JPH08138821A - Junction structure and end structure of superconducting conductor - Google Patents
Junction structure and end structure of superconducting conductorInfo
- Publication number
- JPH08138821A JPH08138821A JP6269337A JP26933794A JPH08138821A JP H08138821 A JPH08138821 A JP H08138821A JP 6269337 A JP6269337 A JP 6269337A JP 26933794 A JP26933794 A JP 26933794A JP H08138821 A JPH08138821 A JP H08138821A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- conductor
- element wires
- conductors
- bundling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004020 conductor Substances 0.000 title claims abstract description 113
- 238000005304 joining Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 18
- 239000011159 matrix material Substances 0.000 claims description 14
- 239000002131 composite material Substances 0.000 claims description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- 239000003507 refrigerant Substances 0.000 claims description 7
- 239000007769 metal material Substances 0.000 claims description 5
- 210000001503 joint Anatomy 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims 9
- 229910052751 metal Inorganic materials 0.000 claims 9
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000003466 welding Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 6
- 239000002887 superconductor Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 4
- 229910017755 Cu-Sn Inorganic materials 0.000 description 3
- 229910017927 Cu—Sn Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 229910001651 emery Inorganic materials 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 235000013372 meat Nutrition 0.000 description 2
- 229910002482 Cu–Ni Inorganic materials 0.000 description 1
- 229910020012 Nb—Ti Inorganic materials 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Manufacturing Of Electrical Connectors (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
(57)【要約】 (修正有)
【目的】接続抵抗が低く、特性のばらつきが小さい高信
頼性の接合部であり、且つコンパクト形状の超電導導体
接合部を得る。
【構成】超電導導体1の突き合わせ接合において、各導
体を構成する超電導素線4′が突き合わせ面において一
対一に対応する様に接合する。これにより、接続抵抗が
低く、高信頼性の超電導接合部を得ることができる。
【効果】接続抵抗が低く、高電流通電が可能な超電導接
合体を得ることができ、これにより、高磁場発生用コイ
ルあるいは減衰(損失)のない永久電流モード使用のコ
イルの製作等が可能となり、超電導応用分野を大幅に拡
大できる。
(57) [Summary] (Modified) [Purpose] To obtain a superconducting conductor joint having a compact connection and a highly reliable joint having low connection resistance and small variation in characteristics. [Structure] When the superconducting conductors 1 are butt-joined, the superconducting element wires 4'constituting each conductor are joined so as to have a one-to-one correspondence on the butt surfaces. This makes it possible to obtain a highly reliable superconducting junction having low connection resistance. [Effect] It is possible to obtain a superconducting junction that has low connection resistance and is capable of conducting high current, which makes it possible to manufacture a coil for generating a high magnetic field or a coil using a permanent current mode without attenuation (loss). , The field of superconducting application can be expanded significantly.
Description
【0001】[0001]
【産業上の利用分野】本発明は、複数本の超電導素線を
束にしてなる超電導導体の端部構造および端部形成方
法、さらに超電導導体同士の接合体,接合構造に係る。
特に接続抵抗が小さく、しかも大電流通電が可能な超電
導導体同士の接合体を得るための導体の端部構造、端部
形成方法及び接合方法に関する。さらに、種々の超電導
導体に適用可能な信頼性の高い超電導導体の接合方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an end structure of a superconducting conductor formed by bundling a plurality of superconducting element wires, a method for forming the end, and a joined body and a joining structure of the superconducting conductors.
In particular, the present invention relates to a conductor end portion structure, an end portion forming method, and a joining method for obtaining a joined body of superconducting conductors having a small connection resistance and capable of conducting a large current. Further, the present invention relates to a highly reliable superconducting conductor joining method applicable to various superconducting conductors.
【0002】[0002]
【従来の技術】超電導線を大型マグネットとして使用す
る場合、超電導線材の製造工程上、特性のばらつきや断
線がない超電導線として製造できる長さには限界があ
り、超電導線同士の接続は不可欠である。また、使用さ
れる装置の構造上の理由からも超電導線同士の接続が必
要となってくる。しかし、超電導線接合部では接続抵抗
の発生による温度上昇及び電流容量の低下等の様々な問
題がある。接続抵抗が低く、かつ信頼性の高い接合技術
の確立が不可欠である。2. Description of the Related Art When a superconducting wire is used as a large magnet, there is a limit to the length of the superconducting wire that can be manufactured as a superconducting wire without variations in characteristics or breakage in the manufacturing process of the superconducting wire. is there. Also, it is necessary to connect the superconducting wires to each other due to the structure of the device used. However, the superconducting wire joint has various problems such as temperature rise and current capacity decrease due to generation of connection resistance. It is essential to establish a reliable joining technology with low connection resistance.
【0003】超電導線の接合方法としては、超電導体
(超電導フィラメント)同士の直接接触界面を形成でき
る突合せ接合が有効であると考えられる。突合せ接合の
例として、特開平3−40382号公報に記載のような突合せ
抵抗溶接の他、拡散接合,冷間圧接,熱間圧接等の接合
方法が挙げられる。As a method for joining superconducting wires, it is considered that butt joining is effective because it can form a direct contact interface between superconductors (superconducting filaments). Examples of butt welding include butt resistance welding as described in Japanese Patent Laid-Open No. 3-40382, as well as welding methods such as diffusion welding, cold pressure welding and hot pressure welding.
【0004】複合材料である超電導線及び導体では、突
合せ面における各線または導体端部構造間の対応性が接
続特性支配因子の一つとして大きく関わってくる。特
に、複数本の超電導素線を束にしてなる超電導導体同士
の接合においては、接合すべき各導体端面の超電導素線
の配置状態は一定ではない。それらを接合した場合、接
合部における超電導素線同士で対応性が無く、接合界面
が電流の不連続面となり、その結果、接続部の抵抗が高
くなるという問題がある。また、突合せ面の素線対応の
不確定性により、接合体間での特性のばらつきが大き
く、信頼性の上で問題がある。In the case of a superconducting wire and a conductor which are composite materials, the correspondence between each wire or conductor end structure on the butt face is greatly involved as one of the factors governing the connection characteristics. In particular, in the joining of superconducting conductors formed by bundling a plurality of superconducting element wires, the arrangement state of the superconducting element wires on each conductor end face to be joined is not constant. When they are joined, there is a problem that there is no correspondence between the superconducting element wires in the joined portion and the joined interface becomes a discontinuous plane of current, resulting in an increase in resistance of the connecting portion. Further, due to the uncertainties of the butt surfaces corresponding to the strands, there is a large variation in the characteristics among the bonded bodies, which is a problem in reliability.
【0005】[0005]
【発明が解決しようとする課題】上記従来技術では、超
電導導体の突き合わせ接合法において、突合せ面におけ
る超電導素線同士に位置対応性がなく、そのため接合界
面で、部分的な電流集中あるいは電流の常伝導領域の通
過等による接続抵抗が存在し、超電導電流を減衰させる
という問題があった。また、突合せ面対応の偶然性によ
り、接合体毎に接合構造を一定にできず、導体の接続特
性自体にばらつきが生じるだけでなく、導体を構成する
素線間での電流不均一性を生じ、信頼性及び導体性能上
問題があった。In the above-mentioned prior art, in the butt-joining method for superconducting conductors, there is no positional correspondence between the superconducting element wires on the butt surface, and therefore, partial current concentration or constant current flow at the joining interface. There is a problem that the superconducting current is attenuated due to the connection resistance due to the passage of the conduction region. Also, due to the contingency of the butt faces, it is not possible to make the joint structure constant for each joint body, and not only the connection characteristics of the conductors vary, but also the current non-uniformity occurs between the wires that form the conductors. There was a problem in reliability and conductor performance.
【0006】本発明の目的は、上記従来技術の問題点を
解決するものであり、接続抵抗の極めて低い超電導導体
接合体を提供し、且つその接合体を高い信頼性で得るた
めの方法を提供することにある。An object of the present invention is to solve the above-mentioned problems of the prior art, to provide a superconducting conductor joined body having an extremely low connection resistance, and a method for obtaining the joined body with high reliability. To do.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に、本発明では、超電導素線の束からなる超電導導体端
面を一定の素線配列を有する構造とし、規則的配列構造
の導体端部同士を接合することにより、突合せ接合面の
素線同士を一対一に対応させることを特徴とする。すな
わち、本発明の超電導導体の接合構造は、相対する導体
端面における素線が同一の配置を有する構造の端部同士
が突き合わされており、突合せ面において素線が一対一
に対応していることを特徴とする。In order to achieve the above object, in the present invention, a superconducting conductor end face composed of a bundle of superconducting element wires has a structure having a constant strand arrangement, and a conductor end portion having a regular array structure is formed. It is characterized in that the wires of the butt joint surfaces are made to correspond to each other one to one by joining them. That is, in the joining structure of the superconducting conductor of the present invention, the end portions of the structure in which the strands on the opposing conductor end faces have the same arrangement are abutted with each other, and the strands have a one-to-one correspondence on the abutting faces. Is characterized by.
【0008】導体端部構造の一例として、導体横断面全
体が6次の回転対称であり、6次の回転対称形に配置さ
れている小ブロックに分割されており、各ブロックで
は、導体を構成する超電導素線が6次の回転対称形に配
置されている場合が挙げられる。小ブロック内に冷媒用
流路が形成されており、その流路と素線が6次の回転対
称形に配置されている場合でもよい。また、6次の回転
対称形に配置された小ブロックは、その周囲を高抵抗金
属材で覆われており、各ブロック間は高抵抗層で電気的
に分離されていてもよい。As an example of the conductor end structure, the entire cross section of the conductor has a rotational symmetry of 6th order and is divided into small blocks arranged in a rotational symmetry of 6th order. Each block constitutes a conductor. There is a case where the superconducting element wires are arranged in a rotational symmetry of sixth order. A flow path for a coolant may be formed in the small block, and the flow path and the strands may be arranged in a sixth-order rotationally symmetrical shape. Further, the small blocks arranged in the 6th order rotationally symmetrical shape may have their peripheries covered with a high resistance metal material, and the respective blocks may be electrically separated by a high resistance layer.
【0009】さらに、本発明の導体端部構造は、導体横
断面が、一次以上の低次の回転対称形であることも考え
られる。例えば、素線断面が矩形であっても、相対する
端部構造が互いに対称形であれば良い。Further, in the conductor end structure of the present invention, the conductor cross section may have a rotational symmetry of a lower order than the first order. For example, even if the strand cross section is rectangular, the opposing end structures may be symmetrical to each other.
【0010】本発明の接合方法,導体端部構造および端
部形成方法は、公知の超電導線材のうちNb3Sn超電
導線を束ねてなる化合物超電導導体の他、(Nb,Ti)
3Sn,Nb3Al,V3Ga超電導線等を束ねてなる超
電導導体に適用できる。また、Nb−Ti等の合金系超
電導線を束ねてなる超電導導体にも適用できる。The joining method, conductor end structure and end forming method of the present invention include (Nb, Ti) in addition to the compound superconducting conductor formed by bundling Nb 3 Sn superconducting wires among known superconducting wires.
3 Sn, Nb 3 Al, can be applied to a superconducting conductor made by bundling V 3 Ga superconducting wire. It can also be applied to a superconducting conductor formed by bundling alloy-based superconducting wires such as Nb-Ti.
【0011】[0011]
【作用】ある種の強制冷却型導体の様に、導体横断面が
一定の素線配列を持たない導体同士を、互いに端面を突
合せて接合しようとする場合、突合せ面において、一方
の導体の超電導領域が、他方の導体の素線間の空隙と接
触した場合には、フィラメント内を流れてきた超電導電
流は、接合界面でマトリックス部を経由して相手側に流
れ込まなくてはならない。また、一本の超電導フィラメ
ントが相手側の超電導フィラメントと全く接触すること
なく、マトリックスのみと接している場合にも、上記と
同様に超電導電流は常伝導領域を経由して流れることに
なり、接続抵抗を増大させる。突合せ面で、超電導素線
同士を一対一に対応させることにより、上記理由に基づ
く接続抵抗を低減できる。また、一定配列構造を有する
導体端部同士を突合せ接合することにより、超電導体同
士の接触面積が広くなり、且つそのばらつきを小さくで
き、よって接触面積の違いによる接続特性のばらつきを
低減できる。When a conductor such as a certain type of forced cooling type conductor that does not have a constant conductor cross section is arranged to be joined by abutting the end faces of each other, the superconducting of one conductor is performed at the abutting face. When the region comes into contact with the void between the strands of the other conductor, the superconducting current flowing in the filament must flow into the other side through the matrix portion at the bonding interface. Also, even if one superconducting filament does not contact the superconducting filament on the other side at all, but only contacts the matrix, the superconducting current will flow through the normal conducting region in the same manner as above, Increase resistance. By making the superconducting wires correspond one-to-one with the butt surfaces, the connection resistance based on the above reason can be reduced. Further, by butt-joining the conductor end portions having a constant array structure, the contact area between the superconductors can be widened and the variation thereof can be reduced, so that the variation of the connection characteristics due to the difference of the contact area can be reduced.
【0012】また、導体端面が6次の回転対称形であれ
ば、導体を60゜回転させる毎に素線同士が一対一に対
応する様な接触が可能となり、接合工程上より有利とな
る。また、6次の回転対称形に配置された素線からな
る、小ブロック間が高抵抗金属材により電気的に絶縁さ
れている場合には、結合電流による交流損失を低減でき
る。Further, if the conductor end face has a 6th order rotational symmetry, each time the conductor is rotated by 60 °, the wires can be brought into contact with each other in a one-to-one correspondence, which is more advantageous in the joining process. Further, when the small blocks, which are composed of the wires arranged in the 6th order rotationally symmetrical shape, are electrically insulated from each other by the high resistance metal material, the AC loss due to the coupling current can be reduced.
【0013】また、6次の回転対称形の小ブロック内の
一部に冷媒用流路を設けることにより、接合部におい
て、冷媒の供給を妨げることなく、安定性の高い超電導
体接合部を得ることができる。Further, by providing a coolant passage in a part of the 6th-order rotationally symmetric small block, a superconducting joint having high stability can be obtained without hindering the supply of the refrigerant at the joint. be able to.
【0014】[0014]
(実施例1)本実施例で用いた超電導導体1は、図2で
示されるように、Cu−Sn合金マトリックス2中にN
bのフィラメント3が約10000本埋め込まれた構造
の外径約1mmの線材を素線4とし、それを49本束ねて
SUSのコンジット5で被覆した外径約11mmの複合導
体で、熱処理によりNb3Sn 超電導体を形成出来るも
のである。超電導体化熱処理前のこの複合導体端部のコ
ンジットを、約200mmの長さで剥ぎ取り、内部の素線
を取り出した。この取りだした各素線4を、図3に示す
ような加工ロールによって、加圧約5kg,引き抜き速度
300mm/minの加工条件で末端から150mmにわたっ
て加工した。加工後の素線4′を、図4で示すような形
状の、肉圧0.3mm,幅2.5mm,長さ150mmの無酸素
銅製の形枠に7本ずつ挿入し、図5のブロックを形成し
た。この様にして7つのブロックを作り、さらにこの7
つのブロックを、外径約11mm,肉圧1mmの銅パイプに
挿入し、正六角形状にスウェージング加工した。これに
より、6次の回転対称形の複合導体端面を形成した。こ
の端末処理された複合導体全体を、不活性雰囲気中で約
700℃,200時間熱処理することにより、図8に示
す6次の回転対称形の端面を有するNb3Sn 超電導導
体を作製した。(Example 1) As shown in FIG. 2, the superconducting conductor 1 used in this example contains N in a Cu-Sn alloy matrix 2.
A composite conductor with an outer diameter of about 11 mm, in which 49 wire bundles with an outer diameter of about 1 mm having a structure in which about 10,000 filaments 3 of b are embedded are bundled and covered with SUS conduits 5. 3 Sn Can form superconductors. The conduit at the end of the composite conductor before heat treatment for superconducting was stripped off with a length of about 200 mm, and the internal wire was taken out. The individual strands 4 thus taken out were processed by a processing roll as shown in FIG. 3 over 150 mm from the end under processing conditions of a pressure of about 5 kg and a drawing speed of 300 mm / min. The processed wires 4'are each inserted into a frame made of oxygen-free copper having a shape as shown in FIG. 4 and a wall pressure of 0.3 mm, a width of 2.5 mm, and a length of 150 mm, and each of them is inserted into the block of FIG. Was formed. 7 blocks are made in this way, and this 7 blocks
Two blocks were inserted into a copper pipe with an outer diameter of about 11 mm and a wall pressure of 1 mm, and swaged into a regular hexagonal shape. As a result, a sixth-order rotationally symmetric composite conductor end surface was formed. The whole terminal-treated composite conductor was heat-treated in an inert atmosphere at about 700 ° C. for 200 hours to produce an Nb 3 Sn superconducting conductor having a 6th order rotationally symmetric end face shown in FIG.
【0015】上記超電導導体同士を接続するために、ま
ず、各導体を、6次の回転対称形に処理された端部を約
50mmの長さで残し、導体軸方向に対して直角に切断し
た。切断面を1000番のエメリーペーパーを用いて研
摩し、さらに10μmのアルミナ研磨材を用いて仕上げ
研摩した。互いに端面同士を突き合わせ、正六角形の頂
点位置を合わせた状態で抵抗溶接により接続した。これ
により、図1のような、突き合わせ面において素線4′
が一対一に対応した超電導導体の接合体6を得た。In order to connect the above-mentioned superconducting conductors, first, each conductor was cut at a right angle with respect to the axial direction of the conductor, leaving the end processed to the 6th order rotational symmetry with a length of about 50 mm. . The cut surface was polished with a No. 1000 emery paper, and further finish-polished with a 10 μm alumina abrasive. The end faces were abutted against each other, and they were connected by resistance welding with the vertex positions of the regular hexagon aligned. As a result, as shown in FIG.
To obtain a joined body 6 of superconducting conductors corresponding to each other.
【0016】この接合体について、接合部の引張試験を
行った結果、最大引張り強さ800kgfで母材破断を示
した。また、同条件で作製した接合体について、四端子
抵抗法により液体ヘリウム中における接続抵抗を測定し
たところ、接合体に対して垂直方向に印加した4Tの磁
界中、4kAの通電で、電圧発生は検出限界以下であ
り、接続抵抗発生は認められなかった。As a result of conducting a tensile test on the joined portion of this joined body, the base material fractured at a maximum tensile strength of 800 kgf. Moreover, when the connection resistance in liquid helium was measured by the four-terminal resistance method for the bonded body manufactured under the same conditions, it was found that no voltage was generated by applying a current of 4 kA in a magnetic field of 4 T applied perpendicularly to the bonded body. It was below the detection limit, and no occurrence of connection resistance was observed.
【0017】一方、比較として、図2の複合導体を、端
末の処理なしで超電導体化熱処理して化合物超電導導体
とし、端面の素線位置が同一ではなく、突き合わせ面に
おいて素線同士の対応性のない接合体を作製した。接合
面は上記方法で同様に研摩した。溶接条件も同じとし、
接合部の軸方向の変形量を端末処理した導体接合体と同
じにした。この接合体について接続抵抗を測定したとこ
ろ(4.2K,4T垂直磁場中,4kA通電)、1nΩの
接続抵抗が発生した。On the other hand, as a comparison, the composite conductor of FIG. 2 is heat-treated into a superconductor without treatment of terminals to form a compound superconducting conductor, and the strand positions of the end faces are not the same, and the compatibility of the strands at the butted faces is high. A joined body was prepared. The joint surface was similarly polished by the above method. The welding conditions are the same,
The amount of axial deformation of the joint was set to be the same as that of the conductor joined body subjected to the terminal treatment. When the connection resistance of this joined body was measured (in a 4.2 K, 4 T vertical magnetic field, 4 kA energization), a connection resistance of 1 nΩ was generated.
【0018】以上のことから、本方法により得られる接
合部は、非常に優れた電気的特性を有することがわかっ
た。From the above, it was found that the joint obtained by this method has very excellent electrical characteristics.
【0019】(実施例2)本実施例は基本的には実施例
1と同様である。ここでは、素線を挿入するブロック枠
(図4)に高抵抗金属材であるCu−Niを用い、6次
の回転対称形の端面を有する化合物超電導導体を形成し
た。この超電導導体を、6回対称の端面同士を突き合わ
せて接合することにより、各導体を構成する超電導素線
同士が突き合わせ面において一対一に対応しており、且
つ同一面内の素線間は小ブロックごとに電気的に分離さ
れている、超電導導体の接合体を得た。(Second Embodiment) This embodiment is basically the same as the first embodiment. Here, a compound superconducting conductor having a 6th order rotationally symmetrical end face was formed by using Cu-Ni which is a high resistance metal material in a block frame (FIG. 4) into which the wires are inserted. By joining the superconducting conductors by abutting the six-fold symmetrical end faces to each other, the superconducting element wires constituting each conductor have a one-to-one correspondence in the abutting surfaces, and there is a small gap between the element wires in the same plane. A superconducting conductor assembly, which is electrically separated for each block, was obtained.
【0020】この接合体をについて、4Tの一定垂直印
加磁界中の接続抵抗、及び交流磁界印加時の接合部の発
熱量を測定した。接続抵抗は、4kAの通電では電圧発
生は検出限界以下であり、接続抵抗発生は認められなか
った。また、2T/sの磁界変動において接合部の発熱
量は1Wであった。With respect to this bonded body, the connection resistance in a constant vertical applied magnetic field of 4T and the heat generation amount of the bonded portion when an alternating magnetic field was applied were measured. With respect to the connection resistance, the voltage generation was less than the detection limit when a current of 4 kA was applied, and the connection resistance generation was not observed. In addition, the amount of heat generated at the junction was 1 W when the magnetic field changed at 2 T / s.
【0021】以上のことから、本方法により得られる接
合部は、非常に優れた電気的特性を有することがわかっ
た。From the above, it was found that the joint obtained by this method has very excellent electrical characteristics.
【0022】(実施例3)本実施例は基本的には実施例
1と同様である。ここで用いた超電導導体は、図2で示
されるように、Cu−Sn合金マトリックス中にNbの
フィラメントが約10000本埋め込まれた構造の外径
約1mmの線材を素線とし、それを42本束ねてSUSの
コンジットで被覆した外径約10mmの複合導体で、熱処
理によりNb3Sn 超電導体を形成出来るものである。
この超電導体化熱処理前の複合導体端部コンジットを約
200mmの長さで剥ぎ取り、内部の素線を取り出した。
この取りだした各素線を、図3に示すような加工ロール
によって、加圧約5kg,引き抜き速度300mm/min の
加工条件で末端から150mmにわたって加工した。加工
後の素線を、6本ずつに分け、それぞれについて、正六
角形の冷媒流路用銅パイプ(図6)を中心に、その周り
に6本の素線を配置し組み合わせた。これを肉圧0.3m
m,幅2.5mm,長さ150mmの無酸素銅製の形枠に挿入
し、ブロックを形成した。この様にして7つのブロック
を作り、さらにこの7つのブロックを、外径約11mm,
肉圧1mmの銅パイプに挿入し、スウェージング加工し
た。これにより、各ブロックの中心に冷媒用流路を有す
る、6次の回転対称形の複合導体端面を形成した。この
端末処理された複合導体全体を、不活性雰囲気中で約70
0℃,200時間熱処理することにより、6次の回転対
称形の端面を有するNb3Sn 超電導導体を作製した。(Third Embodiment) This embodiment is basically the same as the first embodiment. As shown in FIG. 2, the superconducting conductor used here has a structure in which about 10000 Nb filaments are embedded in a Cu—Sn alloy matrix, and a wire rod having an outer diameter of about 1 mm is used as an element wire. It is a composite conductor with an outer diameter of about 10 mm that is bundled and covered with a SUS conduit to form a Nb 3 Sn superconductor by heat treatment.
The conduit end portion of the composite conductor before heat treatment for forming a superconductor was stripped off in a length of about 200 mm, and the internal wire was taken out.
Each of the drawn wires was processed by a processing roll as shown in FIG. 3 from the end to 150 mm under the processing conditions of a pressure of about 5 kg and a drawing speed of 300 mm / min. The processed wire was divided into six wires, and six wires were placed around the hexagonal copper pipe for a refrigerant channel (FIG. 6) and combined with each other. This is meat pressure 0.3m
A block was formed by inserting it into a frame made of oxygen-free copper having a size of m, a width of 2.5 mm, and a length of 150 mm. In this way, 7 blocks are made, and these 7 blocks are
It was inserted into a copper pipe with a meat pressure of 1 mm and swaged. As a result, a sixth-order rotationally symmetric composite conductor end face having a coolant passage in the center of each block was formed. Approximately 70% of the entire composite conductor that has been subjected to this termination is processed in an inert atmosphere.
By heat treatment at 0 ° C. for 200 hours, an Nb 3 Sn superconducting conductor having a sixth-order rotationally symmetric end face was produced.
【0023】上記超電導導体同士を接続するために、ま
ず、各導体を、6次の回転対称形に処理された端部を約
50mmの長さで残し、導体軸方向に対して直角に切断し
た。切断面を1000番のエメリーペーパーを用いて研
摩し、さらに10μmのアルミナ研磨材を用いて仕上げ
研摩した。互いに端面同士を突き合わせ、正六角形の頂
点位置を合わせた状態で抵抗溶接により接続した。これ
により、突き合わせ面において素線が一対一に対応した
超電導導体の接合体を得た。In order to connect the above-mentioned superconducting conductors, first, each conductor was cut at a right angle with respect to the axial direction of the conductor, leaving the end processed to the 6th order rotational symmetry with a length of about 50 mm. . The cut surface was polished with a No. 1000 emery paper, and further finish-polished with a 10 μm alumina abrasive. The end faces were abutted against each other, and they were connected by resistance welding with the vertex positions of the regular hexagon aligned. As a result, a joined body of superconducting conductors in which the strands of the butt face corresponded to each other one by one was obtained.
【0024】この接合体について、四端子抵抗法により
液体ヘリウム中における接続抵抗を測定したところ、接
合体に対して垂直方向に印加した4Tの磁界中、4kA
の通電で、電圧発生は検出限界以下であり、接続抵抗発
生は認められず、突き合わせ面における素線同士の対応
性がない接合体では、数nΩの接続抵抗が発生したのに
比べて、良好な電気的特性を示した。The connection resistance of this bonded body in liquid helium was measured by the four-terminal resistance method, and it was found to be 4 kA in a magnetic field of 4 T applied perpendicularly to the bonded body.
The voltage generation was below the detection limit and the connection resistance was not detected by the energization of No. 1, and the connection resistance of several nΩ was better in the joined body in which the wires did not correspond to each other at the butt surfaces. It showed excellent electrical characteristics.
【0025】(実施例4)本実施例は基本的には実施例
3と同様である。ここでは、超電導導体同士の接合にお
いて、突き合わせ面での対応性をより確実に、しかも簡
便に形成するために、接合端面にガイド用のピンを形成
し、それを利用して接合したものである。実施例3と同
様にして、端面が6次の回転対称形で、且つ冷媒用の流
路孔を有するNb3Sn 超電導導体を作製した。これら
の超電導導体同士を接続するために、図7に示すよう
に、正六角形(対辺距離1mm)の中心に径0.5mm の孔
を有する断面形状で、長さ10mm,無酸素銅製のピン
を、接合する超電導導体の一方の端面の冷媒流路孔には
め込んだ。この端面の凸部を、もう一方の導体端面の冷
媒流路孔に差し込むようにして導体同士を突き合わせ、
加圧、通電して溶接した。これにより、実施例3と同様
に、電気的特性が優れているだけでなく、機械的強度も
高い、超電導導体同士の接合部を、より簡便に作製する
ことが出来た。(Fourth Embodiment) This embodiment is basically the same as the third embodiment. Here, in joining superconducting conductors, a guide pin is formed on the joining end face and the joining is performed by using it in order to more reliably and simply form the correspondence at the abutting surfaces. . In the same manner as in Example 3, an Nb 3 Sn superconducting conductor having an end face of a 6th order rotationally symmetric type and having flow passages for the refrigerant was produced. In order to connect these superconducting conductors with each other, as shown in Fig. 7, a pin of hexagonal hexagonal shape (distance between the opposite sides of 1 mm) having a hole with a diameter of 0.5 mm and a length of 10 mm and made of oxygen-free copper is used. , The superconducting conductor to be joined was fitted into the refrigerant passage hole on one end face. The protrusions on this end face are inserted into the refrigerant flow passage holes on the other conductor end face, but the conductors are butted against each other,
Welded under pressure and electricity. As a result, similar to Example 3, it was possible to more easily manufacture a joint between superconducting conductors having excellent electrical characteristics and high mechanical strength.
【0026】[0026]
【発明の効果】本発明によれば、超電導線の束からなる
超電導導体を、構成する超電導素線同士を一対一に対応
させた接合部を得ることができ、接続抵抗が低く、高電
流密度の通電が可能な超電導導体の接合体を得ることが
できる。これにより、高磁場発生用大型コイル作製を可
能にすると共に、交流損失の低いコイルが実現できる。
また、それに付随するコイル冷却システムへの熱負荷軽
減が可能になり、経済性の点からも有用である。According to the present invention, it is possible to obtain a joint in which superconducting element wires constituting a superconducting conductor composed of a bundle of superconducting wires are made to correspond one-to-one, and the connection resistance is low and the current density is high. It is possible to obtain a joined body of superconducting conductors capable of conducting electricity. As a result, a large coil for generating a high magnetic field can be manufactured, and a coil with low AC loss can be realized.
In addition, it is possible to reduce the heat load on the coil cooling system that accompanies it, which is also useful from the economical point of view.
【図1】本発明の超電導導体接合部の構造図。FIG. 1 is a structural diagram of a superconducting conductor joint portion of the present invention.
【図2】本発明の熱処理により化合物超電導導体となる
複合導体の熱処理前の断面図。FIG. 2 is a cross-sectional view of a composite conductor, which becomes a compound superconducting conductor by the heat treatment of the present invention, before the heat treatment.
【図3】本発明の一実施例の素線加工用治具の模式図。FIG. 3 is a schematic view of a wire processing jig according to an embodiment of the present invention.
【図4】本発明一実施例で用いたブロック枠の斜視図。FIG. 4 is a perspective view of a block frame used in an embodiment of the present invention.
【図5】本発明の一実施例のブロック組み立て後の斜視
図。FIG. 5 is a perspective view after the block is assembled according to the embodiment of the present invention.
【図6】本発明一実施例で用いた冷媒流路用パイプの模
式図。FIG. 6 is a schematic view of a refrigerant channel pipe used in an embodiment of the present invention.
【図7】本発明の一実施例のブロック端面の斜視図。FIG. 7 is a perspective view of an end surface of a block according to an embodiment of the present invention.
【図8】本発明の一実施例の超電導導体端面構造図。FIG. 8 is a structural view of an end face of a superconducting conductor according to an embodiment of the present invention.
1…超電導導体、2…Cu−Snマトリックス、3…N
bフィラメント、4,4′…超電導素線、5…SUSコ
ンジット、6…超電導導体接合体、7…ブロック枠、8
…銅パイプ。1 ... Superconducting conductor, 2 ... Cu-Sn matrix, 3 ... N
b filament, 4, 4 '... Superconducting element wire, 5 ... SUS conduit, 6 ... Superconducting conductor assembly, 7 ... Block frame, 8
… Copper pipes.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 龍吉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 和田山 芳英 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 高力 勝男 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 浅野 ▲克▼▲彦▼ 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 重中 顕 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryuyoshi Takahashi 7-1, 1-1 Omika-cho, Hitachi City, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Yoshihide Wadayama 7-chome, Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 in Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Katsuo Takaki 7-1-1, Omika-cho, Hitachi City, Hitachi, Ibaraki Prefecture (72) In Hitachi Research Laboratory, Hitachi, Ltd. (72) Asano ▲ Katsu ▼ ▲ Hiko ▼ 3-1-1, Sachimachi, Hitachi, Ibaraki Pref., Hitachi, Ltd., Hitachi Factory (72) Inventor, Akira Shigenaka 3-1-1, Sachimachi, Hitachi, Ibaraki, Hitachi, Ltd., Hitachi, Ltd.
Claims (12)
ラメントが埋め込まれた構造の超電導素線を、さらに複
数本束ねて構成した超電導導体において、 前記超電導導体の突合せ接合部における断面の、前記超
電導素線の二次元的な配置が、接合部分において、一様
に同じであることを特徴とする超電導導体。1. A superconducting conductor formed by bundling a plurality of superconducting element wires each having a structure in which a plurality of superconducting filaments are embedded in a metal matrix, wherein the superconducting element has a cross section at a butt joint portion of the superconducting conductors. A superconducting conductor characterized in that the two-dimensional arrangement of lines is the same at the joint.
ラメントが埋め込まれた構造の超電導素線を、さらに複
数本束ねて構成した超電導導体において、 前記超電導素線の断面形状が、2次以上の回転対称形で
あることを特徴とする超電導導体。2. A superconducting conductor formed by bundling a plurality of superconducting element wires each having a structure in which a plurality of superconducting filaments are embedded in a metal matrix, wherein the cross-sectional shape of the superconducting element wires is a secondary or higher rotation. A superconducting conductor characterized by being symmetrical.
ラメントが埋め込まれた構造の超電導素線を、さらに複
数本束ねて構成した超電導導体において、 前記超電導導体の接合部における断面の、前記超電導素
線の二次元的な配置が、2次以上の回転対称形の小ブロ
ックの集合体からなることを特徴とする超電導導体。3. A superconducting conductor formed by bundling a plurality of superconducting element wires having a structure in which a plurality of superconducting filaments are embedded in a metal matrix, the superconducting element wires having a cross section at a joint portion of the superconducting conductors. The superconducting conductor is characterized in that the two-dimensional arrangement of is composed of an assembly of rotationally symmetric small blocks of secondary or higher order.
ラメントが埋め込まれた構造の超電導素線を、さらに複
数本束ねて構成した超電導導体において、 前記超電導導体の接合部における断面の、前記超電導素
線の二次元的な配置が、2次以上の回転対称形の外形で
あり、かつ該外形と同じ次数の回転対称の外形を有する
前記超電導素線の集合体からなることを特徴とする超電
導導体。4. A superconducting conductor formed by bundling a plurality of superconducting element wires having a structure in which a plurality of superconducting filaments are embedded in a metal matrix, the superconducting element wire having a cross section at a joint portion of the superconducting conductors. The superconducting conductor has a two-dimensional or more two-dimensionally arranged outer shape of rotational symmetry and has an outer shape of rotational symmetry of the same order as the outer shape, and is composed of an assembly of the superconducting element wires.
ラメントが埋め込まれた構造の超電導素線を、さらに複
数本束ねて構成した超電導導体において、 前記超電導導体の接合部における断面の、前記超電導素
線の二次元的な配置が、6次の回転対称形の外形であ
り、かつ6次の回転対称の外形を有する前記超電導素線
の集合体からなることを特徴とする超電導導体。5. A superconducting conductor formed by bundling a plurality of superconducting element wires having a structure in which a plurality of superconducting filaments are embedded in a metal matrix, the superconducting element wires having a cross section at a joint portion of the superconducting conductors. Is a six-dimensional rotationally symmetric outer shape, and is composed of an assembly of the superconducting element wires having a sixth-order rotationally symmetric outer shape.
らなる複合多芯構造の超電導素線を複数本束ねる工程を
数次繰り返して製作される撚線超電導導体において、 前記撚線超電導導体の接合部における断面の、前記超電
導素線の二次元的な配置が、6次の回転対称形の小ブロ
ックから構成され、かつ該小ブロック内の最小撚線単位
の素線群が6次の回転対称形に配置された構造を有する
ことを特徴とする超電導導体。6. A twisted-wire superconducting conductor manufactured by repeating several times a step of bundling a plurality of superconducting element wires having a composite multi-core structure composed of a superconducting filament and a metal matrix, wherein a cross section of a joint portion of the twisted-wire superconducting conductor is formed. The two-dimensional arrangement of the superconducting wires is composed of 6-order rotationally symmetric small blocks, and the strands of the smallest twisted wire unit in the small blocks are arranged in 6th-order rotationally symmetrical form. A superconducting conductor having a different structure.
体において、前記超電導素線の間に冷媒通路が形成され
ていることを特徴とする超電導導体。7. The superconducting conductor according to claim 1, wherein a refrigerant passage is formed between the superconducting element wires.
体において、前記超電導素線の間に高抵抗金属材が配さ
れることを特徴とする超電導導体。8. The superconducting conductor according to any one of claims 1 to 7, wherein a high resistance metal material is arranged between the superconducting element wires.
ラメントが埋め込まれた構造の超電導素線を、さらに複
数本束ねて構成した超電導導体において、 前記撚線超電導導体の接合部における断面の、前記超電
導素線の二次元的な配置が、6次の回転対称形に配置さ
れたブロックに分割され、且つそれらのブロック間に高
抵抗金属材が介在しており、さらにブロック内部は前記
超電導素線が6次の回転対称形に配置された構造の端面
同士が突き合わされており、突合せ面で対向する素線の
位置が対応していることを特徴とする超電導導体の接合
体。9. A superconducting conductor formed by bundling a plurality of superconducting element wires having a structure in which a plurality of superconducting filaments are embedded in a metal matrix, wherein the superconducting section of the cross section at the joint portion of the stranded superconducting conductor is The two-dimensional arrangement of the strands is divided into blocks arranged in a 6th order rotational symmetry, and a high resistance metal material is interposed between the blocks. A joined body of superconducting conductors, characterized in that the end faces of a structure arranged in a sixth-order rotational symmetry are butted against each other, and the positions of the opposing strands at the butted faces correspond.
ィラメントが埋め込まれた構造の超電導素線を、さらに
複数本束ねて構成した超電導導体同士の突き合わせ接合
する方法において、導体を構成する超電導素線を複数の
グループに分割し、各グループ毎に銅パイプに挿入、ス
ウェージングした後、グループ全体を銅パイプに挿入
し、再度スウェージングすることにより、規則的な素線
配列を有する構造の導体端面を形成した後、それらを互
いに対向させ、各導体を構成する超電導素線が突き合わ
せ面において一対一に対応するように接続することを特
徴とする超電導導体の接合方法。10. A method of butt-joining superconducting conductors formed by bundling a plurality of superconducting element wires each having a structure in which a plurality of superconducting filaments are embedded in a metal matrix, the superconducting element wires constituting the conductors being bonded together. After dividing into multiple groups, inserting into each group a copper pipe, swaging, then inserting the entire group into a copper pipe and swaging again, the conductor end face of the structure having a regular strand arrangement is formed. A method for joining superconducting conductors, characterized in that after forming them, they are opposed to each other and the superconducting element wires constituting each conductor are connected so as to have a one-to-one correspondence at the abutting surfaces.
ィラメントが埋め込まれた構造の超電導素線を、さらに
複数本束ねて構成した超電導導体の導体端部の構造にお
いて、 前記導体の超電導素線位置が、接合部において同一であ
り、さらに規則的素線配列を有することを特徴とする超
電導導体の端部構造。11. A structure of a conductor end portion of a superconducting conductor formed by bundling a plurality of superconducting element wires each having a structure in which a plurality of superconducting filaments are embedded in a metal matrix. An end structure of a superconducting conductor, which is the same at the joint and has a regular array of strands.
において、これらの端面同士を突合せる場合に、突合せ
面で互いに嵌め合い構造となる凸部および凹部を設けた
ことを特徴とする超電導導体の端部構造。12. The superconducting conductor end structure according to claim 11, wherein when these end faces are abutted with each other, a convex portion and a concave portion are provided so as to be fitted with each other at the abutting faces. End structure of conductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6269337A JPH08138821A (en) | 1994-11-02 | 1994-11-02 | Junction structure and end structure of superconducting conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6269337A JPH08138821A (en) | 1994-11-02 | 1994-11-02 | Junction structure and end structure of superconducting conductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08138821A true JPH08138821A (en) | 1996-05-31 |
Family
ID=17470969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6269337A Pending JPH08138821A (en) | 1994-11-02 | 1994-11-02 | Junction structure and end structure of superconducting conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08138821A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003208928A (en) * | 2002-01-15 | 2003-07-25 | Hitachi Ltd | Connection structure, connection method thereof, rotating electric machine and AC generator using the same |
WO2010090023A1 (en) | 2009-02-05 | 2010-08-12 | 株式会社 東芝 | Superconductive conductor connecting method and superconductive coil |
-
1994
- 1994-11-02 JP JP6269337A patent/JPH08138821A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7128621B2 (en) | 1999-12-06 | 2006-10-31 | Hitachi, Ltd. | Connecting structure and its connecting method, and rotating machinery and alternating current |
JP2003208928A (en) * | 2002-01-15 | 2003-07-25 | Hitachi Ltd | Connection structure, connection method thereof, rotating electric machine and AC generator using the same |
WO2010090023A1 (en) | 2009-02-05 | 2010-08-12 | 株式会社 東芝 | Superconductive conductor connecting method and superconductive coil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100524992C (en) | Superconducting cable joint structure | |
US6583351B1 (en) | Superconducting cable-in-conduit low resistance splice | |
WO2010090023A1 (en) | Superconductive conductor connecting method and superconductive coil | |
JP2005012915A (en) | Superconducting cable connection structure and insulation spacer for superconducting cable connection | |
WO2001033580A1 (en) | Method of manufacturing oxide superconducting wire, oxide superconducting wire, superconducting coil and superconducting apparatus | |
KR20050031293A (en) | Jointing structure and jointing method for superconducting cable | |
JPH08138821A (en) | Junction structure and end structure of superconducting conductor | |
JP3534428B2 (en) | Manufacturing method of oxide high temperature superconducting wire | |
JPH0475642B2 (en) | ||
US20210249160A1 (en) | Wire having a hollow micro-tubing and method therefor | |
KR100993246B1 (en) | Joining method of high temperature superconducting wire to phase conduction part to reduce resistance of phase conduction part in superconducting system | |
JP3644229B2 (en) | Current leads for superconducting equipment | |
JPH08138820A (en) | Method for joining compound superconducting wire and conductor | |
JPH1027707A (en) | Superconducting magnet | |
JP3724128B2 (en) | Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same | |
JPH0433272A (en) | Connecting method for superconducting wire | |
JP4275262B2 (en) | Superconducting coil | |
JP3154572B2 (en) | Superconducting wire connection structure | |
JPS6348147B2 (en) | ||
JP3257703B2 (en) | Pulse or AC current lead and method for connecting A15 type compound superconducting stranded wire to said current lead | |
JPH10247533A (en) | Superconducting conductor connection method and superconducting coil | |
JPH09141324A (en) | Manufacture of aluminum steel composite wire | |
JP3445332B2 (en) | Manufacturing method of superconducting cable in conduit | |
JP2523630B2 (en) | Superconducting cable | |
JPS6381709A (en) | Superconductor |