JPH0813692B2 - Chalcogenide glass fiber with core-clad structure - Google Patents
Chalcogenide glass fiber with core-clad structureInfo
- Publication number
- JPH0813692B2 JPH0813692B2 JP1009667A JP966789A JPH0813692B2 JP H0813692 B2 JPH0813692 B2 JP H0813692B2 JP 1009667 A JP1009667 A JP 1009667A JP 966789 A JP966789 A JP 966789A JP H0813692 B2 JPH0813692 B2 JP H0813692B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- core
- clad
- fiber
- clad structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000005387 chalcogenide glass Substances 0.000 title claims description 11
- 239000000835 fiber Substances 0.000 title description 27
- 239000011521 glass Substances 0.000 claims description 34
- 229910052714 tellurium Inorganic materials 0.000 claims description 19
- 239000011669 selenium Substances 0.000 claims description 16
- 229910052711 selenium Inorganic materials 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 11
- 229910052785 arsenic Inorganic materials 0.000 claims description 8
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 7
- 238000005253 cladding Methods 0.000 claims description 6
- 229910052732 germanium Inorganic materials 0.000 claims description 6
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 5
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 4
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 238000009987 spinning Methods 0.000 description 5
- 229910005868 GeSeTe Inorganic materials 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
- C03C13/04—Fibre optics, e.g. core and clad fibre compositions
- C03C13/041—Non-oxide glass compositions
- C03C13/043—Chalcogenide glass compositions
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Glass Compositions (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は光の透過性に優れたコアクラッド構造を有す
るカルコゲナイドガラスファイバーに関する。TECHNICAL FIELD The present invention relates to a chalcogenide glass fiber having a core-clad structure excellent in light transmittance.
[従来の技術] カルコゲナイドガラスはイオウ(S)、セレン(S
e)、テルル(Te)等を主成分とするガラスであって、
赤外透過性、化学的安定性、耐熱性に優れた光学材料で
ある。カルコゲナイドガラスは赤外線透過用の窓やフィ
ルターに一部使用されているが、このガラスをファイバ
ー状に成形したものは、シリカガラスで既に実用化され
ている情報伝達用の導波路に応用できるばかりでなく、
COレーザーや炭酸ガスレーザー等のエネルギー伝送用及
び放射温度計用の導波路としても利用することができ
る。[Prior art] Chalcogenide glass is sulfur (S), selenium (S)
e), a glass containing tellurium (Te) as a main component,
It is an optical material with excellent infrared transparency, chemical stability, and heat resistance. Chalcogenide glass is partly used for infrared transmission windows and filters, but this glass molded into fiber can only be applied to the information transmission waveguide that has already been put to practical use with silica glass. Without
It can also be used as a waveguide for energy transmission such as CO laser and carbon dioxide laser, and for radiation thermometer.
カルコゲナイドガラスファイバーを炭酸ガスレーザー
のエネルギー伝送又は低温領域の放射温度計に用いる場
合には、ガラス中のTe濃度は高い方が好ましい。しか
し、一般にTe濃度の上昇と共にガラスの耐熱性が劣化
し、結晶化しやすくなるため、紡糸も困難になる。Te濃
度が高く、かつ耐熱性に優れたガラスとしては、GeSeTe
ガラスが知られている。GeSeTeガラスのアンクラッドフ
ァイバーは、10.6μm(炭酸ガスレーザーの発振波長)
での損失が1.5dB/m以下になることを本発明者らは先に
確認した(J.Non.Cryst.Sol.95&96(1987)641)。GeS
eTeガラスファイバーを実用化するためには、ファイバ
ーをコアクラッド構造にする必要があるが、このガラス
でコアクラッド構造を有するファイバーを作製した例は
未だ報告されていない。When the chalcogenide glass fiber is used for energy transfer of a carbon dioxide gas laser or a radiation thermometer in a low temperature region, the Te concentration in the glass is preferably high. However, in general, as the Te concentration increases, the heat resistance of the glass deteriorates and the glass tends to crystallize, which makes spinning difficult. As a glass with high Te concentration and excellent heat resistance, GeSeTe
Glass is known. Unclad fiber of GeSeTe glass is 10.6 μm (lasing wavelength of carbon dioxide laser)
The present inventors previously confirmed that the loss at 1.5 dB / m or less was obtained (J. Non. Cryst. Sol. 95 & 96 (1987) 641). GeS
In order to put the eTe glass fiber into practical use, it is necessary to make the fiber have a core-clad structure, but an example of producing a fiber having a core-clad structure with this glass has not yet been reported.
[発明が解決しようとする課題] 本発明者らは先に、下部にノズルを設けた円筒状ルツ
ボの中に、カルコゲナイドガラスのコアロッドとクラッ
ドチューブを垂直に入れて、ルツボのノズル近傍のみを
局部的に加熱しながら、ルツボ内のガラスを連続的に線
引きする方法を提案した(特願昭63-38474号参照)。こ
の方法によれば、コアとクラッドとの界面の密着性がよ
い、低損失なカルコゲナイドガラスファイバーを作製す
ることができる。しかし、この方法を用いても、GeSeTe
ガラスでコアクラッド構造を形成することは困難であっ
て、特にクラッドガラスとルツボとの界面付近で、クラ
ッドガラスが失透しやすいという問題があった。[Problems to be Solved by the Invention] First, the present inventors first put a core rod of chalcogenide glass and a clad tube vertically in a cylindrical crucible having a nozzle at a lower portion thereof, and locally localize only the vicinity of the nozzle of the crucible. We proposed a method of continuously drawing the glass in the crucible while heating it (see Japanese Patent Application No. 63-38474). According to this method, a low-loss chalcogenide glass fiber having good adhesion at the interface between the core and the clad can be produced. However, even with this method, GeSeTe
It is difficult to form a core-clad structure from glass, and there is a problem that the cladding glass is likely to devitrify particularly near the interface between the cladding glass and the crucible.
[課題を解決するための手段] 本発明に係るコアクラッド構造を有するカルコゲナイ
ドガラスファイバーは、コアガラスと、このコアガラス
より屈折率が低いクラッドガラスとが、共にテルルを含
有していることを特徴とする。さらに詳しくは、本発明
のコアガラスはゲルマニウム、セレン及びテルルの3元
素から構成され、一方、クラッドガラスはゲルマニウ
ム、ヒ素、セレン及びテルルの4元素から構成されるこ
とを特徴とする。そして、3元素で構成されるコアガラ
スの組成は、Ge:20〜35at%、Se:12〜30at%、Te:40〜6
5at%の範囲にあり、望ましくはGe:24〜33at%、Se:15
〜25at%、Te:47〜61at%の範囲にある。コアガラスの
組成が上記の範囲を逸脱すると、結晶化しやすくなり、
紡糸が困難になる。また、4元素で構成されるクラッド
ガラスの組成は、Ge:5〜30at%、As:10〜45at%、Se:8
〜40at%、Te:15〜45at%の範囲にあり、望ましくはGe:
8〜22at%、As:12〜41at%、Se:10〜37at%、Te:20〜40
at%の範囲にある。クラッドガラスの組成が上記の範囲
を逸脱すると、膨脹率や紡糸温度がコアガラスと大きく
相違してくるため、コアガラスと共に紡糸してコアクラ
ッド構造のファイバーを得ることができない。また、本
発明のクラッドガラスに於いて、ゲルマニウム、ヒ素及
びテルルに関する量的規定は、クラッドガラスの屈折率
をコアガラスのそれより低く維持するための要件でもあ
って、Ge、AsおよびTeのいずれかのat%(原子パーセン
ト)が、上に規定した範囲の上限を越えた場合は、クラ
ッドガラスの屈折率がコアガラスのそれより高くなるた
め、光の伝送を行うことができない。[Means for Solving the Problems] The chalcogenide glass fiber having a core-clad structure according to the present invention is characterized in that both the core glass and the clad glass having a lower refractive index than the core glass contain tellurium. And More specifically, the core glass of the present invention is composed of three elements germanium, selenium and tellurium, while the cladding glass is composed of four elements germanium, arsenic, selenium and tellurium. The composition of the core glass composed of three elements is Ge: 20 to 35 at%, Se: 12 to 30 at%, Te: 40 to 6
5at% range, preferably Ge: 24-33at%, Se: 15
It is in the range of ~ 25at% and Te: 47-61at%. When the composition of the core glass deviates from the above range, crystallization becomes easy,
Spinning becomes difficult. The composition of the clad glass composed of four elements is Ge: 5 to 30 at%, As: 10 to 45 at%, Se: 8
~ 40at%, Te: 15-45at%, preferably Ge:
8-22at%, As: 12-41at%, Se: 10-37at%, Te: 20-40
It is in the range of at%. If the composition of the clad glass deviates from the above range, the expansion coefficient and the spinning temperature will be greatly different from those of the core glass, so that the fiber having the core-clad structure cannot be obtained by spinning with the core glass. Further, in the clad glass of the present invention, the quantitative specifications for germanium, arsenic and tellurium are also requirements for keeping the refractive index of the clad glass lower than that of the core glass, and any of Ge, As and Te. If the at% (atomic percentage) exceeds the upper limit of the above-defined range, the refractive index of the cladding glass becomes higher than that of the core glass, and light cannot be transmitted.
[実施例] 次に本発明を実施例に基づいてさらに詳細に説明す
る。EXAMPLES Next, the present invention will be described in more detail based on examples.
実施例1 Ge:30at%、Se:20at%、Te:50at%の組成を有するコ
アロッドを、Ge:15at%、As:20at%、Se:35at%、Te:30
at%の組成を有するクラッドチューブの内に挿入し、こ
のものを下部にノズルを備えたルツボの中に垂直に設置
し、ルツボ内部をアルゴンガスで置換した。しかる後、
ルツボのノズル近傍のみをクラッドチューブ及びコアロ
ッドの粘度が106ポイズになるまで加熱した。これによ
ってクラッドチューブとコアロッドとは互いに融着する
と共に、溶融したクラッドガラスはノズル内面全体に密
着する。この状態でクラッドチューブを1.5kg/cm2の圧
力で加圧すると同時に、クラッドチューブとコアロッド
との間隙を10-2torrに減圧した。この操作によりクラッ
ドチューブとコアロッドとは完全に一体化し、ルツボの
ノズルよりコア径340μm、クラッド径450μmのファイ
バーを連続的に紡糸することができた。得られたファイ
バーは直ちに樹脂でコーティングした後、ドラムに巻取
った。このファイバーの透過損失を第1図に示す。最低
損失は8.2μm付近で0.4dB/mであり、炭酸ガスレーザー
の発振波長である10.6μmでの透過損失は1.7dB/mであ
った。また、このファイバーの最小曲げ半径は15mm以下
であった。Example 1 A core rod having a composition of Ge: 30at%, Se: 20at%, Te: 50at% was prepared by using Ge: 15at%, As: 20at%, Se: 35at%, Te: 30.
It was inserted into a clad tube having a composition of at%, and this was placed vertically in a crucible having a nozzle at the bottom, and the inside of the crucible was replaced with argon gas. After a while
Only the vicinity of the crucible nozzle was heated until the viscosity of the cladding tube and core rod reached 10 6 poise. As a result, the clad tube and the core rod are fused to each other, and the fused clad glass adheres to the entire inner surface of the nozzle. In this state, the clad tube was pressurized with a pressure of 1.5 kg / cm 2 , and at the same time, the gap between the clad tube and the core rod was reduced to 10 -2 torr. By this operation, the clad tube and the core rod were completely integrated, and a fiber having a core diameter of 340 μm and a clad diameter of 450 μm could be continuously spun from the crucible nozzle. The resulting fiber was immediately coated with resin and then wound on a drum. The transmission loss of this fiber is shown in FIG. The minimum loss was 0.4 dB / m near 8.2 μm, and the transmission loss was 1.7 dB / m at 10.6 μm, which is the oscillation wavelength of the carbon dioxide laser. The minimum bending radius of this fiber was 15 mm or less.
実施例2〜3 表1に示す組成のコアロッド及びクラッドチューブを
用いて、実施例1と同様な手法により、コア径340μ
m、クラッド径450μmのファイバーを連続的に紡糸し
た。得られたファイバーの透過損失を第2図及び第3図
に示す。最低損失は実施例2のファイバーで、0.2dB/m
(7.3μm)が達成された。また、炭酸ガスレーザーの
発振波長である10.6μmでの透過損失は、実施例2,3の
ファイバーとも1.8dB/mであり、最小曲げ半径は共に15m
m以下であった。Examples 2 to 3 Using core rods and clad tubes having the compositions shown in Table 1, a core diameter of 340 μm was obtained in the same manner as in Example 1.
A fiber having a diameter of m and a clad diameter of 450 μm was continuously spun. The transmission loss of the obtained fiber is shown in FIGS. 2 and 3. The minimum loss is 0.2 dB / m with the fiber of Example 2.
(7.3 μm) was achieved. The transmission loss at 10.6 μm, which is the oscillation wavelength of the carbon dioxide laser, is 1.8 dB / m for both the fibers of Examples 2 and 3, and the minimum bending radius is 15 m for both.
m or less.
比較例 Ge:27at%、Se:18at%、Te:55at%の組成を有するコ
アロッドを、Ge:27at%、Se:23at%、Te:50at%の組成
を有するクラッドチューブの内に挿入し、実施例1と同
様な手法によりコア径340μm、クラッド径450μmのフ
ァイバーを連続的に紡糸した。得られたファイバーの透
過損失を第4図に示す。このファイバーの最低損失は1d
B/m(8.5μm)であったが、紡糸開始から数分後にファ
イバーのクラッド表面に微結晶の析出が認められ、ファ
イバーの機械的強度は非常に低く、その最小曲げ半径は
100mm以上であった。 Comparative Example A core rod having a composition of Ge: 27at%, Se: 18at%, Te: 55at% was inserted into a clad tube having a composition of Ge: 27at%, Se: 23at%, Te: 50at%, and implemented. A fiber having a core diameter of 340 μm and a clad diameter of 450 μm was continuously spun in the same manner as in Example 1. The transmission loss of the obtained fiber is shown in FIG. The minimum loss of this fiber is 1d
Although it was B / m (8.5 μm), precipitation of fine crystals was observed on the clad surface of the fiber a few minutes after the start of spinning, the mechanical strength of the fiber was very low, and the minimum bending radius was
It was over 100 mm.
[発明の効果] 本発明によれば、テルル含有量が高いにもかかわらず
耐熱性に優れ、しかも透過損失がアンクラッドファイバ
ーと同程度であるところの、コアクラッド構造を有する
カルコゲナイドガラスファイバーを得ることができる。[Effects of the Invention] According to the present invention, a chalcogenide glass fiber having a core-clad structure, which has excellent heat resistance despite a high tellurium content and has a transmission loss comparable to that of an unclad fiber, is obtained. be able to.
第1〜3図は実施例1〜3で得られたコアクラッド型フ
ァイバーの透過損失スペクトルを示し第4図は比較例で
得たコア・クラッド型ファイバーの透過損失スペクトル
を示す。1 to 3 show transmission loss spectra of the core-clad type fibers obtained in Examples 1 to 3, and FIG. 4 shows transmission loss spectra of the core-clad type fibers obtained in Comparative Example.
Claims (2)
(Se)及びテルル(Te)の3元素から構成され、クラッ
ドガラスがゲルマニウム、ヒ素(As)、Se及びTeに4元
素から構成されていることを特徴とするコアクラッド構
造を有するカルコゲナイドガラス。1. A core glass is composed of three elements germanium (Ge), selenium (Se) and tellurium (Te), and a cladding glass is composed of four elements germanium, arsenic (As), Se and Te. A chalcogenide glass having a core-clad structure characterized by the above.
〜30at%、Te:40〜65at%の範囲にあり、クラッドガラ
スの組成がGe:5〜30at%、As:10〜45at%、Se:8〜40at
%、Te:15〜45at%の範囲にあることを特徴とする請求
項1記載のコアクラッド構造を有するカルコゲナイドガ
ラス。2. The composition of the core glass is Ge: 20-35 at%, Se: 12
~ 30at%, Te: 40 ~ 65at%, clad glass composition is Ge: 5 ~ 30at%, As: 10 ~ 45at%, Se: 8 ~ 40at%
%, Te: 15-45 at% in range, chalcogenide glass having a core-clad structure according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1009667A JPH0813692B2 (en) | 1989-01-20 | 1989-01-20 | Chalcogenide glass fiber with core-clad structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1009667A JPH0813692B2 (en) | 1989-01-20 | 1989-01-20 | Chalcogenide glass fiber with core-clad structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02192433A JPH02192433A (en) | 1990-07-30 |
JPH0813692B2 true JPH0813692B2 (en) | 1996-02-14 |
Family
ID=11726566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1009667A Expired - Lifetime JPH0813692B2 (en) | 1989-01-20 | 1989-01-20 | Chalcogenide glass fiber with core-clad structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0813692B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108503215B (en) * | 2018-05-03 | 2021-04-02 | 湖北新华光信息材料有限公司 | Chalcogenide optical glass, preparation method thereof and optical element |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63225555A (en) * | 1987-03-16 | 1988-09-20 | Hisankabutsu Glass Kenkyu Kaihatsu Kk | Chalcogenide glass fiber |
-
1989
- 1989-01-20 JP JP1009667A patent/JPH0813692B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02192433A (en) | 1990-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4453961A (en) | Method of making glass optical fiber | |
EP0294037B1 (en) | Optical fibre attenuators | |
CA2341713A1 (en) | Methods and apparatus for producing optical fiber | |
US4428646A (en) | Optical fibers having crystalline material and method of making same | |
US5160521A (en) | Method for making optical fiber preforms | |
US4326869A (en) | Method of producing optical waveguide | |
JPS6163544A (en) | Fluoride glass optical fiber | |
JP2003512988A (en) | Manufacturing method of nanocrystalline glass ceramic fiber | |
JPS6124349B2 (en) | ||
US4908053A (en) | Process for producing chalcogenide glass fiber | |
JPH10182188A (en) | Single-mode active optical fiber and its production | |
US4784465A (en) | Method of making glass optical fiber | |
GB1596088A (en) | Method of making glass articles | |
JPH0813692B2 (en) | Chalcogenide glass fiber with core-clad structure | |
US4099834A (en) | Low loss glass suitable for optical fiber | |
JPH0791087B2 (en) | Ge-As-S glass fiber having core-clad structure | |
JPH02145457A (en) | fluoride glass optical fiber | |
JPH02275732A (en) | As-s glass fiber having core clad structure | |
JPH0813693B2 (en) | Chalcogenide glass fiber with core-clad structure | |
JPS63236729A (en) | Production of chalcogenide glass fiber having core clad structure | |
JPH0380131A (en) | Chalogenide glass fiber having core-clad structure | |
JPS63225555A (en) | Chalcogenide glass fiber | |
JPH0555456B2 (en) | ||
JPH0556295B2 (en) | ||
JPH01215738A (en) | Production of optical glass fiber having core-clad structure |