JPH08136906A - Liquid crystal panel - Google Patents
Liquid crystal panelInfo
- Publication number
- JPH08136906A JPH08136906A JP6271337A JP27133794A JPH08136906A JP H08136906 A JPH08136906 A JP H08136906A JP 6271337 A JP6271337 A JP 6271337A JP 27133794 A JP27133794 A JP 27133794A JP H08136906 A JPH08136906 A JP H08136906A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- refractive index
- film
- liquid crystal
- film thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 32
- 239000010408 film Substances 0.000 claims abstract description 81
- 239000000758 substrate Substances 0.000 claims abstract description 30
- 239000010409 thin film Substances 0.000 claims abstract description 30
- 239000011521 glass Substances 0.000 claims abstract description 17
- 239000002985 plastic film Substances 0.000 claims abstract description 10
- 229920003023 plastic Polymers 0.000 claims abstract description 6
- 239000012788 optical film Substances 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 19
- 238000002310 reflectometry Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 114
- 238000000034 method Methods 0.000 description 26
- 239000002245 particle Substances 0.000 description 15
- 238000007740 vapor deposition Methods 0.000 description 15
- 238000009826 distribution Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 229920000620 organic polymer Polymers 0.000 description 8
- 238000001771 vacuum deposition Methods 0.000 description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 6
- 238000010894 electron beam technology Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 239000005354 aluminosilicate glass Substances 0.000 description 3
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 3
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005566 electron beam evaporation Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920006289 polycarbonate film Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910018404 Al2 O3 Inorganic materials 0.000 description 1
- 229910002319 LaF3 Inorganic materials 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 239000006018 Li-aluminosilicate Substances 0.000 description 1
- 229910017557 NdF3 Inorganic materials 0.000 description 1
- 239000004988 Nematic liquid crystal Substances 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920001007 Nylon 4 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004983 Polymer Dispersed Liquid Crystal Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000004990 Smectic liquid crystal Substances 0.000 description 1
- 229910004369 ThO2 Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000006117 anti-reflective coating Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000003098 cholesteric effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 208000028659 discharge Diseases 0.000 description 1
- 239000002305 electric material Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229910000057 polysulfane Inorganic materials 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 1
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、液晶表示パネルに関す
るものであり、外光の映り込みを減少させ、視認性を向
上させることが可能になり、特に屋外で使用する液晶テ
レビ、携帯端末などの液晶パネルの視認性を向上させる
ことが可能なものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display panel, which makes it possible to reduce the reflection of external light and improve the visibility, and particularly to a liquid crystal television or a portable terminal used outdoors. It is possible to improve the visibility of the liquid crystal panel.
【0002】[0002]
【従来の技術】液晶パネルはワ−クステ−ション用モニ
タ−やパ−ソナルコンピュ−タ−用モニタ−、などの屋
内での穏やかな環境での使用が多かった。しかし近年、
屋外の明るい環境で使用されるケ−スが多くなってき
た。たとえば液晶テレビ付きビデオカメラ、屋外用液晶
テレビ、携帯電話、ナビゲ−ションシステムやヘッドア
ップディスプレイなどの車載用表示パネル、携帯型パ−
ムトップコンプピュ−タ−などである。これら屋外用液
晶パネルは外光がパネル表面やガラス基板部で反射する
ことにより視認性が極めて悪くなってしまう。そこでパ
ネル表面に防眩効果を持たせるために表面に微細な凹凸
を有すSiO2層を付着させたり、フッ酸により表面を
エッチングして凹凸を設ける等の方法が採られていき
た。しかし、これらの方法は、外部光を散乱させるノン
グレア処理と呼ばれ、本質的に低反射層を設ける手法で
ないため、反射率の低減には限界があり、また液晶パネ
ルなどにおいては、解像度を低下させる原因ともなって
いた。2. Description of the Related Art A liquid crystal panel is often used indoors in a calm environment such as a monitor for a workstation or a monitor for a personal computer. But in recent years
Cases used in bright outdoor environments are increasing. For example, video cameras with LCD TVs, outdoor LCD TVs, mobile phones, in-vehicle display panels such as navigation systems and head-up displays, and portable displays.
For example, a computer computer. The visibility of these outdoor liquid crystal panels becomes extremely poor due to the reflection of external light on the panel surface and the glass substrate portion. Therefore, in order to impart an antiglare effect to the panel surface, a method has been adopted in which a SiO2 layer having fine irregularities is attached to the surface, or the surface is etched with hydrofluoric acid to provide irregularities. However, these methods are called non-glare processing that scatters external light, and there is a limit to the reduction of reflectance because it is not a method of essentially providing a low reflection layer. It was also a cause of
【0003】そこで従来は塗布法で形成された多層膜に
よる反射防止膜(特開昭59−50401)や真空蒸着
法による単層、2層膜による反射防止膜(特開昭62−
164021)などがある。Therefore, conventionally, an antireflection film formed of a multilayer film formed by a coating method (Japanese Patent Laid-Open No. 59-50401) or a single-layer or two-layer antireflection film formed by a vacuum deposition method (Japanese Patent Laid-Open No. 62-62).
164021) and the like.
【0004】[0004]
【発明が解決しようとする課題】しかし液状のものを塗
布し、硬化させることにより得られた多層膜による反射
防止膜は、多層膜の各層の屈折率及び膜厚分布の均一性
に欠け、この結果として反射率1%以下のもの作製する
ことはきわめて難しい。また、真空蒸着法によりMgF
2 などの単層膜をコートしたものはよく知られている
が、反射率は1%以上である。2層、3層の多層膜を真
空蒸着法で形成したものは1%以下の反射率の反射防止
膜を作製できるが、携帯端末などで用いられる反射型液
晶パネルではバックライトが無いため、さらに高いコン
トラストが必要となり、より低い反射率の反射防止膜が
必要である。この様にきわめて低い反射率である反射防
止膜は真空蒸着法で4層膜、5層膜の様な多層膜を形成
すれば得られるが、工程がきわめて長くなってしまい現
実的ではない。However, an antireflection film formed of a multilayer film obtained by applying and curing a liquid material lacks uniformity of the refractive index and the film thickness distribution of each layer of the multilayer film. As a result, it is extremely difficult to manufacture a device having a reflectance of 1% or less. In addition, by vacuum deposition method, MgF
The one coated with a single layer film such as 2 is well known, but the reflectance is 1% or more. An antireflection film having a reflectance of 1% or less can be produced by forming a multilayer film of two layers or three layers by a vacuum vapor deposition method, but since a reflection type liquid crystal panel used in a mobile terminal has no backlight, High contrast is required and lower reflectance antireflective coatings are needed. Such an antireflection film having an extremely low reflectance can be obtained by forming a multilayer film such as a four-layer film or a five-layer film by a vacuum evaporation method, but the process becomes extremely long, which is not realistic.
【0005】[0005]
【課題を解決するための手段】本発明の液晶パネルは
液晶を充填している透明ガラス基板、もしくは透明プラ
スチックシート基板、もしくは透明プラスチックフィル
ム基板の表面、または/および液晶パネルの大気側外層
部に反射防止膜を形成したことを特徴とする液晶パネル
において、該反射防止膜が、無機誘電体からなる3層薄
膜であり、該3層薄膜の第1層(基材側の薄膜層)の屈
折率が1.5以上、1.8以下で、かつ光学膜厚がλ/
4(λは光の設計主波長)であり、第3層(第2層の上
に設けられた薄膜層)の屈折率が1.25以上、1.5以
下で、かつ光学膜厚がλ/4(λは光の設計主波長)で
あり、第2層が以下のように膜厚の深さ方向に屈折率が
変化していることを特徴とする液晶パネルである。 n2 =(n23 −n21 )×(L/d2 )X +n21 0≦L≦d2 1≦x≦4 1.6≦n21 ≦2.2 1.8≦n23 ≦2.4 1.05≦n23 /n21 ≦1.2 ここでn2 、d2 は第2層の屈折率、膜厚であり、n21
は第2層の第1層と接する面の屈折率、n23 は第2
層の第3層と接する面の屈折率、Lは第2層の第1層か
ら第3層への膜厚方向の位置である。本発明の反射防止
膜は3層膜を作製するのと同様の工程で、4層膜と同等
の1%以下のきわめて低い反射率のものを作製できる。The liquid crystal panel of the present invention is
In a liquid crystal panel characterized by forming an antireflection film on the surface of a transparent glass substrate filled with liquid crystal, or a transparent plastic sheet substrate, or a transparent plastic film substrate, or / and the atmosphere side outer layer portion of the liquid crystal panel, The antireflection film is a three-layer thin film made of an inorganic dielectric, and the first layer (thin film layer on the base material side) of the three-layer thin film has a refractive index of 1.5 or more and 1.8 or less and an optical property. Film thickness is λ /
4 (λ is the designed main wavelength of light), the refractive index of the third layer (the thin film layer provided on the second layer) is 1.25 or more and 1.5 or less, and the optical film thickness is λ. / 4 (λ is the design dominant wavelength of light), and the refractive index of the second layer changes in the depth direction of the film thickness as described below. n 2 = (n 23 -n 21 ) × (L / d 2) X + n 21 0 ≦ L ≦ d 2 1 ≦ x ≦ 4 1.6 ≦ n 21 ≦ 2.2 1.8 ≦ n 23 ≦ 2. 4 1.05 ≦ n 23 / n 21 ≦ 1.2 where n 2 and d 2 are the refractive index and film thickness of the second layer, and n 21
Is the refractive index of the surface of the second layer in contact with the first layer, and n 23 is the second
The refractive index L of the surface of the layer in contact with the third layer is the position in the film thickness direction from the first layer to the third layer of the second layer. The antireflection film of the present invention can be produced with a very low reflectance of 1% or less, which is equivalent to that of a four-layer film, in the same process as that for producing a three-layer film.
【0006】本発明でいう反射防止膜とは、可視光線の
全波長域において反射率がきわめて低く、好ましくは1
%以下、さらに好ましくは0.5%以下の反射率であ
る。The antireflection film in the present invention has an extremely low reflectance in the entire wavelength range of visible light, preferably 1
% Or less, more preferably 0.5% or less.
【0007】本発明でいう反射防止膜の第1層の無機誘
電体材料としては屈折率が1.5以上1.8以下のもの
であり、具体的にはLaF3 (550nmの屈折率1.
59以下括弧内は同様)、NdF3 (1.60)、Al
2 O3 (1.62)、CeF 3 (1.63)、PbF3
(1.75)、MgO(1.75)、ThO2 (1.8
0)などであり、第3層の無機誘電体材料としては屈折
率が1.25以上1.5以下のものであり、具体的には
CaF2 (1.26)、NaF(1.34)、Na3 A
lF6 (1.35)、LiF(1.37)、MgF
2 (1.38)、SiO2 (1.46)などがあげられ
る。また屈折率が前記の範囲内のものならば、これらの
ものに限らない。またこれら2種類以上のものが均一に
混合あるいは化合したものであってもよい。また第1
層、第3層の膜厚はn1 d1 =λ/4、n3 d3 =λ/
4 (n1 ,n3 は第1層、第3層の屈折率、d1 ,d
3 は第1層、第3層の膜厚、λは光の設計主波長であ
る。)の条件を満足する必要がある。例えば光の設計主
波長を510nmとした場合、第1層の材料としてCe
F3 (550nmの屈折率1.63)、第3層の材料と
してMgF3 (550nmの屈折率1.38)を用いた
場合、第1層の膜厚は78nm、第3層の膜厚は92n
mである。The inorganic layer of the first layer of the antireflection film referred to in the present invention is
Refractive index of 1.5 or more and 1.8 or less as an electric material
And specifically LaF3(Refractive index of 1.
59 and below are the same in parentheses), NdF3(1.60), Al
2O3(1.62), CeF 3(1.63), PbF3
(1.75), MgO (1.75), ThO2(1.8
0) etc., and refraction as the inorganic dielectric material of the third layer
The rate is 1.25 or more and 1.5 or less, and specifically
CaF2(1.26), NaF (1.34), Na3A
IF6(1.35), LiF (1.37), MgF
2(1.38), SiO2(1.46) and so on
It If the refractive index is within the above range, these
Not limited to things. In addition, these two or more types are uniform
It may be mixed or compounded. Also the first
The thickness of the layer and the third layer is n1d1= Λ / 4, n3d3= Λ /
4 (n1, N3Is the refractive index of the first and third layers, d1, D
3Is the thickness of the first and third layers, and λ is the design dominant wavelength of light.
It ) Must be satisfied. For example, the designer of light
When the wavelength is 510 nm, Ce is used as the material for the first layer.
F3(Refractive index of 1.63 at 550 nm), the material of the third layer
Then MgF3(Refractive index 1.38 at 550 nm) was used
In this case, the thickness of the first layer is 78 nm and the thickness of the third layer is 92 n.
m.
【0008】本発明でいう反射防止膜の第2層は第1層
から第3層にかけて膜厚方向に屈折率が増加してあり、
この変化が下記式のようなものである。 n2 =(n23 −n21 )×(L/d2 )X +n21 0≦L≦d2 1≦x≦4 1.6≦n21 ≦2.2 1.8≦n23 ≦2.4 1.05≦n23 /n21 ≦1.2 ここでn2 、d2 は第2層の屈折率、膜厚であり、n21
は第2層の第1層と接する面の屈折率、n23 は第2
層の第3層と接する面の屈折率、Lは第2層の第1層か
ら第3層への膜厚方向の位置である。The second layer of the antireflection film according to the present invention has a refractive index increasing in the film thickness direction from the first layer to the third layer,
This change is like the following formula. n 2 = (n 23 -n 21 ) × (L / d 2) X + n 21 0 ≦ L ≦ d 2 1 ≦ x ≦ 4 1.6 ≦ n 21 ≦ 2.2 1.8 ≦ n 23 ≦ 2. 4 1.05 ≦ n 23 / n 21 ≦ 1.2 where n 2 and d 2 are the refractive index and film thickness of the second layer, and n 21
Is the refractive index of the surface of the second layer in contact with the first layer, and n 23 is the second
The refractive index L of the surface of the layer in contact with the third layer is the position in the film thickness direction from the first layer to the third layer of the second layer.
【0009】本発明でいう薄膜を作成する方法として、
真空蒸着法のみではなく、スパッタリング法、イオンプ
レ−ティング法などの物理的蒸着方法、CVD法などの
化学的蒸着方法などが用いられるが、これらに限定され
るものではない。また真空蒸着法に関しては加熱方法と
して電子ビ−ム加熱、レ−ザ−ビ−ム加熱、抵抗加熱、
高周波誘導加熱などがあるが、これらに限定されるもの
ではない。また電子ビ−ム加熱、レ−ザ−ビ−ム加熱の
場合、電子銃もしくはレ−ザ−は単体でも複数でも良
い。また、真空蒸着法、スパッタリング法に関しては、
反応性ガスとして酸素、窒素、水蒸気など導入したり、
オゾン、イオンアシストなどを用いたりする反応性蒸
着、反応性スパッタリングなども用いることができる。
また基板にバイアスを印加したり、基板温度を上昇ある
いは冷却するなどの堆積条件を変化させてもよい。As a method of forming a thin film in the present invention,
In addition to the vacuum vapor deposition method, a physical vapor deposition method such as a sputtering method and an ion plating method, a chemical vapor deposition method such as a CVD method, and the like are used, but the present invention is not limited thereto. Regarding the vacuum evaporation method, electron beam heating, laser beam heating, resistance heating,
However, the present invention is not limited to these. In the case of electron beam heating or laser beam heating, the electron gun or laser may be a single unit or a plurality of units. Regarding the vacuum vapor deposition method and the sputtering method,
Introduce oxygen, nitrogen, steam, etc. as reactive gas,
Reactive vapor deposition using ozone, ion assist, or the like, reactive sputtering, or the like can also be used.
Further, a deposition condition such as applying a bias to the substrate or raising or cooling the substrate temperature may be changed.
【0010】第2層の屈折率を連続的に増加させること
により、4層薄膜と同程度の極めて低い反射率を実現す
ることができ、また1 工程で成膜できるため生産性も高
くなる。膜厚方向に対する屈折率の変化の形態を示すx
は1以下では第1層近傍層で急激に急激に屈折率が上昇
した形になってしまい、実質上、屈折率変化のほとんど
無い均一薄膜層と同様になってしまう。これと同じくx
が4より大きいときには第3層近傍層で急激に急激に屈
折率が上昇した形になってしまい、実質上、屈折率変化
のほとんど無い均一薄膜層と同様になってしまう。そこ
で1≦x≦4の範囲が好ましい。また第2層の膜厚はn
21 d2 =λ/4の条件を満足している必要がある。By continuously increasing the refractive index of the second layer, it is possible to realize an extremely low reflectance as high as that of a four-layer thin film, and the productivity can be increased because the film can be formed in one step. X showing the form of the change of the refractive index with respect to the film thickness direction
When the value is 1 or less, the refractive index rapidly increases in the layer near the first layer, which is substantially the same as the uniform thin film layer having almost no change in the refractive index. X like this
When is larger than 4, the refractive index of the third neighboring layer is sharply increased, which is substantially the same as a uniform thin film layer having almost no change in refractive index. Therefore, the range of 1 ≦ x ≦ 4 is preferable. The thickness of the second layer is n
It is necessary to satisfy the condition of 21 d 2 = λ / 4.
【0011】第2層の屈折率のうち、第3層に面した部
分の屈折率n23 の範囲は、1.05≦n23 /n21
≦1.2である必要がある。1.0≦n23 /n21 <
1.05では、屈折率が膜厚方向に変化しているとはい
い難く、均質薄膜と同等の反射率しか示さない。1.0
>n23 /n21 では設計主波長の反射率が高くなって
しまう。1.2≧n23 /n21 では、設計主波長近傍
の反射率は極めて低くなるが、逆に低反射率帯域が狭く
なってしまい、可視光領域の低波長側、高波長側の反射
率が大きくなってしまう。そこで可視光全波長域におい
て極めて低い反射率を得るためには、1.05≦n23
/n21 ≦1.2の範囲が好ましい。Of the refractive index of the second layer, the range of the refractive index n 23 of the portion facing the third layer is 1.05 ≦ n 23 / n 21
It must be ≦ 1.2. 1.0 ≦ n 23 / n 21 <
At 1.05, it is difficult to say that the refractive index is changing in the film thickness direction, and only a reflectance equivalent to that of a homogeneous thin film is exhibited. 1.0
When> n 23 / n 21 , the reflectance of the designed dominant wavelength becomes high. When 1.2 ≧ n 23 / n 21 , the reflectance in the vicinity of the designed main wavelength is extremely low, but on the contrary, the low reflectance band becomes narrow, and the reflectance on the low wavelength side and the high wavelength side in the visible light region is decreased. Will become bigger. Therefore, in order to obtain an extremely low reflectance in the entire visible light wavelength region, 1.05 ≦ n 23
The range of / n 21 ≦ 1.2 is preferable.
【0012】1層あいだで屈折率が連続的に変化してい
る薄膜層は、ガラス基板、またはプラスチックシート基
板、またはプラスチックフィルム基板の移動する方向に
隣接させて2つの材料を並べることによって作成でき
る。この材料としては第1層側の材料としては、NdF
3 (1.6)、Al2 O3 (1.62)、CeF
3 (1.63)、PbF3 (1.75)、MgO(1.
75)、ThO2 (1.80)、SnO2 (1.9
0)、Ln2 O3 (1.95)SiO(1.7〜2.
0)、In2 O3 (2.00)、Nd2 O3 (2.0
0)、Sb2 O3 (2.04)、ZrO2 (2.1
0)、CeO2 (2.2)などがあげられ、第3層側の
材料としては、Th02 (1.80)、SnO2 (1.
90)、Ln2 O3 (1.95)、In2 O3 (2.0
0)、Nd2 O3 (2.00)、Sb2 O3 (2.0
4)、ZrO2 (2.10)、CeO2 (2.2)。T
iO2 (2.2〜2.4)、ZnS(2.35)などが
あげられる。また前記屈折率の範囲内のものであるなら
ば、これらのものに限定されるものではない。The thin film layer in which the refractive index continuously changes between one layer can be prepared by arranging two materials adjacent to each other in the moving direction of the glass substrate, the plastic sheet substrate, or the plastic film substrate. . As this material, the material on the first layer side is NdF.
3 (1.6), Al 2 O 3 (1.62), CeF
3 (1.63), PbF 3 (1.75), MgO (1.
75), ThO 2 (1.80), SnO 2 (1.9).
0), Ln 2 O 3 ( 1.95) SiO (1.7~2.
0), In 2 O 3 (2.00), Nd 2 O 3 (2.0
0), Sb 2 O 3 (2.04), ZrO 2 (2.1
0), CeO 2 (2.2) and the like, and as the material of the third layer side, Th0 2 (1.80), SnO 2 (1.2.
90), Ln 2 O 3 (1.95), In 2 O 3 (2.0
0), Nd 2 O 3 (2.00), Sb 2 O 3 (2.0
4), ZrO 2 (2.10), CeO 2 (2.2). T
Examples include iO 2 (2.2 to 2.4) and ZnS (2.35). Further, if it is within the range of the refractive index, it is not limited to these.
【0013】1層のあいだで屈折率を連続的に変化させ
る別の方法として、1材料のみを蒸発させても成膜空間
内において、励起蒸着粒子の多い空間と少ない空間を作
ってやり、形成される薄膜の充填率を連続的の変化させ
ることにより屈折率を変化させることができる。具体的
には成膜空間に部分的に励起蒸着粒子を多くするため
に、レ−ザ−、マイクロ波、高周波のような電磁波を入
射したり、電子ビ−ム、イオンビ−ム、負イオンビ−
ム、中性粒子ビ−ムなどの粒子線を入射したりすること
により実現できる。また逆に蒸着粒子のもつエネルギ−
を減少させるには、成膜空間に部分的にガスを流すこと
により、ガス粒子と蒸着粒子とを衝突させてやればよ
い。また励起蒸着粒子数を制御できる方法であれば、こ
れらの手法に限定されるものではない。As another method for continuously changing the refractive index between one layer, even if only one material is vaporized, a space with a large number of excited vapor deposition particles and a space with a small number of excited vapor deposition particles are formed and formed. The refractive index can be changed by continuously changing the filling rate of the formed thin film. Specifically, in order to partially increase the number of excited vapor-deposited particles in the film forming space, an electromagnetic wave such as a laser, a microwave, or a high frequency is incident, or an electron beam, an ion beam, or a negative ion beam.
This can be realized by injecting a particle beam such as a beam of particles or a beam of neutral particles. On the contrary, the energy of vapor deposition particles
In order to reduce the amount, the gas particles may be caused to collide with the vapor deposition particles by partially flowing the gas into the film formation space. The method is not limited to these methods as long as the number of excited vapor deposition particles can be controlled.
【0014】本発明でいうプラスチックシートまたはプ
ラスチックフィルムとは、有機高分子を融解押出し若し
くは溶液キャストして、必要に応じ、長手方向、およ
び、または、軸方向に延伸、冷却、熱固定を施したフィ
ルムであり、有機高分子としては、ポリエチレン、ポリ
プロピレン、ポリエチレンテレフタ−ト、ポリエチレン
−2、6−ナフタレ−ト、ナイロン6、ナイロン4、ナ
イロン66、ナイロン12、ポリ塩化ビニ−ル、ポリ塩
化ビニリデン、ポリビニ−ルアルコ−ル、全芳香族ポリ
アミド、ポリアミドイミド、ポリイミド、ポリエ−テル
イミド、ポリスルファン、ポリッフェニレンスルフィ
ド、ポリフェニレンオキサイド、ポリカ−ボネ−ト、ポ
リエ−テルスルフォン、ポリアリレ−トなどがあげられ
る。また、これらの(有機重合体)有機高分子は他の有
機重合体を少量共重合したり、ブレンドしたりしてもよ
い。The plastic sheet or plastic film referred to in the present invention is obtained by melt-extruding or solution-casting an organic polymer and, if necessary, stretching, cooling and heat setting in the longitudinal direction and / or the axial direction. The film is an organic polymer, and examples of the organic polymer include polyethylene, polypropylene, polyethylene terephthalate, polyethylene-2,6-naphthalate, nylon 6, nylon 4, nylon 66, nylon 12, polyvinyl chloride, polychlorine. Vinylidene, polyvinyl alcohol, wholly aromatic polyamide, polyamideimide, polyimide, polyetherimide, polysulfane, polyphenylene sulfide, polyphenylene oxide, polycarbonate, polyethersulfone, polyarylate and the like. To be Further, these (organic polymer) organic polymers may be copolymerized or blended with a small amount of another organic polymer.
【0015】さらにこの有機高分子には、公知の添加
剤、例えば、紫外線吸収剤、可塑剤、帯電防止剤、滑剤
などが添加されてもよい。またこれら有機高分子からな
る基材は、本発明の目的を損なわない限りにおいて、薄
膜層を積層するに先行して、該基材をコロナ処理、グロ
ー放電処理、その他の表面粗面化処理を施してもよく、
また、公知のアンカーコート処理、印刷、装飾などが施
されてもよい。本発明の基材はその厚さとして5〜50
0μmが好ましく、更に好ましくは10〜300μmの
範囲である。Further, known additives such as an ultraviolet absorber, a plasticizer, an antistatic agent and a lubricant may be added to the organic polymer. In addition, the base material made of these organic polymers is subjected to corona treatment, glow discharge treatment, and other surface roughening treatment prior to laminating the thin film layer, unless the object of the present invention is impaired. May be given,
Further, known anchor coat treatment, printing, decoration, etc. may be applied. The base material of the present invention has a thickness of 5 to 50.
It is preferably 0 μm, more preferably 10 to 300 μm.
【0016】本発明でいうガラス基板とは、ソーダライ
ムアルミノシリケートガラス、アルミノシリケートガラ
ス、ほう珪酸塩ガラス、リチウムアルミノシリケートガ
ラス、石英ガラスなどのガラスおよび綱玉などの単結
晶、マグネシア、サイアロンなどの透光性セラミックス
が挙げられるが、これらのものに限定せれるものではな
い。The glass substrate referred to in the present invention means glass such as soda lime aluminosilicate glass, aluminosilicate glass, borosilicate glass, lithium aluminosilicate glass, quartz glass and single crystals such as corundum, magnesia and sialon. Examples include translucent ceramics, but the present invention is not limited to these.
【0017】本発明でいう液晶パネルの液晶としては、
一般的なネマティック液晶を使用したTN型やSTN型
のもののみならず、強誘電性液晶、反強誘電性液晶、高
分子分散型液晶が挙げられ、これらに用いられる液晶と
してネマティック、コレステリック、スメティックな液
晶が挙げられ、またこれらの2種類以上の混合物であっ
てもよい。次に実施例をあげて、本発明を説明する。As the liquid crystal of the liquid crystal panel in the present invention,
Not only TN type and STN type liquid crystal using general nematic liquid crystal but also ferroelectric liquid crystal, antiferroelectric liquid crystal, polymer dispersed liquid crystal are mentioned, and liquid crystal used for these is nematic, cholesteric, smectic. A liquid crystal may be mentioned, and a mixture of two or more of these may be used. Next, the present invention will be described with reference to examples.
【0018】[0018]
【実施例1】ガラス基板として0.5mm厚のアルミノ
シリケートガラスを用い、まず3層薄膜による反射防止
膜を作成した。成膜方法として電子ビーム加熱による真
空蒸着法を用いた。第1層を形成する蒸着材料として、
3〜5mmの大きさの粒子状のCeF3 (純度99.9
%)、第3層を形成する蒸着材料として、3〜5mm程
度の大きさの粒子状のMgF2 を用いた。第2層の屈折
率傾斜層を形成させるために、3〜5mm程度の大きさ
の粒子状のZrO2 (純度99.9%)と、3〜5mm
程度の大きさの粒子状のTiO2 (純度99.9%)の
2種類の材料を用いた。まず通常の電子ビーム蒸着法で
CeF3 からなる第1層を形成した。この時の電子銃か
らの投入電力は35kWで固定した。光の設計主波長を
550nmとするため、第1層の膜厚は84nmとし
た。第2層を形成するために、ガラスの移動方向の手前
側の坩堝にZrO2 を入れ、移動方向の奥側の坩堝には
TiO2 を入れた。この時2つの坩堝の間隔は、坩堝−
基板間の距離の1/5とした。このとき一台の電子銃を
用い、ZrO2 とTiO2 のそれぞれを時分割で加熱
し、この比を変えることで膜厚方向の屈折率の変化形状
を変えた。投入電力は60kWで一定とし、酸素ガスの
流量は130cc/min.とした。第2層の膜厚は光
の設計主波長が550nmであるため、131nmとし
た。第3層を形成するために、電子銃からの投入電力を
20kWとしてMgF2 薄膜を形成した。第3層の膜厚
は光の設計主波長が550nmであるため、100nm
とした。以上、3層を形成する際のガラス送り速度は5
m/min.とし、基板温度の温度は80℃と一定にし
た。Example 1 Using an aluminosilicate glass having a thickness of 0.5 mm as a glass substrate, an antireflection film composed of a three-layer thin film was first prepared. A vacuum deposition method using electron beam heating was used as a film forming method. As a vapor deposition material for forming the first layer,
3-5 mm sized particulate CeF 3 (purity 99.9
%), As a vapor deposition material for forming the third layer, particulate MgF 2 having a size of about 3 to 5 mm was used. In order to form the second refractive index gradient layer, ZrO 2 in the form of particles having a size of about 3 to 5 mm (purity 99.9%) and 3 to 5 mm are used.
Two kinds of materials of TiO 2 (purity 99.9%) in the form of particles having a size of the order of magnitude were used. First, a first layer made of CeF 3 was formed by a usual electron beam evaporation method. The input power from the electron gun at this time was fixed at 35 kW. The thickness of the first layer was set to 84 nm in order to set the designed dominant wavelength of light to 550 nm. In order to form the second layer, ZrO 2 was put in the crucible on the front side in the moving direction of the glass, and TiO 2 was put in the crucible on the back side in the moving direction. At this time, the distance between the two crucibles is
It was set to 1/5 of the distance between the substrates. At this time, one electron gun was used to heat each of ZrO 2 and TiO 2 in a time-division manner, and by changing this ratio, the changing shape of the refractive index in the film thickness direction was changed. The input power was constant at 60 kW, and the flow rate of oxygen gas was 130 cc / min. And The thickness of the second layer was 131 nm because the designed dominant wavelength of light was 550 nm. In order to form the third layer, the input power from the electron gun was set to 20 kW to form a MgF 2 thin film. The thickness of the third layer is 100 nm because the designed dominant wavelength of light is 550 nm.
And As described above, the glass feed rate when forming three layers is 5
m / min. The substrate temperature was kept constant at 80 ° C.
【0019】以上のようにして得られた3層薄膜の膜厚
方向の組成分布をオージェ電子分光法で測定した。この
ときZr−MNN、Ti−LMM、O−KLL、Ce−
MNN、F−MNN、F−KLL、Mg−KLLのオー
ジェ遷移のシグナルを使って薄膜をスッパタリングしな
がら測定した。これらから算出された屈折率の膜厚方向
の分布を図1に示す。The composition distribution in the film thickness direction of the three-layer thin film thus obtained was measured by Auger electron spectroscopy. At this time, Zr-MNN, Ti-LMM, O-KLL, Ce-
The measurement was performed while sputtering the thin film using Auger transition signals of MNN, F-MNN, F-KLL, and Mg-KLL. The distribution of the refractive index calculated from these in the film thickness direction is shown in FIG.
【0020】さらに3層薄膜による反射防止膜のの可視
光領域の分光光度特性を測定した。測定波長は300n
mから800nmの範囲で行った。この測定の結果、図
2に示すように、可視光全波長域において0.2%以下
の極めて低い反射率を示す反射防止膜が得られた。Further, the spectrophotometric characteristics of the antireflection film formed of the three-layer thin film in the visible light region were measured. Measurement wavelength is 300n
It carried out in the range of m to 800 nm. As a result of this measurement, as shown in FIG. 2, an antireflection film having an extremely low reflectance of 0.2% or less in the entire visible light wavelength region was obtained.
【0021】以上のようにして作成したガラス基板の片
面にITOからなる透明電極をスパッタリング法で成膜
し、所望の電極パターンにパターニングした後、平滑剤
を用い、基板表面を平坦にした。この面にポリイミドか
らなる配向膜をグラビア印刷法でコーティングしたのち
に、ラビング処理を行った。このガラス基板の配向処理
した面を向かい合わせた状態で貼り合わせ、基板端部を
エポキシ樹脂でシールし、この基板間にSTN型液晶を
注入した。A transparent electrode made of ITO was formed on one surface of the glass substrate prepared as described above by a sputtering method, patterned into a desired electrode pattern, and then the surface of the substrate was flattened by using a smoothing agent. An alignment film made of polyimide was coated on this surface by a gravure printing method, and then a rubbing treatment was performed. The glass substrates were pasted together with the surfaces subjected to the orientation treatment facing each other, the ends of the substrates were sealed with an epoxy resin, and STN type liquid crystal was injected between the substrates.
【0022】ガラス基板の両側に位置する偏光板とし
て、偏光層がPVA−ヨウ素からなり、三酢酸セルロー
スの保護層でサンドしたものを用いた。この偏光板のう
ち、大気側最外層になる面に、ガラス基板に施したのと
同様の3層薄膜(第1層CeF 3 、第2層ZrO2 −T
iO2 の屈折率傾斜層、第3層MgF)からなる反射防
止膜を作成した。Polarizing plates located on both sides of the glass substrate
The polarizing layer is made of PVA-iodine,
It was used after being sanded with a protective layer. This polarizing plate
Then, on the surface that becomes the outermost layer on the atmosphere side,
Similar three-layer thin film (first layer CeF 3, Second layer ZrO2-T
iO2Antireflection coating consisting of a gradient refractive index layer and a third layer MgF)
A stop membrane was created.
【0023】以上のようして作成したSTN型液晶パネ
ルの反射光率を測定した結果、1.5%であり、屋外の
使用においても十分な視認性をしめした。As a result of measuring the reflectance of the STN type liquid crystal panel produced as described above, it was 1.5%, which showed sufficient visibility even in outdoor use.
【0024】[0024]
【比較例1】実施例1と同様のガラス基板、および偏光
板表面に3層薄膜からなる反射防止膜を作成した。第1
層にCeF3 、第2層にZrO2 、第3層にMgFから
なる均一屈折率である薄膜を、電子ビーム蒸着法で作成
した。第2層の蒸着材料を1種類にした以外は実施例1
と同様に成膜を行った。各層の膜厚は光の設計主波長を
550nmとするため、第1層84nm、第2層131
nm、第3層100nmとした。この反射防止膜の屈折
率の膜厚方向の分布は図3に示すように、各層で均一で
あった。また反射防止フィルムの可視光領域の分光光度
特性を実施例1と同様に測定した結果、可視光波長域に
おいて0.5%の反射率の領域が存在した。このガラス
基板と偏光板を用い、実施例1と同様にして液晶パネル
を組み立てたが、このパネルの光線反射率を測定した結
果、5.8%であり、また屋外の使用において外光の映
り込みが多く、視認性が良好なものではなかった。Comparative Example 1 The same glass substrate as in Example 1 and an antireflection film composed of a three-layer thin film were formed on the surface of a polarizing plate. First
A thin film of CeF 3 for the layer, ZrO 2 for the second layer, and MgF for the third layer having a uniform refractive index was prepared by the electron beam evaporation method. Example 1 except that the vapor deposition material for the second layer was one type
A film was formed in the same manner as in. The thickness of each layer is such that the designed dominant wavelength of light is 550 nm, so the first layer 84 nm and the second layer 131
nm and the third layer 100 nm. The distribution of the refractive index of this antireflection film in the film thickness direction was uniform in each layer as shown in FIG. Further, as a result of measuring the spectrophotometric characteristics of the antireflection film in the visible light region in the same manner as in Example 1, there was a region having a reflectance of 0.5% in the visible light wavelength region. A liquid crystal panel was assembled using the glass substrate and the polarizing plate in the same manner as in Example 1. The light reflectance of this panel was measured and found to be 5.8%. There was a lot of crowding and the visibility was not good.
【0025】[0025]
【実施例2】液晶封入基板として100μm厚のポリカ
−ボネ−トフィルムを用い、成膜方法として電子ビーム
加熱による真空蒸着法を用いた。第1層を形成する蒸着
材料として、3〜5mmの大きさの粒子状のAl2 O3
(純度99.95%)、第3層を形成する蒸着材料とし
て、3〜5mm程度の大きさの粒子状のNa3 AlF 6
(純度99.98%)を用いた。第2層の屈折率傾斜層
を形成させるために、3〜5mm程度の大きさの粒子状
のCeO2 (純度99.95%)と、3〜5mm程度の
大きさの粒子状のZnS(純度99.9%)の2種類の
材料を用いた。まず通常の電子ビーム蒸着法でAl2 O
3 からなる第1層を形成した。この時の電子銃からの投
入電力は60kWで固定した。第2層を形成するため
に、フィルム走行方向の手前側の坩堝にCeO2 を入
れ、フィルム走行方向の奥側の坩堝にはZnSを入れ
た。この時2つの坩堝の間隔は、坩堝−チルロール間の
距離の1/6とした。このとき一台の電子銃を用い、C
eO2 とZnSのそれぞれを時分割で加熱し、この比を
変えることで膜厚方向の屈折率の変化形状を変えた。投
入電力は80kWで一定とし、酸素ガスの流量は70c
c/ min.とした。第3層を形成するために、電子銃
からの投入電力を35kWとしてNa3 AlF6 薄膜を
形成した。以上、3層を形成する際のフィルム送り速度
は100m/min.とし、チルロールの温度は120
℃と一定にした。Example 2 A 100 μm thick polycarbonate is used as a liquid crystal filled substrate.
-Bone film is used, and electron beam is used as a film forming method.
A vacuum evaporation method by heating was used. Vapor deposition to form the first layer
As a material, granular Al having a size of 3 to 5 mm2O3
(Purity of 99.95%) as a vapor deposition material for forming the third layer
Particle size Na of about 3-5 mm3AlF 6
(Purity of 99.98%) was used. Second refractive index gradient layer
To form a particle having a size of about 3 to 5 mm.
CeO2 (purity 99.95%) and 3-5 mm
Two types of ZnS (purity 99.9%) in the form of particles
Material was used. First, Al2 O is formed by the usual electron beam evaporation method.
A first layer of 3 was formed. Throw from the electron gun at this time
The input power was fixed at 60 kW. To form the second layer
, Put CeO2 into the crucible on the front side of the film running direction.
Insert ZnS into the crucible on the back side in the film running direction.
Was. At this time, the distance between the two crucibles is set between the crucible and the chill roll.
It was set to 1/6 of the distance. At this time, using one electron gun, C
Each of eO2 and ZnS is heated in a time division manner, and the ratio is
By changing it, the changing shape of the refractive index in the film thickness direction was changed. Throw
The input power is constant at 80 kW and the flow rate of oxygen gas is 70 c
c / min. And Electron gun for forming the third layer
The input power from the unit is 35 kW and the Na3 AlF6 thin film is
Formed. Above, the film feed speed when forming three layers
Is 100 m / min. And the temperature of the chill roll is 120
It was kept constant at ℃.
【0026】以上のようにして得られた3層薄膜の膜厚
方向の組成分布を実施例1と同様にオージェ電子分光法
で測定した。このときAl−LMM、Na−KLL、F
−KLL、Ce−MNN、Zn−LMM、S−LMM、
O−KLLのオージェ遷移のシグナルを使って薄膜をス
ッパタリングしながら測定し、これらから算出された屈
折率の膜厚方向の分布を図4に示す。The composition distribution in the film thickness direction of the three-layered thin film obtained as described above was measured by Auger electron spectroscopy as in Example 1. At this time, Al-LMM, Na-KLL, F
-KLL, Ce-MNN, Zn-LMM, S-LMM,
The thin film was measured while being sputtered using the signal of the Auger transition of O-KLL, and the distribution of the refractive index calculated from these in the film thickness direction is shown in FIG.
【0027】さらに3層薄膜による反射防止フィルムの
可視光領域の分光光度特性を測定した。測定波長は30
0nmから800nmの範囲で行った。この測定の結
果、可視光全波長域において0.25%以下の極めて低
い反射率を示す反射防止フィルムが得られた。Further, the spectrophotometric characteristics in the visible light region of the antireflection film made of a three-layer thin film were measured. Measurement wavelength is 30
It carried out in the range of 0 nm to 800 nm. As a result of this measurement, an antireflection film having an extremely low reflectance of 0.25% or less in the entire visible light wavelength region was obtained.
【0028】この反射防止膜付きポリカーボネートフィ
ルムと偏光板を用いて、実施例1と同様のプロセスでS
TN型液晶パネルを組み立てた。このパネルの光線反射
率は1.6%であり、また屋外の使用においても外光の
映り込みの少ない視認性に優れたものであった。Using the polycarbonate film with the antireflection film and the polarizing plate, the same process as in Example 1 was carried out.
A TN type liquid crystal panel was assembled. The light reflectance of this panel was 1.6%, and it was excellent in visibility with little reflection of external light even when used outdoors.
【0029】[0029]
【比較例2】実施例2と同様のポリカ−ボネ−トフィル
ムと偏光板上に反射防止膜を作成し、この成膜方法とし
て電子ビーム加熱による真空蒸着法を用いた。第1層の
蒸着材料としてAl2 O3 、第2層はCeO2 とZn
S、第3層はNa3 AlF6 を用いた。この3層薄膜の
屈折率の膜厚方向変化の測定結果を図4に示す。また実
施例2と同様にして可視光領域の分光光度特性を測定し
た結果、0.55%の反射率の領域が存在した。このガ
ラス基板と偏光板を用い、実施例1と同様にしてSTN
型液晶パネルを組み立てたが、このパネルの光線反射率
を測定した結果、6.5%であり、また屋外の使用にお
いて外光の映り込みが多く、視認性が良好なものではな
かった。Comparative Example 2 An antireflection film was formed on the same polycarbonate film and polarizing plate as in Example 2, and the vacuum deposition method by electron beam heating was used as the film forming method. Al2 O3 is used as the vapor deposition material for the first layer, and CeO2 and Zn are used for the second layer.
S, the third layer was Na3 AlF6. The measurement result of the change in the refractive index of the three-layer thin film in the film thickness direction is shown in FIG. Further, as a result of measuring the spectrophotometric characteristic in the visible light region in the same manner as in Example 2, there was a region having a reflectance of 0.55%. Using this glass substrate and polarizing plate, the STN was prepared in the same manner as in Example 1.
A type liquid crystal panel was assembled, and the light reflectance of this panel was measured and found to be 6.5%. In addition, external light was often reflected in the outdoor use, and the visibility was not good.
【0030】[0030]
【発明の効果】本発明の特定の反射防止膜をもちいた液
晶パネルにより、外光の映り込みが少なく、屋外におい
ても視認性の良い表示が可能となった。。EFFECTS OF THE INVENTION The liquid crystal panel using the specific antireflection film of the present invention makes it possible to display with good visibility even in the outdoors with less reflection of external light. .
【図1】本発明における3層反射防止膜の屈折率の膜厚
深さ方向分布の1例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of the distribution of the refractive index of a three-layer antireflection film in the present invention in a film thickness direction.
【図2】本発明における3層反射防止膜の分光光度測定
の1例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of spectrophotometric measurement of a three-layer antireflection film according to the present invention.
【図3】比較例1における3層反射防止膜の屈折率の膜
厚深さ方向分布。FIG. 3 is a film thickness direction distribution of the refractive index of the three-layer antireflection film in Comparative Example 1.
【図4】本発明における3層反射防止膜の屈折率の膜厚
深さ方向分布の他の1例を示す説明図である。FIG. 4 is an explanatory diagram showing another example of the distribution of the refractive index of the three-layer antireflection film in the film thickness direction in the present invention.
【図5】本発明におけるSTN型液晶パネルの構造を摸
式的に示した説明図である。FIG. 5 is an explanatory view schematically showing a structure of an STN type liquid crystal panel according to the present invention.
(1−1−1)、(1−4−1)、(2−4−1)…反
射防止膜の第1層 (1−1−2)、(1−4−2)、(2−4−2)…反
射防止膜の第2層 (1−1−3)、(1−4−3)、(2−4−3)…反
射防止膜の第3層 (1−2)、(2−2)…偏光板 (1−3)、(2−3)…ガラス基板 (1−5)、(2−5)…表面平滑剤 (1−6)、(2−6)…透明電極 (1−7)、(2−7)…配向膜 (3)…液晶(1-1-1), (1-4-1), (2-4-1) ... First layer of antireflection film (1-1-2), (1-4-2), (2- 4-2) ... Second layer of antireflection film (1-1-3), (1-4-3), (2-4-3) ... Third layer of antireflection film (1-2), ( 2-2) ... Polarizing plate (1-3), (2-3) ... Glass substrate (1-5), (2-5) ... Surface smoothing agent (1-6), (2-6) ... Transparent electrode (1-7), (2-7) ... Alignment film (3) ... Liquid crystal
Claims (1)
ス基板、もしくは透明プラスチックシート基板、もしく
は透明プラスチックフィルム基板の表面、または/およ
び液晶パネルの大気側外層部に反射防止膜を形成したこ
とを特徴とする液晶パネルにおいて、該反射防止膜が、
無機誘電体からなる3層薄膜であり、該3層薄膜の第1
層(基材側の薄膜層)の屈折率が1.5以上、1.8以
下で、かつ光学膜厚がλ/4(λは光の設計主波長)で
あり、第3層(第2層の上に設けられた薄膜層)の屈折
率が1.25以上、1.5以下で、かつ光学膜厚がλ/4
(λは光の設計主波長)であり、第2層の屈折率が以下
のように膜厚さ方向に順次変化していることを特徴とす
る液晶パネル。 n2 =(n23 −n21 )×(L/d2 )X +n21 0≦L≦d2 1≦x≦4 1.6≦n21 ≦2.2 1.8≦n23 ≦2.4 1.05≦n23 /n21 ≦1.2 ここでn2 、d2 は第2層の屈折率、膜厚であり、n21
は第2層の第1層と接する面の屈折率、n23 は第2
層の第3層と接する面の屈折率、Lは第2層の第1層か
ら第3層への膜厚方向の位置である。1. An antireflection film is formed on the surface of a transparent glass substrate, a transparent plastic sheet substrate, or a transparent plastic film substrate filled with liquid crystal of a liquid crystal panel, and / or on the atmosphere side outer layer portion of the liquid crystal panel. In a liquid crystal panel characterized by:
A three-layer thin film made of an inorganic dielectric, the first of the three-layer thin film being
The refractive index of the layer (the thin film layer on the base material side) is 1.5 or more and 1.8 or less, the optical film thickness is λ / 4 (λ is the design dominant wavelength of light), and the third layer (second The refractive index of the thin film layer provided on the layer is 1.25 or more and 1.5 or less, and the optical film thickness is λ / 4.
(Λ is the designed main wavelength of light), and the refractive index of the second layer is sequentially changed in the film thickness direction as follows. n 2 = (n 23 -n 21 ) × (L / d 2) X + n 21 0 ≦ L ≦ d 2 1 ≦ x ≦ 4 1.6 ≦ n 21 ≦ 2.2 1.8 ≦ n 23 ≦ 2. 4 1.05 ≦ n 23 / n 21 ≦ 1.2 where n 2 and d 2 are the refractive index and film thickness of the second layer, and n 21
Is the refractive index of the surface of the second layer in contact with the first layer, and n 23 is the second
The refractive index L of the surface of the layer in contact with the third layer is the position in the film thickness direction from the first layer to the third layer of the second layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6271337A JPH08136906A (en) | 1994-11-04 | 1994-11-04 | Liquid crystal panel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6271337A JPH08136906A (en) | 1994-11-04 | 1994-11-04 | Liquid crystal panel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08136906A true JPH08136906A (en) | 1996-05-31 |
Family
ID=17498659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6271337A Pending JPH08136906A (en) | 1994-11-04 | 1994-11-04 | Liquid crystal panel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08136906A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030068262A (en) * | 2002-02-14 | 2003-08-21 | 삼성전자주식회사 | Method for fabricating an embossing and liquid crystal display fabricated thereof |
JP2007248674A (en) * | 2006-03-15 | 2007-09-27 | Ricoh Co Ltd | Optical element, optical deflector, and image forming apparatus |
JP2009265658A (en) * | 2008-04-03 | 2009-11-12 | Dainippon Printing Co Ltd | Optical film and method for manufacturing method thereof |
-
1994
- 1994-11-04 JP JP6271337A patent/JPH08136906A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030068262A (en) * | 2002-02-14 | 2003-08-21 | 삼성전자주식회사 | Method for fabricating an embossing and liquid crystal display fabricated thereof |
JP2007248674A (en) * | 2006-03-15 | 2007-09-27 | Ricoh Co Ltd | Optical element, optical deflector, and image forming apparatus |
JP2009265658A (en) * | 2008-04-03 | 2009-11-12 | Dainippon Printing Co Ltd | Optical film and method for manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0933654B1 (en) | Anti-reflection coatings | |
US6025958A (en) | Laminated wavelength plate, circular polarizing plate and liquid crystal display | |
US9897849B2 (en) | Protective film for polarizing plate | |
EP1892777A2 (en) | A light emitting device including anti-reflection layer(s) | |
JP2012032454A (en) | Infrared reflection film | |
EP1199512A1 (en) | Glass substrate and liquid-crystal display device | |
WO2002093240A1 (en) | Liquid crystal display device and optical laminate | |
JP2000028827A (en) | Optical filter and plasma display device | |
US6097460A (en) | Phase retarder film containing TiO2 | |
JP2004291500A (en) | High transmissivity conductive film, its manufacturing method, touch panel and display device with touch panel | |
JPH08136906A (en) | Liquid crystal panel | |
TW202339950A (en) | Anti-reflective film-attached transparent substrate and image display device | |
JP7088420B2 (en) | Liquid crystal display device | |
JP2003228047A (en) | Liquid crystal display device and optical laminated body | |
JP2002243902A (en) | Antireflection film | |
US20030214624A1 (en) | Liquid crystal display device and optical laminate | |
JPH08129101A (en) | Antireflection film | |
US4560240A (en) | Liquid crystal device with anti-reflection function in electrode | |
JPS5940624A (en) | Film for display panel | |
US6801280B2 (en) | Reflective liquid crystal displays having multilayer rear substrates | |
JP2004126548A (en) | Optical article | |
KR102699965B1 (en) | Heat shielding film and variable window including the same | |
KR102699964B1 (en) | Heat shielding film and variable window including the same | |
JP2020076883A (en) | Antireflection film | |
JP2004252384A (en) | Reflection sheet |