[go: up one dir, main page]

JPH0814036B2 - Antifouling equipment for structures in contact with seawater - Google Patents

Antifouling equipment for structures in contact with seawater

Info

Publication number
JPH0814036B2
JPH0814036B2 JP8404288A JP8404288A JPH0814036B2 JP H0814036 B2 JPH0814036 B2 JP H0814036B2 JP 8404288 A JP8404288 A JP 8404288A JP 8404288 A JP8404288 A JP 8404288A JP H0814036 B2 JPH0814036 B2 JP H0814036B2
Authority
JP
Japan
Prior art keywords
conductive coating
coating film
seawater
contact
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8404288A
Other languages
Japanese (ja)
Other versions
JPS6487791A (en
Inventor
正博 宇佐美
健二 植田
清美 友重
勉 堀口
昭三 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8404288A priority Critical patent/JPH0814036B2/en
Publication of JPS6487791A publication Critical patent/JPS6487791A/en
Publication of JPH0814036B2 publication Critical patent/JPH0814036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は船舶,海洋構造物等海水に接する構造物の防
汚装置に関する。
Description: TECHNICAL FIELD The present invention relates to an antifouling device for structures that come into contact with seawater, such as ships and marine structures.

〔従来の技術〕[Conventional technology]

船舶,海洋構造物等海水に接する構造物の防汚手段と
しては、従来、構造物の接水部分に防汚塗料を塗装する
手段が一般的に採用されている。
As a means for antifouling structures that come into contact with seawater such as ships and marine structures, a means for applying antifouling paint to the water contacting parts of the structures has been generally adopted.

しかしながら、このような手段では、次のような欠点
がある。
However, such means have the following drawbacks.

(1) 防汚塗料の防汚成分溶出速度を調節することが
できないので、季節,海流,水質変化等に自在に対応す
ることができない。
(1) Since the elution rate of the antifouling component of the antifouling paint cannot be adjusted, it is not possible to respond flexibly to the season, ocean currents, water quality changes, etc.

(2) 防汚塗料中の毒物含有量に限度があるので、約
2年ごとに塗り替え作業が必要である。
(2) Since the content of toxic substances in the antifouling paint is limited, repainting work is required about every two years.

そこで本出願人は、さきに、特願昭61−247032号,特
願昭61−248897号をもって、第5図模式図に示すよう
に、海水2に接する構造物1に、エポキシ樹脂等の絶縁
塗膜3と、カーボン粉等を有機質バインダーに混合した
導電塗膜05を塗り重ね、導電塗膜05と鋼等からなる電気
伝導体6との間に、直流電源7により導電塗膜05を
(+)に電気伝導体6を(−)にして通電し、導電塗膜
05上に、2Cl-→Cl2+2eの作用で塩素を発生させる装置
を提案した。
Therefore, the present applicant previously filed Japanese Patent Application Nos. 61-247032 and 61-248897, and as shown in the schematic diagram of FIG. 5, the structure 1 in contact with the seawater 2 is insulated with an epoxy resin or the like. The coating film 3 and the conductive coating film 05 in which carbon powder or the like is mixed with an organic binder are applied repeatedly, and the conductive coating film 05 is formed between the conductive coating film 05 and the electric conductor 6 made of steel or the like by the DC power supply 7 ( Conductor coating is performed by turning the electric conductor 6 to (-) and then energizing it.
On 05, 2Cl - proposed a device for generating chlorine by the action of → Cl 2 + 2e.

しかしながら、このような装置では、次のような不具
合があることが判明した。
However, it has been found that such a device has the following problems.

(1) 海洋2中に流出する電流密度をある一定値以上
に保持する必要があるが、導電塗膜05の消耗による抵抗
上昇のため通電端近くに電流密度が集中し、防汚有効範
囲が狭くなる。
(1) It is necessary to keep the current density flowing into the ocean 2 at a certain value or more, but the current density is concentrated near the current-carrying end due to the resistance increase due to the consumption of the conductive coating film 05, and the antifouling effective range is Narrows.

(2) 導電塗膜05の薄厚のばらつきにより電流密度が
異なり、性能の維持が困難である。
(2) It is difficult to maintain the performance because the current density varies depending on the thinness of the conductive coating film 05.

(3) 電流密度の均一化には低抵抗の導電塗膜05が必
要であるが、そのためには多量の導電粉を混入する必要
があり製造が困難である。
(3) A low resistance conductive coating film 05 is required for uniforming the current density, but for that purpose it is necessary to mix a large amount of conductive powder, which makes manufacturing difficult.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、このような事情に鑑みて提案されたもの
で、導電塗膜を用いる防汚装置における導電塗膜消耗に
よる抵抗上昇を防止できるとゝもに、導電塗膜の膜圧の
ばらつきによる電流分布不均一化を解消することがで
き、かつ低抵抗導電塗膜で高性能な防汚効果を奏するこ
とができる海水に接する構造物の防汚装置を提供するこ
とを課題とする。
The present invention has been proposed in view of such circumstances, and it is possible to prevent an increase in resistance due to consumption of the conductive coating film in an antifouling device using the conductive coating film, and also to prevent variations in the film pressure of the conductive coating film. An object of the present invention is to provide an antifouling device for a structure which is in contact with seawater, which can eliminate the non-uniformity of current distribution and can achieve a high-performance antifouling effect with a low resistance conductive coating film.

また、抵抗上昇を防止する内側導電塗膜の上に外側導
電塗膜を塗り重ねると、その界面でそれ等が相溶して成
膜の導電性が低下するとゝもに、成膜の抵抗上昇により
通電端近くに電流密度が集中し防汚有効範囲が狭くなる
ことを防止する海水に接する構造物の防汚装置を提供す
ることを課題とする。
Also, if the outer conductive coating is applied over the inner conductive coating to prevent the resistance from increasing, the compatibility of those at the interface and the decrease in the conductivity of the film will lower the resistance of the film. Therefore, it is an object of the present invention to provide an antifouling device for a structure in contact with seawater, which prevents the current density from concentrating near the energizing end and narrowing the effective antifouling range.

〔課題を解決するための手段〕[Means for solving the problem]

そのために本発明は、船舶,海洋構造物等の海水に接
する構造物の接水面の電気絶縁体の外側を被覆し導電材
と小片と有機バインダーとからなり導電端が設けられて
いる比抵抗の小さい内側導電塗膜と、上記内側導電塗膜
の外側を被覆し耐酸化性不溶性の導電材の小片と有機バ
インダーとからなり上記内側導電塗膜との比抵抗比が10
倍以上〜156倍以上の大きい比抵抗を有する外側導電塗
膜と、上記外側導電塗膜に対向し海水中に設置された電
気伝導体と、上記内側導電塗膜の通電端と上記電気伝導
体との間に設置され上記内側導電塗膜から上記外側導電
塗膜を通して上記電気伝導体方向に直流を通電する電源
装置とを具えたことを特徴とする。
To this end, the present invention provides a specific resistance in which a conductive end is provided by covering the outside of an electric insulator on the water contact surface of a structure that is in contact with seawater such as a ship or an offshore structure, and including a conductive material, a small piece, and an organic binder. A small inner conductive coating, consisting of a small piece of an oxidation resistant and insoluble conductive material coating the outside of the inner conductive coating and an organic binder, the specific resistance ratio of the inner conductive coating is 10
An outer conductive coating film having a large specific resistance of at least twice to at least 156 times, an electric conductor that is installed in seawater facing the outer conductive coating film, a current-carrying end of the inner conductive coating film, and the electric conductor. And a power supply device that is installed between the inner conductive coating film and the outer conductive coating film and applies a direct current to the electric conductor.

また、内側導電塗膜と外側導電塗膜との間に、導電材
の小片の有機バインダーとからなり、上記外側導電塗膜
と上記内側導電塗膜との間の比抵抗を有する中間導電塗
膜を塗装したことを特徴とする。
Further, between the inner conductive coating and the outer conductive coating, an organic conductive coating of a small piece of a conductive material, an intermediate conductive coating having a specific resistance between the outer conductive coating and the inner conductive coating. It is characterized by being painted.

〔作 用〕[Work]

上述の構成により、導電塗膜を用いる防汚装置におけ
る導電塗膜消耗による抵抗上昇を防止できるとゝもに、
導電塗膜の膜厚のばらつきによる電流分布不均一化を解
消することができ、かつ低抵抗導電塗膜で高性能な防汚
効果を奏することができる海水に接する構造物の防汚装
置を得ることができる。
With the above configuration, it is possible to prevent an increase in resistance due to consumption of the conductive coating film in the antifouling device using the conductive coating film.
(EN) An antifouling device for a structure in contact with seawater, which can eliminate the uneven current distribution due to the variation in the film thickness of the electrically conductive film, and can have a high-performance antifouling effect with the low resistance electrically conductive film. be able to.

また、内側導電塗膜の導電性低下を防ぐことが可能な
ので、装置の防汚範囲が制限されず、その経済性及び防
汚性を向上させることができる海水に接する構造物の防
汚装置を得ることができる。
Further, since it is possible to prevent the conductivity of the inner conductive coating film from being lowered, the antifouling range of the device is not limited, and the antifouling device for a structure in contact with seawater that can improve its economical efficiency and antifouling property is provided. Obtainable.

〔実施例〕〔Example〕

本発明海水に接する構造物の防汚装置の実施例を図面
について説明すると、第1図はその第1実施例を示す模
式図、第2図は第1図の二層導電塗膜による通電有効距
離を従来装置と比較して示す線図、第3図はその第2実
施例を示す模式図、第4図は第3図の三層導電塗膜によ
る電気抵抗の経時的変化を示す線図である。
An embodiment of an antifouling device for a structure in contact with seawater according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing the first embodiment, and FIG. 2 is an electric conduction effect by the two-layer conductive coating film of FIG. FIG. 3 is a diagram showing the distance in comparison with the conventional device, FIG. 3 is a schematic diagram showing the second embodiment, and FIG. 4 is a diagram showing changes with time of electric resistance due to the three-layer conductive coating film of FIG. Is.

まず第1図において、1は海水2に接する鋼構造の外
板を構成する鋼板、3は鋼板1の外側を被覆するエポキ
シ樹脂等よりなる電気絶縁体としての絶縁塗膜である。
なお外板がFRP製等の電気絶縁体である場合は絶縁塗膜
を省略してもよい。4は絶縁塗膜3の外側を被覆する比
抵抗の小さい金属,金属酸化物と有機バインダーとから
なり、通電端4aが設けられている内側導電塗膜で、比抵
抗の小さい金属としてはニッケル,銅,チタン,ニオブ
等の導電剤、金属酸化物としてはマグネタイト,二酸化
マンガン等の導電材がそれぞれ使用でき、また有機バイ
ンダーとの混入の形状としては粉状,線状、フイラー状
又はフレーク状等の小片にして適用できる。なお有機バ
インダーしてはエポキシ樹脂,ビニール樹脂,不飽和ポ
リエステル樹脂,アクリル樹脂,フエノール樹脂,ウレ
タン樹脂,ビニールエステル系エポキシ樹脂等が使用で
きる。
First, in FIG. 1, reference numeral 1 is a steel plate constituting an outer plate of a steel structure which is in contact with seawater 2, and 3 is an insulating coating film as an electric insulator made of epoxy resin or the like for coating the outside of the steel plate 1.
If the outer plate is an electrical insulator such as FRP, the insulating coating may be omitted. Reference numeral 4 denotes an inner conductive coating film that covers the outside of the insulating coating film 3 and has a small specific resistance, a metal oxide and an organic binder, and is provided with a current-carrying end 4a. Conductive agents such as copper, titanium and niobium, and conductive materials such as magnetite and manganese dioxide can be used as metal oxides, respectively, and the shape of the mixture with the organic binder is powdery, linear, filler or flake. It can be applied in small pieces. As the organic binder, epoxy resin, vinyl resin, unsaturated polyester resin, acrylic resin, phenol resin, urethane resin, vinyl ester epoxy resin or the like can be used.

5は更に内側導電塗膜4の外側を被覆する耐酸化性不
溶性の導電材の小片と有機バインダーとからなる外側導
電塗膜で、耐酸化性不溶性の導電材の小片としてはグラ
フアイト,カーボンブラック,マグネタイト,白金属等
が使用でき、有機バインダーとしては上記同様の樹脂類
が使用できる。またこの外側導電塗膜5は内側導電塗膜
4に比べ電気抵抗が大きくなってくる。
Reference numeral 5 denotes an outer conductive coating film made of an organic binder and a small piece of an oxidation resistant and insoluble conductive material which further covers the outer side of the inner conductive coating film 4. Graphite and carbon black are used as the small pieces of the oxidation resistant and insoluble conductive material. , Magnetite, white metal, etc. can be used, and the same resins as the above can be used as the organic binder. Further, the outer conductive coating film 5 has a larger electric resistance than the inner conductive coating film 4.

6は外側導電塗膜5と対向して海水2中に設置された
鉄,銅又は炭素等からなる電気伝導体としての陰極、7
は内側導電塗膜4の通電端4aと陰極6との間に設置さ
れ、内側導電塗膜4から外側導電塗膜5を通して陰極6
の方向へ直流を通電する直流電源である。8は鋼板1と
陰極6とを接続するリード線である。
Reference numeral 6 is a cathode as an electric conductor made of iron, copper, carbon or the like, which is installed in the seawater 2 so as to face the outer conductive coating film 7,
Is installed between the current-carrying end 4a of the inner conductive coating film 4 and the cathode 6, and the cathode 6 passes from the inner conductive coating film 4 through the outer conductive coating film 5.
It is a DC power supply that supplies DC in the direction of. Reference numeral 8 is a lead wire that connects the steel plate 1 and the cathode 6.

このような装置において、内側導電塗膜4から外側導
電塗膜5を通して、海水2中の陰極6の方向へ直流電流
を流出させると、外側導電塗膜5の表面は濃い塩素の膜
に覆われ、海洋生物がその表面へ付着することを防止す
る。
In such an apparatus, when a direct current is caused to flow from the inner conductive coating film 4 through the outer conductive coating film 5 toward the cathode 6 in the seawater 2, the surface of the outer conductive coating film 5 is covered with a dense chlorine film. , Prevent marine life from attaching to its surface.

この際の直流電流は、内側導電塗膜4に設けられてい
る通電端4aから、電気抵抗の小さい内側導電塗膜4のベ
ース電流を通して外側導電塗膜5の厚さ方向に供給され
ることになり、従って外側導電塗膜5が消耗しても導電
端4a近くに電流密度が集中するということはなく、安定
した均一な電流密度分布が長期にわたって維持でき、ひ
いては少ない消費電力で高性能な防汚効果を奏すること
ができる。
At this time, the direct current is supplied from the current-carrying end 4a provided on the inner conductive coating film 4 through the base current of the inner conductive coating film 4 having a small electric resistance in the thickness direction of the outer conductive coating film 5. Therefore, even if the outer conductive coating film 5 is consumed, the current density does not concentrate near the conductive end 4a, and a stable and uniform current density distribution can be maintained for a long period of time. A dirty effect can be produced.

なお、リード線8により鋼板1を(−)電位に、内
側,外側の導電塗膜4,5を(+)電位になるようにして
いるので、内側,外側の導電塗膜4,5が局部的に損傷破
壊し鋼板1に露出部が生じたときには、導電塗膜4,5か
ら流出した直流電流の一部が鋼板露出部に流入し、鋼板
1から直流電源7の(−)極に帰還され鋼板1の腐食を
防止する。
In addition, since the steel plate 1 is set to the (−) potential and the inner and outer conductive coating films 4,5 are set to the (+) potential by the lead wire 8, the inner and outer conductive coating films 4,5 are locally formed. When the steel sheet 1 is exposed to damage and is exposed to damage, a part of the direct current flowing out from the conductive coating films 4 and 5 flows into the exposed portion of the steel sheet and returns from the steel sheet 1 to the (-) pole of the DC power supply 7. Corrosion of the steel plate 1 is prevented.

なお外側導電塗膜5が損傷破壊し内側導電塗膜4が露
出した場合に、その化学的溶出を防ぐべく内側導電塗膜
4の材料にチタン,ニオブ,金属酸化物等を用いること
は、本装置の長期的安定化のために有効である。
When the outer conductive coating 5 is damaged and the inner conductive coating 4 is exposed, it is important to use titanium, niobium, metal oxide or the like as a material for the inner conductive coating 4 in order to prevent chemical elution thereof. It is effective for long-term stabilization of the device.

しかしてこのような装置においては、内側導電塗膜4
の鋼板1に平行な方向の電気抵抗R4<外側導電塗膜5の
鋼板1に平行な方向の電気抵抗R5の関係があり、通電端
4aから受ける電流の95%程度の内側導電塗膜4内を流し
電流密度分布の均一化を図るには、R4/R50.1が好まし
く、また導電塗膜4,5の厚さは体積抵抗率や導電塗膜5
の通電や外界の影響による消耗を考慮して決める必要が
ある。
However, in such a device, the inner conductive coating 4
Electrical resistance R 4 in the direction parallel to the steel plate 1 <is related outer guide Den'nurimaku electrical resistance R 5 in a direction parallel to the steel plate 1 of 5, energization end
R 4 / R 5 0.1 is preferable in order to make uniform the current density distribution by flowing about 95% of the current received from 4a in the inner conductive coating film 4, and the thickness of the conductive coating films 4,5 is volume resistance. Rate and conductive coating 5
It is necessary to decide it by taking into account the power consumption of the vehicle and the consumption due to the external environment.

こゝで、実験例を第2図について説明すると、同図は
本発明装置と従来装置における導電塗膜の通電端からの
通電有効距離を比較して示すもので、それぞれの導電塗
膜の条件は次の通りである。
Here, an experimental example will be described with reference to FIG. 2, which shows a comparison of the effective energization distance from the energization end of the conductive coating in the device of the present invention and the conventional device. Is as follows.

本発明装置 内側導電塗膜:抵抗0.32Ω−m, 膜厚200μ 外側導電塗膜:抵抗30Ω−m, 膜厚100μ なお、内側導電塗膜と外側導電塗膜との抵抗の比は94
倍となっている 従来装置 導電塗膜:抵抗3Ω−m, 膜厚200μ このような導電塗膜に通電端から80mA通電したとき、
所要電流密度Aを保持するのに従来装置bは3mであるの
に対し、本発明装置aは13mまで有効である。また本発
明装置において内側導電塗膜の厚さを200μmから20μ
まで変化しても有効距離は変化しなかったが、従来装置
ではcのように1mに減少した。
Device of the present invention Inner conductive coating: resistance 0.32 Ω-m, film thickness 200 μ Outer conductive coating: resistance 30 Ω-m, film thickness 100 μ Note that the ratio of the resistance between the inner conductive coating and the outer conductive coating is 94.
Doubled conventional device Conductive coating: resistance 3Ω-m, film thickness 200μ When 80mA is applied to such a conductive coating from the energizing end,
The conventional device b has a length of 3 m for holding the required current density A, while the device a of the present invention is effective up to 13 m. Further, in the device of the present invention, the thickness of the inner conductive coating film is changed from 200 μm to 20 μm.
Although the effective distance did not change even when the value changed to, it decreased to 1 m as in the case of the conventional device.

次に、第3図は第2実施例において、第1図と同一の
符番はそれぞれ同図と同一の部材を示し、9は内側導電
塗膜4の外側を被覆する相溶に対するバリヤー的な中間
導電塗膜で、導電材の小片及び有機バインダーとして
は、外側導電塗膜5または内側導電塗膜4と同様のもの
が使用できる。なお、中間導電塗膜の有機バインダーと
しては、外側導電塗膜5または内側導電塗膜4の少なく
ともどちらか一方の有機バインダーと相溶性の少ないも
のが望ましく、特に反応硬化型のウレタン樹脂、エポキ
シ樹脂等の方が好ましい。
Next, FIG. 3 shows, in the second embodiment, the same reference numerals as those in FIG. 1 respectively show the same members as in FIG. In the intermediate conductive coating film, as the small pieces of the conductive material and the organic binder, those similar to the outer conductive coating film 5 or the inner conductive coating film 4 can be used. As the organic binder of the intermediate conductive coating film, those having a low compatibility with the organic binder of at least one of the outer conductive coating film 5 and the inner conductive coating film 4 are desirable, and particularly, a reaction curable urethane resin, an epoxy resin. And the like are preferable.

このような装置において、内側導電塗膜4から中間導
電塗膜9,外側導電塗膜5を通して、海水2中の陰極6の
方向へ直流電流を流出させると、外側導電塗膜5の表面
は濃い塩素の膜に覆われ、海洋生物がその表面へ付着す
ることを防止する。
In such a device, when a direct current is caused to flow from the inner conductive coating film 4 through the intermediate conductive coating film 9 and the outer conductive coating film 5 toward the cathode 6 in the seawater 2, the outer conductive coating film 5 has a dark surface. Covered with a chlorine film, it prevents marine life from attaching to its surface.

その際の直流電流の基本的な流れ方は第1実施例と同
一であり、リード線8により鋼板1を(−)電位に、内
側,中間,外側導電塗膜4,9,5をそれぞれ(+)電位に
なるようにしているので、内側,中間,外側導電塗膜4,
9,5が局部的に破損破壊し鋼板1に露出部が生じたとき
には、内側,中間,外側導電塗膜4,9,5から流出した直
流電流の一部が鋼板1の露出部に流入し、鋼板1から直
流電源7の(−)極に帰還された鋼板1の腐食を防止す
る。
The basic flow of the direct current at that time is the same as that of the first embodiment, and the steel plate 1 is set to the (−) potential by the lead wire 8 and the inner, middle and outer conductive coating films 4, 9 and 5 ( +) Potential, so the inner, middle and outer conductive coating 4,
When 9,5 is locally damaged and destroyed and an exposed part is formed on the steel plate 1, part of the direct current flowing out from the inner, middle and outer conductive coatings 4, 9, 5 flows into the exposed part of the steel plate 1. The corrosion of the steel sheet 1 returned from the steel sheet 1 to the (−) pole of the DC power supply 7 is prevented.

また中間,外側導電塗膜9,5が損傷破壊し内側導電塗
膜4が露出した場合に、その化学的溶出を防ぐべく内側
導電塗膜4の材料にチタン,ニオブ,金属酸化物等を用
いることは、本装置の長期的安定化のために有効であ
る。また内側,中間,外側導電塗膜4,9,5の厚さは体積
抵抗率や中間,外側導電塗膜9,5の通電や外界の影響に
よる消耗を考慮して決める必要がある。
Further, when the inner and outer conductive coating films 9 and 5 are damaged and destroyed and the inner conductive coating film 4 is exposed, titanium, niobium, metal oxide or the like is used as the material of the inner conductive coating film 4 to prevent chemical elution thereof. This is effective for long-term stabilization of the device. The thickness of the inner, middle and outer conductive coatings 4, 9 and 5 must be determined in consideration of the volume resistivity and the wear of the middle and outer conductive coatings 9 and 5 due to energization and the external environment.

このような装置において、内側導電塗膜4と外側導電
塗膜5との間にバリヤーとして中間導電塗膜9を設ける
ことにより、内側導電塗膜4の樹脂と外側導電塗膜5の
樹脂のが相溶し、内側導電塗膜4の抵抗が増大すること
を防止することができる。
In such an apparatus, by providing the intermediate conductive coating film 9 as a barrier between the inner conductive coating film 4 and the outer conductive coating film 5, the resin of the inner conductive coating film 4 and the resin of the outer conductive coating film 5 are separated from each other. It is possible to prevent the increase in the resistance of the inner conductive coating film 4 by being compatible with each other.

因みに、塗膜の電気抵抗の経時的変化を実験により求
めたところ、第4図に示す好結果を得た。すなわち同図
において、o印は第1図の構造のように内側導電塗膜4
の上に外側導電塗膜5を直接塗装した二層導電塗膜の場
合、△印は第3図のようにそれ等の間に中間導電塗膜9
をバリヤーとして塗装した三層導電塗膜の場合をそれぞ
れ示し、それぞれの導電塗膜の条件は次の通りである。
By the way, when the change with time of the electric resistance of the coating film was experimentally obtained, good results shown in FIG. 4 were obtained. That is, in the figure, the o mark indicates the inner conductive coating film 4 as in the structure of FIG.
In the case of a two-layer conductive coating film in which the outer conductive coating film 5 is directly applied on top of it, the mark Δ indicates an intermediate conductive coating film 9 between them as shown in FIG.
The case of a three-layer conductive coating film coated as a barrier is shown respectively, and the conditions of each conductive coating film are as follows.

内側導電塗膜4:アクリル樹脂/銅系 塗膜
抵抗0.32Ω−m 中間導電塗膜9:ウレタン樹脂/カーボン系塗膜 抵抗40Ω−m 外側導電塗膜5:ビニール樹脂/カーボン系塗膜 抵抗50Ω−m なお、内側導電塗膜と外側導電塗膜との抵抗の比は15
6倍となっている 同図において、縦軸は塗膜の電気抵抗を示し、横軸は
上塗りとして外側導電塗膜5を塗装してから抵抗測定ま
での経過時間を示しており、これにより中間塗膜9を塗
装することにより、内側導電塗膜4の上に外側導電塗膜
5を直接重ね塗りする際の塗膜の抵抗増大を完全に防止
できることが実証された。
Inner conductive coating 4: Acrylic resin / copper coating
Resistance 0.32 Ω-m Intermediate conductive coating 9: Urethane resin / carbon-based coating Resistance 40 Ω-m Outer conductive coating 5: Vinyl resin / carbon-based coating Resistance 50 Ω-m In addition, inner conductive coating and outer conductive coating The resistance ratio with is 15
In the figure, which is 6 times larger, the vertical axis represents the electric resistance of the coating film, and the horizontal axis represents the elapsed time from the application of the outer conductive coating film 5 as the top coat to the resistance measurement. It was demonstrated that by applying the coating film 9, it is possible to completely prevent an increase in resistance of the coating film when the outer conductive coating film 5 is directly overlaid on the inner conductive coating film 4.

このような装置によれば、内側導電塗膜上に特定の中
間導電塗膜を介して外側導電塗膜を塗り重ねることによ
り、内側導電塗膜の導電性低下を防いでいるので、防汚
範囲が制限されず、従って経済性及び防汚性能を向上す
ることができる。
According to such an apparatus, by coating the outer conductive coating film on the inner conductive coating film through a specific intermediate conductive coating film, the conductivity of the inner conductive coating film is prevented from decreasing, so the antifouling range Is not limited, so that the economical efficiency and antifouling performance can be improved.

〔発明の効果〕〔The invention's effect〕

本発明は、上述のとおり構成されているので、次に記
載する効果を奏する。
Since the present invention is configured as described above, it has the following effects.

請求項(1)の船舶,海洋構造物等海水に接する構造
物の接水面の電気絶縁体の外側を被覆し導電材と小片と
有機バインダーとからなり導電端が設けられている比抵
抗の小さい内側導電塗膜と、上記内側導電塗膜の外側を
被覆し耐酸化性不溶性の導電材の小片と有機バインダー
とからなり上記内側導電塗膜との比抵抗比が10倍以上〜
156倍以上の大きい比抵抗を有する外側導電塗膜と、上
記外側導電塗膜に対向し海水中に設置された電気伝導体
と、上記内側導電塗膜の通電端と上記電気伝導体との間
に設置され上記内側導電塗膜から上記外側導電塗膜を通
して上記電気伝導体方向に直流を通電する電源装置とを
具えたことにより、導電塗膜を用いる防汚装置における
導電塗膜消耗による抵抗上昇を防止できるとゝもに、導
電塗膜の膜厚のばらつきによる電流分布不均一を解消す
ることができ、かつ低抵抗導電塗膜で高性能な防汚効果
を奏することができる海水に接する構造物の防汚装置を
得る。
The specific resistance is small because the outer surface of the electrical insulator on the water contact surface of a structure in contact with seawater such as a ship or marine structure is covered with an electrically conductive material, a small piece, and an organic binder, and the conductive end is provided. Inner conductive coating, consisting of a small piece of oxidation-resistant insoluble conductive material that covers the outside of the inner conductive coating and an organic binder, the specific resistance ratio of the inner conductive coating is 10 times or more ~
An outer conductive coating film having a large specific resistance of 156 times or more, an electric conductor facing the outer conductive coating film and installed in seawater, and a current-carrying end of the inner conductive coating film and the electric conductor. And a power supply device for supplying a direct current to the electric conductor from the inner conductive coating through the outer conductive coating, the resistance increase due to consumption of the conductive coating in an antifouling device using the conductive coating. In addition, it is possible to prevent uneven current distribution due to variations in the thickness of the conductive coating film, and a high resistance anti-fouling effect with a low resistance conductive coating structure that comes into contact with seawater. Get an antifouling device for things.

請求項(2)の海水に接する構造物の防汚装置におい
ては、内側導電塗膜と外側導電塗膜との間に、導電材の
小片と有機バインダーとからなり、上記外側導電塗膜と
上記内側導電塗膜との間の比抵抗を有する中間導電塗膜
を塗装したことにより、内側導電塗膜の導電性低下を防
ぎ、内側導電塗膜の有機バインダーと外側導電塗膜の有
機バインダーとが請求項(1)所載の効果を奏するとと
もに、内側導電塗膜の上に外側導電塗膜を直接塗り重ね
ても、それ等の成膜の導電性が低下せず内側導電塗膜及
び外側導電塗膜が相応に結合し、その界面で層間剥離が
発生する惧れがない効果を一層高めることができる。
In the antifouling device for a structure in contact with seawater according to claim (2), a small piece of a conductive material and an organic binder are provided between the inner conductive coating and the outer conductive coating, and the outer conductive coating and the outer conductive coating are provided. By coating the intermediate conductive coating film having a specific resistance between the inner conductive coating film, the inner conductive coating film is prevented from decreasing in conductivity, and the organic binder of the inner conductive coating film and the organic binder of the outer conductive coating film are separated from each other. In addition to the effect of claim (1), even when the outer conductive coating is directly applied on the inner conductive coating, the conductivity of those films does not decrease and the inner conductive coating and the outer conductive coating do not deteriorate. It is possible to further enhance the effect that the coating films are appropriately bonded and delamination is not likely to occur at the interface.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明海水に接する構造物の防汚装置の第1実
施例を示す模式図、第2図は第1図の二層導電塗膜によ
る通電有効距離を従来装置と比較して示す線図、第3図
はその第2実施例を示す模式図、第4図は第3図の三層
導電塗膜による電気抵抗の経時的変化を示す線図であ
る。 第5図は従来の防汚装置を示す模式図である。 1……鋼板、2……海水、3……絶縁塗膜、4……内側
導電塗膜、4a……通電端、5……外側導電塗膜、6……
陰極、7……直流電源、8……リード線、9……中間導
電塗膜
FIG. 1 is a schematic diagram showing a first embodiment of an antifouling device for a structure in contact with seawater of the present invention, and FIG. 2 shows the effective current distance by the two-layer conductive coating film of FIG. 1 in comparison with a conventional device. A diagram, FIG. 3 is a schematic diagram showing the second embodiment, and FIG. 4 is a diagram showing changes with time in electric resistance due to the three-layer conductive coating film of FIG. FIG. 5 is a schematic view showing a conventional antifouling device. 1 ... Steel plate, 2 ... Seawater, 3 ... Insulating coating film, 4 ... Inner conductive coating film, 4a ... Current-carrying end, 5 ... Outer conductive coating film, 6 ...
Cathode, 7 ... DC power supply, 8 ... Lead wire, 9 ... Intermediate conductive coating film

フロントページの続き (72)発明者 友重 清美 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 (72)発明者 堀口 勉 長崎県長崎市飽の浦町5番7号 菱興ビル 別館5階 長菱エンジニアリング株式会社 内 (72)発明者 太田 昭三 長崎県長崎市飽の浦町5番7号 菱興ビル 別館5階 長菱エンジニアリング株式会社 内 (56)参考文献 特開 昭63−101464(JP,A) 特公 昭61−27277(JP,B2)Front page continuation (72) Inventor Kiyomi Tomomige 1-1, Atsunoura-machi, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (72) Inventor Tsutomu Horiguchi 5-7 Atsunoura-cho, Nagasaki-shi, Nagasaki Hyokou Building Annex 5F Choryo Engineering Co., Ltd. (72) Inventor Shozo Ohta 5-7, Atsunoura-cho, Nagasaki City, Nagasaki Ryokko Building Annex 5F Choryo Engineering Co., Ltd. (56) Reference JP-A-63-101464 ( JP, A) JP 61-27277 (JP, B2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】船舶,海洋構造物等海水に接する構造物の
接水面の電気絶縁体の外側を被覆し導電材と小片と有機
バインダーとからなり導電端が設けられている比抵抗の
小さい内側導電塗膜と、上記内側導電塗膜の外側を被覆
し耐酸性化不溶性の導電材の小片と有機バインダーとか
らなり上記内側導電塗膜との比抵抗比が10倍以上〜156
倍以下の大きい比抵抗を有する外側導電塗膜と、上記外
側導電塗膜に対向し海水中に設置された電気伝導体と、
上記内側導電塗膜の通電端と上記電気伝導体との間に設
置され上記内側導電塗膜から上記外側導電塗膜を通して
上記電気伝導体方向に直流を通電する電源装置とを具え
たことを特徴とする海水に接する構造物の防汚装置。
1. An inner side having a small specific resistance, which covers an outer surface of an electric insulator of a water contact surface of a ship, a marine structure or the like which is in contact with seawater, and which is provided with a conductive end made of a conductive material, a small piece and an organic binder. Conductive coating, consisting of a small piece of an acid resistant and insoluble conductive material coating the outside of the inner conductive coating and an organic binder, the specific resistance ratio of the inner conductive coating is 10 times or more ~ 156
An outer conductive coating film having a large specific resistance not more than twice, and an electric conductor installed in seawater facing the outer conductive coating film,
A power supply device that is installed between the current-carrying end of the inner conductive coating and the electric conductor and that applies a direct current from the inner conductive coating to the electric conductor through the outer conductive coating. Antifouling device for structures that come into contact with seawater.
【請求項2】内側導電塗膜と外側導電塗膜との間に、導
電材の小片の有機バインダーとからなり、上記外側導電
塗膜と上記内側導電塗膜との間の比抵抗を有する中間導
電塗膜を塗装したことを特徴とする請求項(1)の記載
の海水に接する構造物の防汚装置。
2. An intermediate having a specific resistance between the outer conductive coating and the inner conductive coating, comprising a small piece of an organic binder of a conductive material between the inner conductive coating and the outer conductive coating. The antifouling device for a structure in contact with seawater according to claim 1, wherein a conductive coating film is applied.
JP8404288A 1987-06-30 1988-04-07 Antifouling equipment for structures in contact with seawater Expired - Lifetime JPH0814036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8404288A JPH0814036B2 (en) 1987-06-30 1988-04-07 Antifouling equipment for structures in contact with seawater

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-162849 1987-06-30
JP16284987 1987-06-30
JP8404288A JPH0814036B2 (en) 1987-06-30 1988-04-07 Antifouling equipment for structures in contact with seawater

Publications (2)

Publication Number Publication Date
JPS6487791A JPS6487791A (en) 1989-03-31
JPH0814036B2 true JPH0814036B2 (en) 1996-02-14

Family

ID=26425126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8404288A Expired - Lifetime JPH0814036B2 (en) 1987-06-30 1988-04-07 Antifouling equipment for structures in contact with seawater

Country Status (1)

Country Link
JP (1) JPH0814036B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132495A (en) * 1989-10-19 1991-06-05 Mitsubishi Heavy Ind Ltd Contamination preventive device for structure in contact with sea water
JPH03235792A (en) * 1990-02-08 1991-10-21 Mitsubishi Heavy Ind Ltd Corrosion preventing contamination preventing device for stern part
JPH03257214A (en) * 1990-03-06 1991-11-15 Mitsubishi Heavy Ind Ltd Conductive panel for preventing contamination in intake channel
JP2984313B2 (en) * 1990-04-18 1999-11-29 三菱重工業株式会社 Corrosion and antifouling equipment for propellers
JPH0428890A (en) * 1990-05-24 1992-01-31 Nakagawa Boshoku Kogyo Kk Electric anticorrosive equipment for structure made of metal
JP2520779B2 (en) * 1990-09-13 1996-07-31 関西電力株式会社 Anticorrosion and antifouling method for underwater steel structures

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6127277B2 (en) 2012-03-13 2017-05-17 パナソニックIpマネジメント株式会社 Method for manufacturing motor and stator thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6127277B2 (en) 2012-03-13 2017-05-17 パナソニックIpマネジメント株式会社 Method for manufacturing motor and stator thereof

Also Published As

Publication number Publication date
JPS6487791A (en) 1989-03-31

Similar Documents

Publication Publication Date Title
JP2647498B2 (en) Antifouling equipment for structures in contact with seawater
EP0102380B1 (en) Oxide anode for use in impressed current cathodic corrosion protection
JPH0814036B2 (en) Antifouling equipment for structures in contact with seawater
JP2575866B2 (en) Antifouling equipment for structures in contact with seawater
JP2505608B2 (en) Antifouling equipment for structures in contact with seawater
JP2601807B2 (en) Antifouling device and antifouling / anticorrosion device for structures in contact with seawater
JP3145390B2 (en) Conductive film for seawater electrolytic antifouling equipment
JPH02279772A (en) Anti-fouling apparatus for structure brought into contact with sea water
JP3207718B2 (en) Marine organism adhesion prevention coating
JPS6473094A (en) Method for preventing corrosion of steel structure in seawater
JP2505555B2 (en) Antifouling equipment for offshore structures
JP2809351B2 (en) Antifouling and anticorrosion methods for hull skin in contact with seawater
JPH03132495A (en) Contamination preventive device for structure in contact with sea water
JP2984313B2 (en) Corrosion and antifouling equipment for propellers
JP3386898B2 (en) Corrosion protection structure of the material to be protected
JPS63101464A (en) Electrically conductive coating film for use in electrolysis of sea water
JP2915618B2 (en) Seawater electrolytic antifouling equipment for seawater contact structures
JPH03235792A (en) Corrosion preventing contamination preventing device for stern part
JPH02196868A (en) Antifouling device for structure contacting with sea water
JPS62196383A (en) Electrolytic protection method for metallic structure
JP2557936Y2 (en) Seawater electrolytic antifouling equipment
JPH06107973A (en) Electrically-conductive coating compound for preventing adhesion of marine organism
JPH03125690A (en) Antifouling device for construction touching seawater
JPH0495597A (en) Pollution controller for structure adjoining to seawater
JPH0597091A (en) Fouling preventing device for structure contacting with sea water