磁性薄膜の合計厚さが200〜400オングストロ
ーム程度になるまで非磁性薄膜と交互に蒸着して測定用
サンプルを作製し、これについて磁気特性を測定する。
この場合、磁性層の厚さ、非磁性層の厚さ及び非磁性層
の組成は、磁気抵抗効果測定素子におけるものと同じに
する。Since the magnetic characteristics of the magnetic layer existing in the magnetoresistive effect element cannot be directly measured, it is usually measured as follows. The magnetic thin film to be measured is alternately deposited with the non-magnetic thin film until the total thickness of the magnetic thin film reaches about 200 to 400 angstroms to prepare a measurement sample, and the magnetic characteristics of the sample are measured.
In this case, the thickness of the magnetic layer, the thickness of the non-magnetic layer and the composition of the non-magnetic layer are the same as those in the magnetoresistive effect measuring element.
【0015】非磁性層21は、磁性層間の磁気相互作用
を弱める役割を果たす材料であり、その種類に特に制限
はなく、各種金属ないし半金属非磁性体及び非金属非磁
性体から適宜選択すればよい。金属非磁性体としては、
Au、Ag、Cu、Pt、Al、Mg、Mo、Zn、N
b、Ta、V、Hf、Sb、Zr、Ga、Ti、Sn、
Pb等及びこれらの合金が好ましい。半金属非磁性体と
しては、SiO2 、SiO、SiN、Al2 O3 、Zn
O、MgO、TiN等、及びこれらに別の元素を添加し
たものが好ましい。The non-magnetic layer 21 is a material that plays a role of weakening the magnetic interaction between the magnetic layers, and the kind thereof is not particularly limited, and may be appropriately selected from various metals or semi-metal non-magnetic materials and non-metal non-magnetic materials. Good. As a metal non-magnetic material,
Au, Ag, Cu, Pt, Al, Mg, Mo, Zn, N
b, Ta, V, Hf, Sb, Zr, Ga, Ti, Sn,
Pb and the like and alloys thereof are preferable. As the semi-metal non-magnetic material, SiO2, SiO, SiN, Al2 O3, Zn
O, MgO, TiN and the like, and those obtained by adding another element to these are preferable.
【0016】非磁性層21の厚さは、50オングストロ
ーム以下が望ましい。一般に、膜厚が50オングストロ
ームを超えると、非磁性層によって抵抗が決まってしま
い、スピンに依存する散乱効果が相対的に小さくなって
しまい、その結果、磁気抵抗変化率が小さくなってしま
う。一方、膜厚が4オングストローム以下になると、磁
性層間の磁気相互作用が大きくなりすぎ、また磁気的な
直接接触状態(ピンホール)の発生が避けられないこと
から、非磁性層21の上下にある両磁性層の磁化方向が
反平行状態になりにくくなる。The thickness of the nonmagnetic layer 21 is preferably 50 angstroms or less. Generally, when the film thickness exceeds 50 Å, the resistance is determined by the non-magnetic layer, and the spin-dependent scattering effect becomes relatively small, resulting in a small magnetoresistance change rate. On the other hand, when the film thickness is 4 angstroms or less, the magnetic interaction between the magnetic layers becomes too large, and the occurrence of a magnetic direct contact state (pinhole) is unavoidable. It becomes difficult for the magnetization directions of both magnetic layers to become antiparallel.
【0017】磁性層又は非磁性層の膜厚は、透過型電子
顕微鏡、走査型電子顕微鏡、オージェ電子分光分析等に
より測定することができる。また、薄膜の結晶構造は、
X線回折や高速電子線回折等により確認することができ
る。The film thickness of the magnetic layer or the non-magnetic layer can be measured by a transmission electron microscope, a scanning electron microscope, Auger electron spectroscopy or the like. The crystal structure of the thin film is
It can be confirmed by X-ray diffraction or high-speed electron diffraction.
【0018】次に、図2、3に示した人工格子磁気抵抗
効果膜2の構成について説明する。図2の人工格子膜2
は、スピンバルブと呼ばれているものである。これは、
NiFe等からなる磁性層22上にFeMn等からなる
反強磁性層23を形成すると、磁性層22の磁化カーブ
が交換結合磁界Hexだけ平行移動し、ゼロ磁場とHexの
間でヨーク1の磁化の向きと交換結合された磁性層22
の磁化の向きが反平行になることにより、大きな抵抗変
化率が得られるものである。Next, the structure of the artificial lattice magnetoresistive film 2 shown in FIGS. 2 and 3 will be described. Artificial lattice film 2 of FIG.
Is what is called a spin valve. this is,
When the antiferromagnetic layer 23 made of FeMn or the like is formed on the magnetic layer 22 made of NiFe or the like, the magnetization curve of the magnetic layer 22 is translated by the exchange coupling magnetic field Hex, and the magnetization of the yoke 1 is changed between the zero magnetic field and Hex. Magnetic layer 22 exchange coupled with orientation
A large resistance change rate can be obtained by making the magnetization directions of 1 and 2 antiparallel.
【0019】図2(a)の例では、NiFe、NiFe
Co、FeAlSi等の軟磁性体からなるヨーク1の上
に、Cu、Au、Ag、あるいはその合金等からなる非
磁性層21、NiFe、NiFeCo、Co等からなる
磁性層22、FeMn、NiMn、NiO等からなる反
強磁性層23を順次積層することにより、磁性層22が
反強磁性層23と交換結合される。図2(b)の例で
は、図2(a)の構成において、非磁性層21の上下に
Co等の強磁性体からなる5〜10オングストロームの
薄い原子層24を設けることで、さらに大きな抵抗変化
率が得られるようになっている。In the example of FIG. 2A, NiFe and NiFe are used.
On the yoke 1 made of a soft magnetic material such as Co or FeAlSi, a non-magnetic layer 21 made of Cu, Au, Ag, or an alloy thereof, a magnetic layer 22 made of NiFe, NiFeCo, Co, FeMn, NiMn, NiO. The magnetic layer 22 is exchange-coupled with the antiferromagnetic layer 23 by sequentially stacking the antiferromagnetic layers 23 made of, for example. In the example of FIG. 2B, in the structure of FIG. 2A, a thin atomic layer 24 of 5 to 10 angstroms made of a ferromagnetic material such as Co is provided above and below the non-magnetic layer 21 to increase the resistance. The rate of change can be obtained.
【0020】図2(c)の例は、ヨーク1と非磁性層2
1との間に、酸化物強磁性体Fe2O3 、NiO、Co
O、CrO等、あるいはアモルファスCoZrMo等や
センダストFeAlSi等からなる高比抵抗磁性層2
5、軟磁性層26を積層することにより、人工格子磁気
抵抗効果膜に流すセンス電流がヨーク1に流れ込んで人
工格子膜の抵抗値が下がらないようにしたものである。
この場合、ヨーク1、磁性層25、26は、強磁性的結
合して同じ外部磁場で磁化反転する。また、磁性層2
5、26を図2(b)の構成におけるヨーク1と原子層
24の間に設けても同様の効果が得られる。In the example of FIG. 2C, the yoke 1 and the non-magnetic layer 2 are used.
1 and oxide ferromagnet Fe2O3, NiO, Co
High resistivity magnetic layer 2 made of O, CrO, etc., amorphous CoZrMo, etc., sendust FeAlSi, etc.
5. By stacking the soft magnetic layer 26, the sense current flowing in the artificial lattice magnetoresistive film is prevented from flowing into the yoke 1 and the resistance value of the artificial lattice film is not lowered.
In this case, the yoke 1 and the magnetic layers 25 and 26 are ferromagnetically coupled and the magnetization is inverted by the same external magnetic field. In addition, the magnetic layer 2
Similar effects can be obtained even if 5, 26 are provided between the yoke 1 and the atomic layer 24 in the configuration of FIG.
【0021】図3の人工格子磁気抵抗効果膜2では、保
磁力の小さい軟磁性体からなるヨーク1と保磁力の大き
な磁性層27という2種類の保磁力の異なった磁性層の
間に非磁性層21が積層されている。これは、2種類の
磁性層の磁化の向きが互いに平行、反平行に反転するこ
とにより、大きな抵抗変化率が得られるものである。In the artificial lattice magnetoresistive film 2 of FIG. 3, a non-magnetic layer is formed between two types of magnetic layers having different coercive forces, a yoke 1 made of a soft magnetic material having a small coercive force and a magnetic layer 27 having a large coercive force. Layers 21 are stacked. This is because a large resistance change rate is obtained by reversing the magnetization directions of the two types of magnetic layers in parallel and antiparallel.
【0022】図3(a)の例では、ヨーク1上にCu、
Au、Ag、あるいはその合金等からなる非磁性層2
1、Co等からなる高保磁力強磁性層27を積層してい
る。図3(b)の例では、図3(a)の構成において、
非磁性層21の下にCo等の強磁性体からなる5〜10
オングストロームの薄い原子層24を設けることで、さ
らに大きな抵抗変化率が得られるようになっている。In the example of FIG. 3A, Cu,
Nonmagnetic layer 2 made of Au, Ag, or an alloy thereof
1, a high coercive force ferromagnetic layer 27 made of Co or the like is laminated. In the example of FIG. 3B, in the configuration of FIG.
Under the non-magnetic layer 21, 5 to 10 made of a ferromagnetic material such as Co
By providing the atomic layer 24 having a thin angstrom, a larger rate of resistance change can be obtained.
【0023】図3(c)の例は、ヨーク1と非磁性層2
1との間に、図2(c)と同様の高比抵抗磁性層25、
軟磁性層26を積層することにより、センス電流がヨー
ク1に流れ込んで人工格子膜の抵抗値が下がらないよう
にしたものである。この場合も、ヨーク1、磁性層2
5、26は、強磁性的結合して同じ外部磁場で磁化反転
する。また、磁性層25、26を図3(b)の構成にお
けるヨーク1と原子層24の間に設けても同様の効果が
得られる。In the example of FIG. 3C, the yoke 1 and the non-magnetic layer 2 are used.
1 and the high specific resistance magnetic layer 25 similar to that of FIG.
By stacking the soft magnetic layer 26, the sense current does not flow into the yoke 1 and the resistance value of the artificial lattice film is not lowered. Also in this case, the yoke 1 and the magnetic layer 2
Nos. 5 and 26 are ferromagnetically coupled and the magnetization is inverted by the same external magnetic field. Also, the same effect can be obtained by providing the magnetic layers 25 and 26 between the yoke 1 and the atomic layer 24 in the configuration of FIG.
【0024】以上のような構成の人工格子磁気抵抗効果
膜2の横に図1では図示しない電極を形成することによ
り、MRヘッドが完成する。このMRヘッドは、図1に
示すように紙面の垂直方向にセンス電流Iを流すと、ヨ
ーク1を通る磁性媒体5の磁界Hによって電気抵抗が変
化するので、磁性媒体5の磁界を信号として読み取るこ
とができる。An MR head is completed by forming electrodes (not shown in FIG. 1) beside the artificial lattice magnetoresistive effect film 2 having the above-mentioned structure. In this MR head, when a sense current I flows in the direction perpendicular to the paper surface as shown in FIG. 1, the electric resistance changes due to the magnetic field H of the magnetic medium 5 passing through the yoke 1, so the magnetic field of the magnetic medium 5 is read as a signal. be able to.
【0025】そして、このMRヘッドでは、ヨーク1を
非磁性層を挟んだ2層以上の磁性層のうちの1磁性層と
して兼用することになる。このとき、人工格子磁気抵抗
効果膜2の寸法に比べてヨーク1の寸法の方が大きいの
で、人工格子膜2が微細な形状に加工されていても、人
工格子膜2の膜端における静磁結合の影響を小さくする
ことができる。また、センス電流による電流磁界の絶対
値は従来のままであるが、従来よりも大きい磁性層(ヨ
ーク1)により、その影響が相対的に小さくなる。これ
により、再生出力が大きく、再生信号波形の対称性に優
れたMRヘッドが実現できる。In this MR head, the yoke 1 is also used as one magnetic layer of two or more magnetic layers sandwiching the nonmagnetic layer. At this time, since the size of the yoke 1 is larger than the size of the artificial lattice magnetoresistive effect film 2, even if the artificial lattice film 2 is processed into a fine shape, the magnetostatic force at the film end of the artificial lattice film 2 is reduced. The effect of coupling can be reduced. Further, the absolute value of the current magnetic field due to the sense current remains the same as before, but the influence is relatively small due to the magnetic layer (yoke 1) larger than before. As a result, an MR head having a large reproduction output and excellent symmetry of the reproduction signal waveform can be realized.
【0026】図4は本発明の他の実施例を示すMRヘッ
ドの模式断面図であり、図4(a)は水平磁気記録・再
生用のヘッド、図4(b)は垂直磁気記録・再生用のヘ
ッドの例である。1aは図1の例と同様のヨーク、1b
はNiFe、NiFeCo、FeAlSi等の軟磁性体
からなる垂直磁気記録用のシングルポールタイプのヨー
ク、4は記録用の信号電流を流すためのコイルである。
また、図5は図4(a)のMRヘッドを斜め上方から見
た鳥かん図であり、10は人工格子磁気抵抗効果膜2に
接続された電極、11はコイル4に接続された電極であ
る。FIG. 4 is a schematic sectional view of an MR head showing another embodiment of the present invention. FIG. 4 (a) is a head for horizontal magnetic recording / reproducing, and FIG. 4 (b) is a perpendicular magnetic recording / reproducing. It is an example of a head for. 1a is a yoke similar to the example of FIG. 1 and 1b
Is a single pole type yoke for perpendicular magnetic recording made of a soft magnetic material such as NiFe, NiFeCo, or FeAlSi, and 4 is a coil for passing a recording signal current.
5 is a bird's-eye view of the MR head of FIG. 4 (a) seen obliquely from above. 10 is an electrode connected to the artificial lattice magnetoresistive film 2, and 11 is an electrode connected to the coil 4. .
【0027】図4(a)、図5の例のヨーク1a、ギャ
ップ3、人工格子磁気抵抗効果膜2、電極10の構成は
図1の例と同様であり、更にヨーク1aの周りにコイル
4が設けられている。こうして、このMRヘッドは、図
1と同様の再生用のヘッドとして機能すると共に、コイ
ル4に信号電流を流すことによりギャップ3から発生す
る信号磁界を磁性媒体5に書き込む、従来の電磁変換原
理を用いた記録用のインダクティブヘッドとして機能さ
せることができる。The structures of the yoke 1a, the gap 3, the artificial lattice magnetoresistive film 2 and the electrode 10 in the examples of FIGS. 4 (a) and 5 are the same as those of the example of FIG. 1, and a coil 4 is provided around the yoke 1a. Is provided. In this way, this MR head functions as a reproducing head similar to that shown in FIG. 1, and writes the signal magnetic field generated from the gap 3 in the magnetic medium 5 by passing a signal current through the coil 4, which is based on the conventional electromagnetic conversion principle. It can function as the used inductive head for recording.
【0028】すなわち、このヘッドでは、記録用のイン
ダクティブヘッドと再生用のMRヘッドとでヨーク1及
びギャップ3が共有されるので、スキュー角度に起因す
るインダクティブヘッドとMRヘッドのトラックズレの
ない良好なヘッドが実現できる。That is, in this head, since the yoke 1 and the gap 3 are shared by the recording inductive head and the reproducing MR head, there is good track deviation between the inductive head and the MR head due to the skew angle. The head can be realized.
【0029】また、図4(b)の人工格子磁気抵抗効果
膜2の構成も図1の例と同様であり、コイル4がヨーク
1bの周りに巻かれているのは図4(a)と同様であ
る。こうして、図4(b)のヘッドは、コイル4に信号
電流を流すことによりヨーク1bの上下端の間で発生す
る信号磁界を磁性媒体5に書き込む、垂直磁気記録用の
インダクティブヘッドとして機能させることができると
共に、ヨーク1を通る磁性媒体5の磁界Hによって電気
抵抗が変化する再生用のMRヘッドとして機能させるこ
とができる。The structure of the artificial lattice magnetoresistive effect film 2 of FIG. 4 (b) is similar to that of the example of FIG. 1, and the coil 4 is wound around the yoke 1b as shown in FIG. 4 (a). It is the same. Thus, the head of FIG. 4 (b) functions as an inductive head for perpendicular magnetic recording in which the signal magnetic field generated between the upper and lower ends of the yoke 1b is written in the magnetic medium 5 by passing a signal current through the coil 4. In addition, it can function as a reproducing MR head whose electric resistance is changed by the magnetic field H of the magnetic medium 5 passing through the yoke 1.
【0030】つまり、このヘッドでは、記録用のインダ
クティブヘッドと再生用のMRヘッドとでヨーク1bが
共有されるので、スキュー角度に起因するインダクティ
ブヘッドとMRヘッドのトラックズレのない良好なヘッ
ドが実現できる。That is, in this head, since the yoke 1b is shared by the recording inductive head and the reproducing MR head, it is possible to realize a good head with no track deviation between the inductive head and the MR head due to the skew angle. it can.
【0031】[0031]
【発明の効果】本発明によれば、ヨーク上の一部に非磁
性層および磁性層を形成することにより、ヨークが人工
格子磁気抵抗効果膜の1磁性層として兼用されるので、
人工格子磁気抵抗効果膜が微細な形状に加工されていて
も、人工格子磁気抵抗効果膜の膜端における静磁結合や
センス電流磁界の影響を小さくすることができ、再生出
力が大きく再生信号波形の対称性に優れた磁気抵抗効果
型磁気ヘッドを実現することができる。According to the present invention, since the nonmagnetic layer and the magnetic layer are formed on a part of the yoke, the yoke is also used as one magnetic layer of the artificial lattice magnetoresistive effect film.
Even if the artificial lattice magnetoresistive effect film is processed into a fine shape, it is possible to reduce the effects of magnetostatic coupling and the sense current magnetic field at the film edge of the artificial lattice magnetoresistive effect film, resulting in a large reproduced output and a reproduced signal waveform. It is possible to realize a magnetoresistive effect type magnetic head having excellent symmetry.
【0032】また、ヨーク上の一部に形成された非磁性
層及び磁性層と、ヨークの周りに巻かれたコイルとを設
けることにより、上記の効果を有する磁気抵抗効果型ヘ
ッドを実現することができ、また記録用のインダクティ
ブヘッドと再生用の磁気抵抗効果型ヘッドとでヨーク及
びギャップが共有されるので、記録用ヘッドと再生用ヘ
ッドが一体化された安価で信頼性が高く、かつ記録用ヘ
ッドと再生用ヘッドのトラックズレのない水平磁気記録
・再生用のヘッドを実現することができる。Further, by providing a non-magnetic layer and a magnetic layer formed on a part of the yoke and a coil wound around the yoke, a magnetoresistive head having the above effect can be realized. In addition, since the yoke and the gap are shared by the inductive head for recording and the magnetoresistive head for reproducing, the recording head and the reproducing head are integrated at a low cost and highly reliable. It is possible to realize a horizontal magnetic recording / reproducing head in which there is no track deviation between the reproducing head and the reproducing head.
【0033】また、垂直磁気記録用のシングルポールタ
イプのヨーク上の一部に形成された非磁性層及び磁性層
と、ヨークの周りに巻かれたコイルとを設けることによ
り、上記の効果を有する磁気抵抗効果型ヘッドを実現す
ることができ、また記録用のインダクティブヘッドと再
生用の磁気抵抗効果型ヘッドとでヨークが共有されるの
で、記録用ヘッドと再生用ヘッドが一体化された安価で
信頼性が高く、かつ記録用ヘッドと再生用ヘッドのトラ
ックズレのない垂直磁気記録・再生用のヘッドを実現す
ることができる。Further, by providing a non-magnetic layer and a magnetic layer formed on a part of a single pole type yoke for perpendicular magnetic recording, and a coil wound around the yoke, the above effect is obtained. It is possible to realize a magnetoresistive head, and since the yoke is shared by the inductive head for recording and the reproducing magnetoresistive head, the recording head and the reproducing head are integrated at a low cost. It is possible to realize a head for perpendicular magnetic recording / reproduction that is highly reliable and has no track deviation between the recording head and the reproducing head.
【図1】 本発明の1実施例を示すMRヘッドの模式断
面図である。FIG. 1 is a schematic cross-sectional view of an MR head showing an embodiment of the present invention.
【図2】 図1のMRヘッドのヨーク上に形成された人
工格子磁気抵抗効果膜の詳細な断面図である。2 is a detailed cross-sectional view of an artificial lattice magnetoresistive effect film formed on a yoke of the MR head of FIG.
【図3】 図1のMRヘッドのヨーク上に形成された人
工格子磁気抵抗効果膜の詳細な断面図である。3 is a detailed sectional view of an artificial lattice magnetoresistive effect film formed on a yoke of the MR head of FIG.
【図4】 本発明の他の実施例を示すMRヘッドの模式
断面図である。FIG. 4 is a schematic cross-sectional view of an MR head showing another embodiment of the present invention.
【図5】 図4(a)のMRヘッドを斜め上方から見た
鳥かん図である。5 is a bird's-eye view of the MR head of FIG. 4 (a) as seen from diagonally above.
1、1a、1b…ヨーク、2…人工格子磁気抵抗効果
膜、3…ギャップ、4…コイル、5…磁性媒体。1, 1a, 1b ... Yoke, 2 ... Artificial lattice magnetoresistive effect film, 3 ... Gap, 4 ... Coil, 5 ... Magnetic medium.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 石原 邦彦 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 田上 勝通 東京都港区芝五丁目7番1号 日本電気株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kunihiko Ishihara 5-7-1, Shiba, Minato-ku, Tokyo Inside NEC Corporation (72) Inventor Katsutoshi Tagami 5-7-1, Shiba, Minato-ku, Tokyo Inside NEC Corporation
Claims (3)
なる人工格子磁気抵抗効果膜を用いた磁気抵抗効果型磁
気ヘッドにおいて、 磁性体からなるヨークと、 このヨーク上の一部に磁性媒体の磁界に対して膜面が平
行になるように形成された非磁性層及び磁性層とを有
し、 前記ヨークを人工格子磁気抵抗効果膜の1磁性層として
兼用することを特徴とする磁気抵抗効果型磁気ヘッド。1. A magnetoresistive effect magnetic head using an artificial lattice magnetoresistive effect film comprising two or more magnetic layers sandwiching a non-magnetic layer, wherein a yoke made of a magnetic material and a part of the yoke are provided on the yoke. It has a non-magnetic layer and a magnetic layer formed so that the film surfaces are parallel to the magnetic field of the magnetic medium, and the yoke is also used as one magnetic layer of the artificial lattice magnetoresistive effect film. Magnetoresistive magnetic head.
なる人工格子磁気抵抗効果膜を用いた磁気抵抗効果型磁
気ヘッドにおいて、 ギャップを有する形状の磁性体からなるヨークと、 このヨーク上の一部に磁性媒体の磁界に対して膜面が平
行になるように形成された非磁性層及び磁性層と、 前記ヨークの周りに巻かれた記録用の信号電流を流すた
めのコイルとを有し、 記録用のインダクティブヘッドと、ヨークを人工格子磁
気抵抗効果膜の1磁性層として兼用する再生用の磁気抵
抗効果型ヘッドとでヨークを共有することを特徴とする
磁気抵抗効果型磁気ヘッド。2. A magnetoresistive effect magnetic head using an artificial lattice magnetoresistive effect film composed of two or more magnetic layers sandwiching a non-magnetic layer, and a yoke made of a magnetic material having a gap, and this yoke. A non-magnetic layer and a magnetic layer formed on a part of the upper side of the magnetic medium so that the film surface is parallel to the magnetic field; and a coil wound around the yoke for flowing a signal current for recording. And a magnetoresistive head for reproducing, which shares a yoke with an inductive head for recording and a reproducing magnetoresistive head which also serves as one magnetic layer of the artificial lattice magnetoresistive film. head.
なる人工格子磁気抵抗効果膜を用いた磁気抵抗効果型磁
気ヘッドにおいて、 磁性体からなる垂直磁気記録用のシングルポールタイプ
のヨークと、 このヨーク上の一部に磁性媒体の磁界に対して膜面が平
行になるように形成された非磁性層及び磁性層と、 前記ヨークの周りに巻かれた記録用の信号電流を流すた
めのコイルとを有し、 垂直磁気記録用のインダクティブヘッドと、ヨークを人
工格子磁気抵抗効果膜の1磁性層として兼用する再生用
の磁気抵抗効果型ヘッドとでヨークを共有することを特
徴とする磁気抵抗効果型磁気ヘッド。3. A magnetoresistive effect magnetic head using an artificial lattice magnetoresistive effect film composed of two or more magnetic layers sandwiching a non-magnetic layer, the single pole type yoke for perpendicular magnetic recording comprising a magnetic material. A non-magnetic layer and a magnetic layer formed on a part of the yoke such that the film surfaces thereof are parallel to the magnetic field of the magnetic medium; and a recording signal current wound around the yoke. And an inductive head for perpendicular magnetic recording, and a reproducing magnetoresistive head which also serves as one magnetic layer of the artificial lattice magnetoresistive film, and shares the yoke. Magnetoresistive effect magnetic head.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29307394A JP2674532B2 (en) | 1994-11-28 | 1994-11-28 | Magnetoresistive magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29307394A JP2674532B2 (en) | 1994-11-28 | 1994-11-28 | Magnetoresistive magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08147637A true JPH08147637A (en) | 1996-06-07 |
JP2674532B2 JP2674532B2 (en) | 1997-11-12 |
Family
ID=17790103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29307394A Expired - Fee Related JP2674532B2 (en) | 1994-11-28 | 1994-11-28 | Magnetoresistive magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2674532B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6671140B1 (en) | 1999-05-25 | 2003-12-30 | Nec Corporation | Magnetic head using a magnetoresistance effect based on ferromagnetic junction, and magnetic recording/reproducing apparatus using the same |
-
1994
- 1994-11-28 JP JP29307394A patent/JP2674532B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6671140B1 (en) | 1999-05-25 | 2003-12-30 | Nec Corporation | Magnetic head using a magnetoresistance effect based on ferromagnetic junction, and magnetic recording/reproducing apparatus using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2674532B2 (en) | 1997-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2778626B2 (en) | Magnetoresistance effect film, method of manufacturing the same, and magnetoresistance effect element | |
US7336451B2 (en) | Magnetic sensing element containing half-metallic alloy | |
US6807034B2 (en) | Dual spin-valve CCP type thin-film magnetic element with multi free layers | |
US6031692A (en) | Magnetoresistive device and magnetoresistive head | |
JP2748876B2 (en) | Magnetoresistive film | |
JP2690623B2 (en) | Magnetoresistance effect element | |
US5452163A (en) | Multilayer magnetoresistive sensor | |
JP2738312B2 (en) | Magnetoresistive film and method of manufacturing the same | |
US6133732A (en) | Magnetoresistive effect element and shield magnetoresistive effect sensor | |
JP2000340858A (en) | Magnetoresistive effect film and magnetoresistive effect head | |
JPH08279117A (en) | Gigantic magnetoresistance effect material film and its production and magnetic head using the same | |
GB2387711A (en) | Magnetic sensing element with multi-layer free layer | |
US6101072A (en) | Yoke type or flux guide type magnetoresistive head in which the yoke or flux guide is provided to the magnetic resistive element via an interposed soft magnetic layer | |
JPH05175571A (en) | Magnetoresistive element | |
KR100272872B1 (en) | Magnetic resistance effect element and method for manufacture thereof | |
KR100304770B1 (en) | Magnetoresistive effect film and method of manufacture thereof | |
JP2004523925A (en) | Magnetoresistive spin valve sensor and magnetic storage device | |
JPH0729733A (en) | Magnetoresistance effect film and manufacture thereof | |
JP2743806B2 (en) | Magnetoresistive film and method of manufacturing the same | |
JP2924819B2 (en) | Magnetoresistive film and method of manufacturing the same | |
JP2674532B2 (en) | Magnetoresistive magnetic head | |
JP3575672B2 (en) | Magnetoresistance effect film and magnetoresistance effect element | |
JP2738295B2 (en) | Magnetoresistive film and method of manufacturing the same | |
KR100293861B1 (en) | Magnetoresistive sensor using exchange bias giant magnetoresistive element | |
JP2656449B2 (en) | Magnetoresistive head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |