[go: up one dir, main page]

JPH08141388A - Aqueous liquid with dispersed fine particle, production thereof and solid composition obtained from said aqueous liquid - Google Patents

Aqueous liquid with dispersed fine particle, production thereof and solid composition obtained from said aqueous liquid

Info

Publication number
JPH08141388A
JPH08141388A JP28811794A JP28811794A JPH08141388A JP H08141388 A JPH08141388 A JP H08141388A JP 28811794 A JP28811794 A JP 28811794A JP 28811794 A JP28811794 A JP 28811794A JP H08141388 A JPH08141388 A JP H08141388A
Authority
JP
Japan
Prior art keywords
water
fine particles
aqueous liquid
soluble
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28811794A
Other languages
Japanese (ja)
Inventor
Takaaki Sakai
貴明 酒井
Shinji Suga
伸治 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP28811794A priority Critical patent/JPH08141388A/en
Publication of JPH08141388A publication Critical patent/JPH08141388A/en
Pending legal-status Critical Current

Links

Landscapes

  • Colloid Chemistry (AREA)

Abstract

PURPOSE: To obtain a stable aqueous liquid having fine particles uniformly dispersed and a dry composition thereof by a method wherein a metal compound solution is added to an aqueous medium containing a water-soluble or water- dispersible polymer to precipitate the fine particles of a metal or metal compound in a specific size and in a specific proportion. CONSTITUTION: A aqueous liquid and its dry composition are obtained which have dispersed in an aqueous medium containing a water-soluble or water- dispersible polymer fine particles of a metal or metal compound having a diameter of 1-1000nm and containing solid components in an amount of 0.001-12wt.% based on its total weight and a total solid concentration of at least 1wt.%. As the water-soluble polymer is used natural starch, its derivative, pullulan, synthetic polyvinyl-pyrolidone, polyvinyl alcohol of the like. As the water- dispersible polymer is used a thermosetting phenol resin or epoxy resin, or thermoplastic polyethylene or polypropylene. As the fine particles of the metal or metal compound is used gold, silver, copper, zinc or silver oxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は直径が1〜1000nmの
金属微粒子及び/又は金属化合物微粒子を均一に分散し
た水溶性ポリマー及び/又は水中分散性ポリマーを含む
水性液とその製法及びその乾燥組成物に関するものであ
る。
TECHNICAL FIELD The present invention relates to an aqueous liquid containing a water-soluble polymer and / or a water-dispersible polymer in which metal fine particles and / or metal compound fine particles having a diameter of 1 to 1000 nm are uniformly dispersed, a process for producing the same, and a dry composition thereof. It is about things.

【0002】[0002]

【従来の技術】これまでにポリマーに添加剤を混合する
にはロール式、バンバリータイプ、スクリュー式、ロー
タ式等の混練機を使用するのが一般に行われている。添
加剤である微粒子の直径が1〜1000nmの場合には粒
子間凝集力が極めて強いために全く均一にポリマー中に
分散させる事は不可能であった。また水性塗料等に微粒
子を添加するには水に分散させた微粒子を添加する試み
がなされているが、微粒子の凝集のために直径が1〜1
000nmの微粒子が均一に分散した水性塗料は得られて
いない。これはポリマーを分散した水系液相は安定化の
ために弱酸性にpH調整を行なっている場合が多く、これ
に金属微粒子/金属化合物水系コロイドを添加しても通
常金属微粒子又は金属化合物微粒子表面は負の表面電荷
を有しているために、ヘテロ凝集により分散系が不安定
となり媒質が凝集沈降するからで、最終的には均一な金
属微粒子又は金属化合物微粒子分散ポリマーが得られな
い。
2. Description of the Related Art Heretofore, in order to mix an additive with a polymer, a kneader of roll type, Banbury type, screw type, rotor type or the like has been generally used. When the diameter of the additive fine particles is 1 to 1000 nm, the interparticle cohesive force is so strong that it was impossible to disperse them in the polymer quite uniformly. In addition, attempts have been made to add fine particles dispersed in water in order to add fine particles to water-based paints, etc.
An aqueous paint in which fine particles of 000 nm are uniformly dispersed has not been obtained. In many cases, the pH of the aqueous liquid phase in which the polymer is dispersed is adjusted to be weakly acidic for stabilization, and even if metal fine particles / metal compound aqueous colloid is added to this, it is usually the surface of metal fine particles or metal compound fine particles. Has a negative surface charge, the dispersion system becomes unstable due to heteroaggregation, and the medium aggregates and sediments, so that a uniform metal fine particle or metal compound fine particle dispersed polymer cannot be finally obtained.

【0003】[0003]

【発明が解決しようとする課題】ポリマーに微粒子を均
一に分散する方法を種々検討した結果、ポリマーが水溶
性あるいは水中分散性ポリマーであり、微粒子が金属又
は金属化合物である場合には以下の方法で微粒子を均一
に分散した組成物を得る事ができることを見いだした。
As a result of various studies on methods for uniformly dispersing fine particles in a polymer, when the polymer is a water-soluble or water-dispersible polymer and the fine particles are a metal or a metal compound, the following method is used. It was found that it is possible to obtain a composition in which fine particles are uniformly dispersed.

【0004】[0004]

【課題を解決するための手段】即ち、本発明は水溶性ポ
リマー及び/又は水中分散性ポリマーを含む水系媒体中
に直径1〜1000nmかつ全固形成分中の含量が 0.001
〜12重量%の金属微粒子及び/又は金属化合物微粒子が
均一に分散されてなり、全固形成分濃度が1重量%以上
である事を特徴とする微粒子を分散した水性液である。
また本発明は水溶性ポリマー及び/又は水中分散性ポリ
マーを含む水系媒体に金属化合物溶液を加え相当する金
属微粒子及び/又は金属化合物微粒子を析出させること
を特徴とする上記水性液の製法である。さらに本発明は
上記水性液を乾燥して得られる固形組成物である。微粒
子があらかじめ形成されている場合にはポリマーに混合
する際にどうしても凝集の問題がつきまとうが、ポリマ
ーを水中に溶解あるいは分散し、その粘度が0.8〜2000c
Pである水系媒体中において化学反応あるいは物理現象
を利用して金属微粒子及び/又は金属化合物微粒子を析
出させると分散性の良い微粒子が得られることを見いだ
した。これは溶解したポリマーあるいは分散したポリマ
ー表面が微粒子析出の核となり、多数の核の上で独立し
て粒子の成長が進むからであろうと考えられる。この際
ポリマーを含む水性液に金属化合物溶液を加えることが
必要で、金属微粒子及び/又は金属化合物微粒子の分散
液をポリマーを含む水性液に加えても分散性の良い微粒
子は得られない。化学反応を利用する場合にはポリマー
を水中に溶解あるいは分散した媒体の粘度は 0.8〜2000
cPでも可能であるが粘度が 0.8〜 600cPである事が望ま
しく、 0.8〜 100cPである事が更に望ましい。これは粘
度が低い方が媒体全体で均一な反応が可能となるからで
ある。なお、全固形分の割合を増加させるために各種の
濃縮工程を微粒子調製後に行っても良い。
That is, the present invention provides a water-based polymer containing a water-soluble polymer and / or a water-dispersible polymer with a diameter of 1 to 1000 nm and a total solid content of 0.001.
It is an aqueous liquid in which the metal particles and / or metal compound particles in an amount of ˜12% by weight are uniformly dispersed and the total solid component concentration is 1% by weight or more.
Further, the present invention is the above-mentioned method for producing an aqueous liquid, characterized in that a metal compound solution is added to an aqueous medium containing a water-soluble polymer and / or a water-dispersible polymer to deposit corresponding metal fine particles and / or metal compound fine particles. Further, the present invention is a solid composition obtained by drying the above aqueous liquid. If the fine particles are pre-formed, the problem of cohesion is inevitable when mixed with the polymer, but the polymer is dissolved or dispersed in water and its viscosity is 0.8-2000c.
It was found that fine particles having good dispersibility can be obtained by precipitating metal fine particles and / or metal compound fine particles by utilizing chemical reaction or physical phenomenon in an aqueous medium of P. It is considered that this is because the surface of the dissolved polymer or the dispersed polymer becomes nuclei for the precipitation of fine particles, and the growth of particles independently proceeds on a large number of nuclei. At this time, it is necessary to add the metal compound solution to the aqueous liquid containing the polymer, and even if the dispersion liquid of the metal fine particles and / or the metal compound fine particles is added to the aqueous liquid containing the polymer, fine particles having good dispersibility cannot be obtained. When a chemical reaction is used, the viscosity of the medium in which the polymer is dissolved or dispersed in water is 0.8 to 2000.
Although it is possible to use cP, the viscosity is preferably 0.8 to 600 cP, more preferably 0.8 to 100 cP. This is because a lower viscosity enables a uniform reaction throughout the medium. Note that various concentration steps may be performed after the fine particles are prepared in order to increase the ratio of the total solid content.

【0005】本発明で用いる水溶性ポリマーとしては天
然水溶性ポリマー及び/又は合成水溶性ポリマーがあ
る。天然水溶性ポリマーとしてはでんぷん及びその誘導
体、プルラン、水溶性セルロース誘導体、アルギン酸、
グアーガム、アラビアゴム、トラガントガム、ゼラチン
がある。水溶性セルロース誘導体としてはカルボキシメ
チルセルロース、メチルセルロース、ヒドロキシエチル
セルロース、ヒドロキシプロピルセルロース等がある。
The water-soluble polymers used in the present invention include natural water-soluble polymers and / or synthetic water-soluble polymers. Natural water-soluble polymers include starch and its derivatives, pullulan, water-soluble cellulose derivatives, alginic acid,
There are guar gum, gum arabic, tragacanth gum and gelatin. Examples of the water-soluble cellulose derivative include carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose and the like.

【0006】合成水溶性ポリマーとしてはポリビニルピ
ロリドン、ポリビニルアルコール、ポリエチレンオキサ
イド、ポリビニルエーテル、ポリアクリルアミド、ポリ
アクリル酸ソーダ、ポリエチレングリコール、水溶性ア
クリル樹脂、水溶性エポキシ樹脂、水溶性ポリエステル
樹脂、水溶性ウレタン樹脂がある。天然水溶性ポリマー
及び/又は合成水溶性ポリマーを組み合わせて用いても
良い。
As the synthetic water-soluble polymer, polyvinylpyrrolidone, polyvinyl alcohol, polyethylene oxide, polyvinyl ether, polyacrylamide, sodium polyacrylate, polyethylene glycol, water-soluble acrylic resin, water-soluble epoxy resin, water-soluble polyester resin, water-soluble urethane There is resin. Natural water-soluble polymers and / or synthetic water-soluble polymers may be used in combination.

【0007】本発明で用いる水中分散性ポリマーとして
は熱硬化性ポリマー及び熱可塑性ポリマーがある。熱硬
化性ポリマーとしてはフェノール樹脂、エポキシ樹脂、
不飽和ポリエステル樹脂、アルキド樹脂、ユリア樹脂、
メラミン樹脂、ウレタン樹脂、シリコーン樹脂、ジアリ
ルフタレート樹脂等がある。
The water-dispersible polymers used in the present invention include thermosetting polymers and thermoplastic polymers. As thermosetting polymer, phenol resin, epoxy resin,
Unsaturated polyester resin, alkyd resin, urea resin,
Examples include melamine resin, urethane resin, silicone resin and diallyl phthalate resin.

【0008】熱可塑性ポリマーとしてはポリエチレン、
ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ
塩化ビニリデン等のポリオレフィン、及びポリ酢酸ビニ
ル、ポリビニルアルコール、ポリビニルアセタール、ポ
リメチルメタクリレート、ポリアクリルアミド、ポリエ
ーテル、ポリアクリロニトリル、ポリフルオルエチレ
ン、ポリエステル、ポリカーボネート、ナイロン、ポリ
イミド、ポリアミドイミド、ポリスルホン、ポリビニル
アセタール、ポリビニルアルコール、ポリカーボネー
ト、 ABS樹脂、AS樹脂等がある。またこれ等の熱可塑性
ポリマー及び熱硬化性ポリマーの組み合わせで用いても
良く、上記ポリマーの主鎖を構成要素とする共重合ポリ
マーを用いても良い。
As the thermoplastic polymer, polyethylene,
Polyolefins such as polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, etc., and polyvinyl acetate, polyvinyl alcohol, polyvinyl acetal, polymethylmethacrylate, polyacrylamide, polyether, polyacrylonitrile, polyfluoroethylene, polyester, polycarbonate, nylon, polyimide , Polyamideimide, polysulfone, polyvinyl acetal, polyvinyl alcohol, polycarbonate, ABS resin, AS resin and the like. Further, these thermoplastic polymers and thermosetting polymers may be used in combination, or a copolymerized polymer having the main chain of the above polymer as a constituent element may be used.

【0009】水中分散性ポリマーの直径は1〜1000
nmが望ましく、更に望ましくは1〜800nmである。微
粒子を析出させる化学反応としては金属微粒子を析出さ
せる場合には還元反応を、又金属化合物微粒子を析出す
る反応としてはゾル−ゲル法や共沈殿法を利用する。反
応を速やかに完結させるために高温及び加圧条件も用い
うる。微粒子を析出させる物理的方法としては金属化合
物の溶解度の温度依存性を利用する。即ち水溶性ポリマ
ー及び/又は水中分散性ポリマーからなる水系媒体への
金属化合物の溶解度の温度係数が正の場合には高温で該
金属化合物を飽和溶解させ徐々に温度を下げていく事に
より該金属化合物微粒子を調製することができる。
The water-dispersible polymer has a diameter of 1-1000.
nm is desirable, and more preferably 1 to 800 nm. As a chemical reaction for depositing fine particles, a reduction reaction is used when depositing fine metal particles, and as a reaction for depositing fine metal compound particles, a sol-gel method or a coprecipitation method is used. High temperature and pressure conditions may also be used to bring the reaction to completion quickly. As a physical method for depositing the fine particles, the temperature dependence of the solubility of the metal compound is used. That is, when the temperature coefficient of solubility of a metal compound in an aqueous medium composed of a water-soluble polymer and / or a water-dispersible polymer is positive, the metal compound is saturated and dissolved at a high temperature to gradually lower the temperature of the metal compound. Compound fine particles can be prepared.

【0010】水溶性ポリマー又は水中分散性ポリマー中
に均一に分散させる金属微粒子又は金属化合物微粒子と
してはフォトクロミック材料、抗菌材料、防黴材料、防
藻材料、磁性材料、非線形光学材料、顔料、触媒、導電
性材料等を用いる事ができ、分散状態を安定に維持する
ためにはその直径は1〜1000nmが好ましく、更に好
ましくは1〜600nmであり、特に好ましくは1〜10
0nmである。フォトクロミック材料としてはハロゲン化
銀等があり磁性材料としてはバリウムフェライト、γ−
フェライト、マグネタイト、マンガンフェライト等があ
り、非線形光学材料としては金、銀、ハロゲン化銀があ
り、顔料としては金、銀があり、触媒としては白金、パ
ラジウム、ロジウム、イリジウム等があり、導電性材料
としては酸化錫、インジウム酸化錫、銀、金等がある。
特に抗菌材料としては金、銀、銅、酸化亜鉛、二酸化チ
タン、ハロゲン化銀、酸化銀、酸化マグネシウム、亜酸
化銅、酸化第一銅等が用いられ、防黴材料及び防藻材料
としては銀、ハロゲン化銀、酸化銀、銅、亜酸化銅、酸
化第一銅がある。
The metal fine particles or metal compound fine particles to be uniformly dispersed in a water-soluble polymer or a water-dispersible polymer include photochromic materials, antibacterial materials, antifungal materials, antialgae materials, magnetic materials, nonlinear optical materials, pigments, catalysts, A conductive material or the like can be used, and the diameter thereof is preferably 1 to 1000 nm, more preferably 1 to 600 nm, and particularly preferably 1 to 10 in order to stably maintain the dispersed state.
It is 0 nm. Photochromic materials include silver halide, and magnetic materials include barium ferrite and γ-
Ferrite, magnetite, manganese ferrite, etc., non-linear optical materials include gold, silver, silver halide, pigments include gold, silver, catalysts include platinum, palladium, rhodium, iridium, etc. Examples of the material include tin oxide, indium tin oxide, silver and gold.
In particular, gold, silver, copper, zinc oxide, titanium dioxide, silver halide, silver oxide, magnesium oxide, cuprous oxide, cuprous oxide, etc. are used as the antibacterial material, and silver is used as the fungicide and algae control material. , Silver halide, silver oxide, copper, cuprous oxide, cuprous oxide.

【0011】このようにして得られる金属微粒子及び/
又は金属化合物微粒子が均一に分散されたポリマーを含
む水性液は、これを噴霧乾燥等の手段により水分を除去
して固形組成物とする事ができる。この組成物は水性液
に含まれたポリマー上に金属微粒子及び/又は金属化合
物微粒子が均一に分散されたものである。以下に本発明
の実施例を示す。
The metal fine particles thus obtained and /
Alternatively, an aqueous liquid containing a polymer in which metal compound fine particles are uniformly dispersed can be removed into water by means of spray drying or the like to obtain a solid composition. This composition is one in which metal fine particles and / or metal compound fine particles are uniformly dispersed on a polymer contained in an aqueous liquid. Examples of the present invention will be shown below.

【0012】[0012]

【実施例】【Example】

実施例1 市販のフッ素樹脂水性エマルション系撥水剤(明成化学
工業(株)製、アサヒガードAG-471、固形分濃度 2.3wt
%、平均粒子径 120nm)50mlを 100mlナスフラスコに入
れ、これに蒸留水45mlに溶解した硝酸銀8.50mg(0.05mm
ol、AgNO3 、特級試薬)を添加し、室温で混合した。こ
の時の分散液の粘度は11cPであった。その後、水素化ほ
う素ナトリウム(NaBH4 、特級試薬)7.57mg( 0.2mmo
l)を溶解した蒸留水 5mlを添加し、Ag 0.5mmol/lの淡
黄色均一な銀微粒子配合フッ素撥水剤水性エマルション
を得た。全固形成分中の銀微粒子濃度は0.47重量%であ
った。この銀微粒子配合フッ素撥水剤水性エマルション
を炭素薄膜上で乾固し、透過型電子顕微鏡により観察し
た。銀微粒子の分散状態は良好で、平均粒径は 4.2nm、
変異係数は40.5%であった。ここで変異係数とは粒子の
直径の平均値を粒子の直径の標準偏差で割った数値であ
る。この銀微粒子配合フッ素撥水剤水性エマルション
は、室温下で3ヵ月以上安定で分散状態に変化が見られ
なかった。
Example 1 Commercially available fluororesin aqueous emulsion water repellent (manufactured by Meisei Chemical Co., Ltd., Asahi Guard AG-471, solid content concentration 2.3 wt)
%, Average particle size 120 nm) 50 ml was put in a 100 ml eggplant flask, and silver nitrate 8.50 mg (0.05 mm) dissolved in 45 ml of distilled water.
ol, AgNO 3 , special grade reagent) were added and mixed at room temperature. The viscosity of the dispersion liquid at this time was 11 cP. After that, sodium borohydride (NaBH 4 , special grade reagent) 7.57 mg (0.2 mmo
5 ml of distilled water in which l) was dissolved was added to obtain an aqueous emulsion of a fluorine-repellent agent containing Ag fine particles of 0.5 mmol / l and having a uniform light yellow color. The concentration of fine silver particles in all the solid components was 0.47% by weight. The silver fine particle-containing fluorine water repellent aqueous emulsion was dried on a carbon thin film and observed with a transmission electron microscope. The dispersed state of silver fine particles is good, the average particle size is 4.2 nm,
The coefficient of variation was 40.5%. Here, the variation coefficient is a value obtained by dividing the average value of the particle diameters by the standard deviation of the particle diameters. This aqueous fluorine-repellent agent emulsion containing fine silver particles was stable at room temperature for 3 months or longer, and no change was observed in the dispersed state.

【0013】該水性エマルション 100mlをビーカーに入
れ、これに市販の綿布(10cm角)を 5分間浸漬、撹拌し
た。該綿布を該水性エマルションより取り出し、風乾
後、 120℃10分間、 170℃30秒間熱処理して銀微粒子配
合撥水綿布を得た。該綿布をX線マイクロアナライザー
にて面分析したところ、銀微粒子が綿布表面に均一に分
布していた。該綿布より 5cm角の試験片を得て、抗菌試
験を行った。大腸菌及び黄色ブドウ球菌を滅菌リン酸緩
衝液に浮遊させて菌数濃度が約105/mlとなるように調製
した。試験片上に各菌液 1mlを滴下した後、25℃で18時
間保存した。18時間後に試験片上の試験菌液を SCDLP培
地10mlで洗い出し、洗い出し液中の生菌数を SCDLP寒天
培地を用いた混釈平板培養法(35℃、2日間)により測
定した。結果を表1に示した。優れた抗菌性が確認され
た。
100 ml of the aqueous emulsion was placed in a beaker, and a commercially available cotton cloth (10 cm square) was immersed in the beaker for 5 minutes and stirred. The cotton cloth was taken out of the aqueous emulsion, air-dried, and then heat-treated at 120 ° C. for 10 minutes and 170 ° C. for 30 seconds to obtain a silver fine particle-containing water repellent cotton cloth. When the cotton cloth was subjected to surface analysis with an X-ray microanalyzer, silver fine particles were uniformly distributed on the surface of the cotton cloth. A 5 cm square test piece was obtained from the cotton cloth and subjected to an antibacterial test. Escherichia coli and Staphylococcus aureus were suspended in a sterilized phosphate buffer solution to prepare a bacterial concentration of about 10 5 / ml. After dropping 1 ml of each bacterial solution on the test piece, it was stored at 25 ° C. for 18 hours. After 18 hours, the test bacterial solution on the test piece was washed out with 10 ml of SCDLP medium, and the number of viable bacteria in the washed out solution was measured by the pour plate culture method (35 ° C, 2 days) using SCDLP agar medium. The results are shown in Table 1. Excellent antibacterial properties were confirmed.

【0014】比較例1 硝酸銀8.50mg(0.05mmol、AgNO3 、特級試薬)を溶解し
た蒸留水45mlを 100mlナスフラスコに入れ、水素化ほう
素ナトリウム(NaBH4 、特級試薬)7.57mg( 0.2mmol)
を溶解した蒸留水 5mlを添加し、Ag 1.0mmol/lの淡黄色
均一な銀微粒子水性分散液を得た。これに実施例1 で用
いたフッ素樹脂水性エマルション系撥水剤50mlを混合、
撹拌した。混合直後は淡黄色均一であったが、5時間後
にはナスフラスコ上部は無色透明となり下部に黄色の凝
集物が生成した。
Comparative Example 1 45 ml of distilled water in which 8.50 mg (0.05 mmol, AgNO 3 , special grade reagent) of silver nitrate was dissolved was placed in a 100 ml eggplant flask, and sodium borohydride (NaBH 4 , special grade reagent) 7.57 mg (0.2 mmol)
5 ml of distilled water in which was dissolved was added to obtain a light yellow uniform silver fine particle aqueous dispersion of Ag 1.0 mmol / l. 50 ml of the fluororesin aqueous emulsion water repellent used in Example 1 was mixed with this,
It was stirred. Immediately after mixing, it was light yellow and uniform, but after 5 hours, the upper part of the eggplant flask became colorless and transparent, and yellow agglomerates were formed in the lower part.

【0015】引き続き、実施例1 と同様にして綿布を浸
漬、撹拌した。該綿布を該水性エマルションより取り出
し、風乾後、 120℃10分間、 170℃30秒間熱処理して銀
微粒子配合撥水綿布を得た。該綿布をX線マイクロアナ
ライザーにて面分析したところ、綿布表面での銀微粒子
の分布は、銀の凝集物が局所的に存在しており不均一で
あった。該綿布より 5cm角の試験片を得て実施例1と同
様に抗菌試験を行い、結果を表1に示した。抗菌性は悪
かった。
Subsequently, the cotton cloth was dipped and stirred in the same manner as in Example 1. The cotton cloth was taken out of the aqueous emulsion, air-dried, and then heat-treated at 120 ° C. for 10 minutes and 170 ° C. for 30 seconds to obtain a silver fine particle-containing water repellent cotton cloth. When the cotton cloth was subjected to surface analysis with an X-ray microanalyzer, the distribution of silver fine particles on the surface of the cotton cloth was non-uniform because silver aggregates were locally present. A 5 cm square test piece was obtained from the cotton cloth, and an antibacterial test was conducted in the same manner as in Example 1. The results are shown in Table 1. The antibacterial property was poor.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例2 硝酸銀8.50mg(0.05mmol、AgNO3 、特級試薬)ポリビニ
ールアルコール(原子吸光分析用試薬)2gを蒸留水95ml
に溶解した。粘度は 3cPであった。これを 100mlナスフ
ラスコに入れ、水素化ほう素ナトリウム( NaBH4、特級
試薬)7.57mg( 0.2mmol)を溶解した蒸留水5ml を添加
し、Ag 0.5mmol/lの淡黄色均一な銀微粒子配合ポリビニ
ールアルコール水溶液を得た。全固形成分中の銀微粒子
濃度は0.27重量%であった。この銀微粒子配合ポリビニ
ールアルコール水溶液を炭素薄膜上で乾固し、透過型電
子顕微鏡により観察した。銀微粒子の分散状態は良好
で、平均粒径は 6.2nm、変異係数は47.2%であった。こ
の銀微粒子配合ポリビニールアルコール水溶液は、室温
下で3ヵ月以上安定で分散状態に変化が見られなかっ
た。該水溶液を噴霧乾燥して、銀微粒子配合ポリビニー
ルアルコール粉末を得た。該粉末をX線マイクロアナラ
イザーにて面分析したところ、銀微粒子がポリビニール
アルコール粉末中に均一に分布していた。
Example 2 8.50 mg of silver nitrate (0.05 mmol, AgNO 3 , special grade reagent) 2 g of polyvinyl alcohol (reagent for atomic absorption spectrometry) and 95 ml of distilled water
Dissolved in. The viscosity was 3 cP. Put this in a 100 ml eggplant-shaped flask, add 5 ml of distilled water in which 7.57 mg (0.2 mmol) of sodium borohydride (NaBH 4 , special grade reagent) was dissolved, and add a pale yellow uniform silver fine particle-containing poly (Ag 0.5 mmol / l). A vinyl alcohol aqueous solution was obtained. The silver fine particle concentration in all the solid components was 0.27% by weight. The aqueous solution of polyvinyl alcohol containing silver fine particles was dried on a carbon thin film and observed with a transmission electron microscope. The fine silver particles were in a good dispersion state, the average particle size was 6.2 nm, and the coefficient of variation was 47.2%. This aqueous solution of polyvinyl alcohol containing fine silver particles was stable at room temperature for 3 months or longer and showed no change in the dispersed state. The aqueous solution was spray-dried to obtain a polyvinyl alcohol powder containing fine silver particles. When the powder was subjected to surface analysis with an X-ray microanalyzer, silver fine particles were uniformly distributed in the polyvinyl alcohol powder.

【0018】該粉末の抗菌試験を実施した。大腸菌及び
黄色ブドウ球菌を 0.9%食塩水に浮遊させて菌数濃度が
約104/mlとなるように調製した。該粉末 100mgを試験菌
液 100mlに添加して30℃30分間撹拌した。30分後に試験
液を一定量採取し、L寒天培地を用いて30℃2日間培養
した後生じたコロニー数を銀を配合しない対照のコロニ
ー数と比較することにより生菌率を求めた。結果を表2
に示した。優れた抗菌性が確認された。
An antibacterial test of the powder was carried out. Escherichia coli and Staphylococcus aureus were suspended in 0.9% saline to prepare a bacterial concentration of about 10 4 / ml. 100 mg of the powder was added to 100 ml of the test bacterial solution and stirred at 30 ° C for 30 minutes. After 30 minutes, a certain amount of the test solution was sampled, and the number of colonies generated after culturing in L agar medium at 30 ° C. for 2 days was compared with the number of colonies of a control containing no silver to determine the viable cell ratio. Table 2 shows the results
It was shown to. Excellent antibacterial properties were confirmed.

【0019】比較例2 硝酸銀8.50mg(0.05mmol、AgNO3 、特級試薬)を溶解し
た蒸留水45mlを 100mlナスフラスコに入れ、水素化ほう
素ナトリウム( NaBH4、特級試薬)7.57mg( 0.2mmol)
を溶解した蒸留水 5mlを添加し、Ag 1.0mmol/lの淡黄色
均一な銀微粒子水性分散液を得た。これに実施例2で用
いた蒸留水50mlに溶解したポリビニールアルコール2gを
混合、撹拌した。混合直後は淡黄色均一であったが、5
時間後にはナスフラスコ上部は無色透明となり下部に黄
褐色の凝集物が生成した。該水溶液を噴霧乾燥して、銀
微粒子配合ポリビニールアルコール粉末を得た。該粉末
をX線マイクロアナライザーにて銀の分析をしたとこ
ろ、銀微粒子のポリビニールアルコール粉末中での分布
は、銀の凝集物が局所的に存在しており不均一であっ
た。該粉末の抗菌試験を実施例2 と同様に実施し、その
結果を表2に示した。生菌率は高く、抗菌性はほとんど
認められなかった。
Comparative Example 2 45 ml of distilled water in which 8.50 mg (0.05 mmol, AgNO 3 , special grade reagent) of silver nitrate was dissolved was placed in a 100 ml eggplant flask, and sodium borohydride (NaBH 4 , special grade reagent) 7.57 mg (0.2 mmol)
5 ml of distilled water in which was dissolved was added to obtain a light yellow uniform silver fine particle aqueous dispersion of Ag 1.0 mmol / l. To this, 2 g of polyvinyl alcohol dissolved in 50 ml of distilled water used in Example 2 was mixed and stirred. Immediately after mixing, it was light yellow and uniform, but 5
After a lapse of time, the upper portion of the eggplant flask became colorless and transparent, and a yellowish brown aggregate was formed at the lower portion. The aqueous solution was spray-dried to obtain a polyvinyl alcohol powder containing fine silver particles. When the powder was analyzed for silver with an X-ray microanalyzer, the distribution of silver particles in the polyvinyl alcohol powder was non-uniform because silver aggregates were locally present. An antibacterial test of the powder was conducted in the same manner as in Example 2, and the results are shown in Table 2. The viable cell ratio was high and almost no antibacterial activity was observed.

【0020】[0020]

【表2】 [Table 2]

【0021】実施例3 ポリエチレングリコール5g(一級試薬、平均分子量 200
00)を蒸留水 100mlに溶解した。この粘度は 1.5cPであ
った。これを還流器付き 100mlナスフラスコに入れ、90
℃に加熱した。これにテトラプロピルチタネート14.2mg
(0.05mmol、Ti(OC3H7)4、特級試薬)を添加して、Ti(O
H)4 0.5mmol/lの白色均一な水酸化チタン微粒子配合ポ
リエチレングリコール水溶液を得た。この水性液を還流
下で加熱する事により酸化チタン微粒子配合ポリエチレ
ングリコール水溶液が得られた。全固形成分中の微粒子
濃度は0.12重量%であった。この酸化チタン微粒子配合
ポリエチレングリコール水溶液を炭素薄膜上で乾固し、
透過型電子顕微鏡により観察した。酸化チタン微粒子の
分散状態は良好で、平均粒径は 5.2nm、変異係数は14.5
%であった。この酸化チタン微粒子配合ポリエチレング
リコール水溶液は、室温下で3ヵ月以上安定で分散状態
に変化が見られなかった。該水溶液に濾紙に噴霧後、室
温で乾燥して直径 4cmの試験片を得た。これをJISZ 291
1準拠の8種混合菌によるかび抵抗性試験に供した。4
週間後試験片にかびの発生は認められなかった。
Example 3 Polyethylene glycol 5 g (primary reagent, average molecular weight 200
00) was dissolved in 100 ml of distilled water. This viscosity was 1.5 cP. Put this in a 100 ml eggplant flask with a reflux device,
Heated to ° C. Tetrapropyl titanate 14.2mg
(0.05mmol, Ti (OC 3 H 7) 4, special grade reagent) was added, Ti (O
H) 4 0.5 mmol / l white uniform polyethylene hydroxide fine particle-containing polyethylene glycol aqueous solution was obtained. By heating this aqueous liquid under reflux, an aqueous polyethylene glycol solution containing titanium oxide fine particles was obtained. The concentration of fine particles in all solid components was 0.12% by weight. This titanium oxide fine particle-containing polyethylene glycol aqueous solution is dried on a carbon thin film,
It was observed with a transmission electron microscope. The dispersion state of titanium oxide fine particles is good, the average particle size is 5.2 nm, and the coefficient of variation is 14.5.
%Met. This polyethylene glycol fine particle-containing polyethylene glycol aqueous solution was stable at room temperature for 3 months or longer, and no change was observed in the dispersed state. A filter paper was sprayed onto the aqueous solution and dried at room temperature to obtain a test piece having a diameter of 4 cm. This is JIS Z 291
It was subjected to a fungus resistance test using 1-compliant 8 kinds of mixed bacteria. Four
No mold was found on the test piece after a week.

【0022】比較例3 90℃に保った還流器付き 100mlナスフラスコ蒸留水50ml
にテトラプロピルチタネート14.2mg(0.05mmol、Ti(OC3
H7)4、特級試薬)を添加して、Ti(OH)4 1.0mmol/lの白
色均一な水酸化チタン微粒子水性分散液を得た。次にこ
の分散液を還流下で加熱する事により酸化チタン微粒子
水性分散液が得られた。これにポリエチレングリコール
5g(一級試薬、平均分子量 20000)を溶解した蒸留水50
mlを混合、撹拌した。混合直後は白色均一であったが、
7時間後にはナスフラスコ上部は無色透明となり下部に
白色の凝集物が生成した。実施例3と同様にかび抵抗性
試験を行った。濾紙への該混合物の噴霧は均一に行なえ
なかった。4週間後試験片の1/3以上の面積でかびの発
生が認められた。
COMPARATIVE EXAMPLE 3 100 ml eggplant flask with a reflux condenser kept at 90 ° C. Distilled water 50 ml
Tetrapropyl titanate 14.2 mg (0.05 mmol, Ti (OC 3
H 7) 4, special grade reagent) was added to obtain a Ti (OH) 4 white homogenous titanium hydroxide fine particle aqueous dispersion of 1.0 mmol / l. Next, this dispersion was heated under reflux to obtain a titanium oxide fine particle aqueous dispersion. Polyethylene glycol
50g distilled water in which 5g (first-class reagent, average molecular weight 20000) was dissolved
ml was mixed and stirred. Immediately after mixing, it was white and uniform,
After 7 hours, the upper part of the eggplant flask became colorless and transparent, and white aggregates were formed in the lower part. A mold resistance test was conducted in the same manner as in Example 3. Spraying of the mixture onto the filter paper could not be done uniformly. After 4 weeks, mold development was observed in an area of 1/3 or more of the test piece.

【0023】実施例4 酢酸ビニル−エチレン共重合樹脂エマルション(ヘキス
ト合成(株)製、モビニール181E、濃度55重量%、平均
粒子径 400nm) 20g、塩化第二鉄六水和物(FeCl 3 ・6H
2O、特級試薬)3.00g(11.1mmol)及び硫酸第一鉄七水和
物( FeSO4・7H2O、一級試薬) 1.54g(5.53mmol)を蒸
留水130ml に溶解し、2.5gの水酸化ナトリウムを溶解し
た蒸留水50mlを加た。この時の粘度は 800cPであった。
5分間加熱還流を行ないマグネタイト( Fe3O4)微粒子
配合酢酸ビニル−エチレン共重合樹脂エマルションを得
た。その後、傾斜法により蒸留水洗浄を充分に行ない、
pHを5として、黒色均一な Fe3O4濃度 27.65mmol/lのマ
グネタイト微粒子配合酢酸ビニル−エチレン共重合樹脂
エマルションを得た。全固形成分中の微粒子濃度は 10.
42重量%であった。該エマルションを炭素薄膜上で乾固
し、透過型電子顕微鏡により観察した。マグネタイト微
粒子の分散状態は良好で、平均粒径は 420nm、変異係数
は10.2%であった。該エマルションは、室温下で3ヵ月
以上安定で分散状態に変化が見られなかった。
Example 4 Vinyl acetate-ethylene copolymer resin emulsion (hex
Togo Gosei Co., Ltd., Movinyl 181E, concentration 55% by weight, average
Particle size 400nm) 20g, ferric chloride hexahydrate (FeCl 3・ 6H
2O, special grade reagent) 3.00 g (11.1 mmol) and ferrous sulfate heptahydrate
Thing (FeSOFour・ 7H2O, primary reagent) 1.54 g (5.53 mmol)
Dissolve in 130 ml of distilled water and 2.5 g of sodium hydroxide.
50 ml of distilled water was added. The viscosity at this time was 800 cP.
After heating and refluxing for 5 minutes, magnetite (Fe3OFour) Fine particles
Obtained blended vinyl acetate-ethylene copolymer resin emulsion
Was. Then, the distilled water is thoroughly washed by the gradient method,
pH of 5 and black uniform Fe3OFourThe concentration of 27.65 mmol / l
Vinyl acetate-ethylene copolymer resin containing particulates
An emulsion was obtained. The concentration of fine particles in all solid components is 10.
It was 42% by weight. Dry the emulsion on a carbon thin film
Then, it was observed with a transmission electron microscope. Magnetite fine
The dispersed state of the particles is good, the average particle size is 420 nm, and the coefficient of variation is
Was 10.2%. The emulsion should be stored at room temperature for 3 months
As described above, the dispersion was stable and no change was observed.

【0024】[0024]

【発明の効果】本発明によれば直径1〜1000nmの金
属微粒子及び/又は金属化合物微粒子を水溶性ポリマー
及び/又は水中分散性ポリマーを含む水系媒体中で均一
に分散させることができ、さらにこれを乾燥して固形組
成物を得ることができるので、フォトクロミック材料、
抗菌材料、防黴材料、防藻材料、磁性材料、非線形光学
材料、顔料、触媒、導電性材料等に応用できる可能性が
示された。
According to the present invention, metal fine particles and / or metal compound fine particles having a diameter of 1 to 1000 nm can be uniformly dispersed in an aqueous medium containing a water-soluble polymer and / or a water-dispersible polymer. Since a solid composition can be obtained by drying, the photochromic material,
It has been shown that it can be applied to antibacterial materials, antifungal materials, algae materials, magnetic materials, nonlinear optical materials, pigments, catalysts, conductive materials, etc.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 水溶性ポリマー及び/又は水中分散性ポ
リマーを含む水系媒体中に、直径1〜1000nmかつ全
固形成分中の含量が 0.001〜12重量%の金属微粒子及び
/又は金属化合物微粒子が均一に分散されてなり、全固
形成分濃度が1重量%以上である事を特徴とする微粒子
を分散した水性液。
1. Metal fine particles and / or metal compound fine particles having a diameter of 1 to 1000 nm and a content of 0.001 to 12% by weight in all solid components are homogeneous in an aqueous medium containing a water-soluble polymer and / or a water-dispersible polymer. An aqueous liquid in which fine particles are dispersed, characterized in that the total solid component concentration is 1% by weight or more.
【請求項2】 金属微粒子及び/又は金属化合物微粒子
が金、銀、銅、亜鉛、酸化銀、酸化マグネシウム、酸化
亜鉛、二酸化チタン、亜酸化銅、酸化第一銅、マグネタ
イト微粒子よりなる群より選ばれた少なくとも1種であ
る請求項1に記載の水性液。
2. The metal fine particles and / or metal compound fine particles are selected from the group consisting of gold, silver, copper, zinc, silver oxide, magnesium oxide, zinc oxide, titanium dioxide, cuprous oxide, cuprous oxide, and magnetite fine particles. The aqueous liquid according to claim 1, which is at least one selected from the group consisting of:
【請求項3】 水溶性ポリマーが天然水溶性ポリマー及
び/又は合成水溶性ポリマーよりなる群より選ばれた少
なくとも1種である請求項1に記載の水性液。
3. The aqueous liquid according to claim 1, wherein the water-soluble polymer is at least one selected from the group consisting of natural water-soluble polymers and / or synthetic water-soluble polymers.
【請求項4】 天然水溶性ポリマーがでんぷん及びその
誘導体、プルラン、水溶性セルロース誘導体、アルギン
酸、グアーガム、アラビアゴム、トラガントガム、ゼラ
チンよりなる群より選ばれた少なくとも1種である請求
項3に記載の水性液。
4. The natural water-soluble polymer is at least one selected from the group consisting of starch and its derivatives, pullulan, water-soluble cellulose derivatives, alginic acid, guar gum, gum arabic, tragacanth gum and gelatin. Aqueous liquid.
【請求項5】 合成水溶性ポリマーがポリビニルピロリ
ドン、ポリビニルアルコール、ポリエチレンオキサイ
ド、ポリビニルエーテル、ポリアクリルアミド、ポリア
クリル酸ソーダ、ポリエチレングリコール、水溶性アク
リル樹脂、水溶性エポキシ樹脂、水溶性ポリエステル樹
脂、水溶性ウレタン樹脂よりなる群より選ばれた少なく
とも1種である請求項3に記載の水性液。
5. The synthetic water-soluble polymer is polyvinylpyrrolidone, polyvinyl alcohol, polyethylene oxide, polyvinyl ether, polyacrylamide, sodium polyacrylate, polyethylene glycol, water-soluble acrylic resin, water-soluble epoxy resin, water-soluble polyester resin, water-soluble. The aqueous liquid according to claim 3, which is at least one selected from the group consisting of urethane resins.
【請求項6】 水中分散性ポリマーの直径が1〜100
0nmである請求項1に記載の水性液。
6. The water-dispersible polymer has a diameter of 1 to 100.
The aqueous liquid according to claim 1, which has a thickness of 0 nm.
【請求項7】 水中分散性ポリマーが熱硬化性ポリマー
及び/又は熱可塑性ポリマーである請求項6に記載の水
性液。
7. The aqueous liquid according to claim 6, wherein the water-dispersible polymer is a thermosetting polymer and / or a thermoplastic polymer.
【請求項8】 水溶性ポリマー及び/又は水中分散性ポ
リマーを含む水系媒体中に金属化合物溶液を加え相当す
る金属微粒子及び/又は金属化合物微粒子を析出させる
事を特徴とする請求項1〜7のいずれかに記載の微粒子
を分散した水性液の製法。
8. A metal compound solution is added to an aqueous medium containing a water-soluble polymer and / or a water-dispersible polymer to precipitate corresponding metal fine particles and / or metal compound fine particles. A method for producing an aqueous liquid in which the fine particles according to any one of the above are dispersed.
【請求項9】 水溶性ポリマー及び/又は水中分散性ポ
リマーを含む水系媒体の粘度が 0.8〜2000cPである請求
項8に記載の水性液の製法。
9. The method for producing an aqueous liquid according to claim 8, wherein the viscosity of the aqueous medium containing the water-soluble polymer and / or the water-dispersible polymer is 0.8 to 2000 cP.
【請求項10】 金属微粒子及び/又は金属化合物微粒
子を化学反応又は物理的方法により相当する金属化合物
溶液より析出させる請求項8に記載の水性液の製法。
10. The method for producing an aqueous liquid according to claim 8, wherein the metal fine particles and / or the metal compound fine particles are precipitated from the corresponding metal compound solution by a chemical reaction or a physical method.
【請求項11】 化学反応が還元反応である請求項10
に記載の水性液の製法。
11. The chemical reaction is a reduction reaction.
The method for producing an aqueous liquid according to 1.
【請求項12】 化学反応がゾルゲル法又は共沈法であ
る請求項10に記載の水性液の製法。
12. The method for producing an aqueous liquid according to claim 10, wherein the chemical reaction is a sol-gel method or a coprecipitation method.
【請求項13】 物理的方法が金属化合物の温度による
溶解度の変化を利用する方法である請求項10に記載の
水性液の製法。
13. The method for producing an aqueous liquid according to claim 10, wherein the physical method utilizes a change in solubility of the metal compound with temperature.
【請求項14】 請求項1に記載の水性液を乾燥して得
られる固形組成物。
14. A solid composition obtained by drying the aqueous liquid according to claim 1.
JP28811794A 1994-11-22 1994-11-22 Aqueous liquid with dispersed fine particle, production thereof and solid composition obtained from said aqueous liquid Pending JPH08141388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28811794A JPH08141388A (en) 1994-11-22 1994-11-22 Aqueous liquid with dispersed fine particle, production thereof and solid composition obtained from said aqueous liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28811794A JPH08141388A (en) 1994-11-22 1994-11-22 Aqueous liquid with dispersed fine particle, production thereof and solid composition obtained from said aqueous liquid

Publications (1)

Publication Number Publication Date
JPH08141388A true JPH08141388A (en) 1996-06-04

Family

ID=17726033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28811794A Pending JPH08141388A (en) 1994-11-22 1994-11-22 Aqueous liquid with dispersed fine particle, production thereof and solid composition obtained from said aqueous liquid

Country Status (1)

Country Link
JP (1) JPH08141388A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111620A (en) * 1997-06-13 1999-01-06 Jsr Corp Aqueous dispersion
WO2005007328A1 (en) 2003-07-17 2005-01-27 Asahi Kasei Medical Co., Ltd. Metal colloid solution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111620A (en) * 1997-06-13 1999-01-06 Jsr Corp Aqueous dispersion
WO2005007328A1 (en) 2003-07-17 2005-01-27 Asahi Kasei Medical Co., Ltd. Metal colloid solution
US7745499B2 (en) 2003-07-17 2010-06-29 Asahi Kasei Medical Co., Ltd Metal colloid solution

Similar Documents

Publication Publication Date Title
Janardhanan et al. Synthesis and surface chemistry of nano silver particles
de Santa Maria et al. Synthesis and characterization of silver nanoparticles impregnated into bacterial cellulose
Kalaycı et al. Synthesis, characterization, and antibacterial activity of metal nanoparticles embedded into amphiphilic comb-type graft copolymers
CN101213040B (en) Functional nanomaterials with antibacterial and antiviral activity
CN109820000A (en) A kind of MOFs-loaded nano-silver antibacterial material and preparation method thereof
KR101265781B1 (en) Titanium dioxide photocatalyst having crystalline titanium dioxide core-amorphous titanium dioxide shell structure, preparation method thereof and hydrophilic coating material comprising said titanium dioxide photocatalyst
CN104841015B (en) High-specific-surface-area silver-loaded titanium dioxide composite antibacterial material and preparation method thereof
Luo et al. Hierarchical‐Structured Anatase‐Titania/Cellulose Composite Sheet with High Photocatalytic Performance and Antibacterial Activity
Patil et al. Single step green process for the preparation of antimicrobial nanotextiles by wet chemical and sonochemical methods
JP2020519753A (en) Composite resin containing silver nanoparticles
CN100554139C (en) Has nano composite material solution of complex function and preparation method thereof
EP3759172A1 (en) Particle having an antimicrobial surface, material for producing a coating using such particles, and method for producing such particles
CN109880470A (en) A kind of preparation method of water-based acrylate delay antibacterial coating
US20080089839A1 (en) Preparation of Stable High Concentration Coloidal Metal Particulate System
KR20230019128A (en) Bioactive composition for apoptosis
TWI640565B (en) Polymer latex particle composition containing nano silver particles
CN110200013A (en) A kind of antibacterial mildew inhibitor and the preparation method and application thereof
Jastrzębska et al. Biosorption properties of RGO/Al2O3 nanocomposite flakes modified with Ag, Au, and Pd for water purification
DE102006032755A1 (en) Stable suspensions of crystalline TiO2 particles from hydrothermally treated sol-gel precursor powders
JPH08141388A (en) Aqueous liquid with dispersed fine particle, production thereof and solid composition obtained from said aqueous liquid
DE102013114572A1 (en) Process for producing structured metallic coatings
Rabiei et al. Antimicrobial activity and cytotoxicity of cotton-polyester fabric coated with a metal–organic framework and metal oxide nanoparticle
Sapurina et al. Polyurethane latex modified with polyaniline
DE69822281T2 (en) Process for the production of functional coatings on objects
JP2002088406A (en) Method for producing metallic colloidal solution, and metallic colloidal solution obtained by the method