JPH08136710A - Manufacturing device for substrate provided with optical thin film - Google Patents
Manufacturing device for substrate provided with optical thin filmInfo
- Publication number
- JPH08136710A JPH08136710A JP6303140A JP30314094A JPH08136710A JP H08136710 A JPH08136710 A JP H08136710A JP 6303140 A JP6303140 A JP 6303140A JP 30314094 A JP30314094 A JP 30314094A JP H08136710 A JPH08136710 A JP H08136710A
- Authority
- JP
- Japan
- Prior art keywords
- film
- film formation
- forming
- substrate
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Optical Filters (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Physical Vapour Deposition (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、反射防止フィルター、
干渉フィルター、ハーフミラー、各種バンドパスフィル
ター、サングラスなどの多色コート、各種装飾品などの
色付けコートなどの光学薄膜を形成させる光学薄膜つき
基板の製造装置に関する。The present invention relates to an antireflection filter,
The present invention relates to a device for manufacturing a substrate with an optical thin film for forming an optical thin film such as an interference filter, a half mirror, various band pass filters, a multicolor coat such as sunglasses and a coloring coat for various ornaments.
【0002】[0002]
【従来の技術】真空蒸着、スパッタリングなどにより光
学薄膜つき基板を製造する装置として、形成された光学
薄膜の膜厚を測定し、この膜厚の測定結果に基づいて成
膜プロセスを制御する装置と、かかる制御を行なわない
装置とがともに広く使用されている。2. Description of the Related Art As an apparatus for manufacturing a substrate with an optical thin film by vacuum vapor deposition, sputtering, etc., an apparatus for measuring the film thickness of the formed optical thin film and controlling the film forming process based on the measurement result of the film thickness. A device that does not perform such control is widely used.
【0003】このうち、光学薄膜の膜厚測定を行なわな
い装置は、たとえば成膜中の雰囲気の条件を一定に保
ち、成膜速度を一定化し、成膜時間を制御することによ
り、所要の膜厚の光学薄膜を形成する。また、成膜対象
の成膜対象基板を移動させながら成膜する場合は、成膜
対象基板の移動速度を制御することにより所要の膜厚の
光学薄膜を形成することもある。Among these, an apparatus that does not measure the film thickness of an optical thin film, for example, keeps the conditions of the atmosphere during film formation constant, makes the film formation rate constant, and controls the film formation time to obtain the required film. Form a thick optical thin film. Further, when performing film formation while moving the film formation target substrate of the film formation target, an optical thin film having a desired film thickness may be formed by controlling the moving speed of the film formation target substrate.
【0004】このような光学薄膜つき基板の製造装置に
おいては、形成されている光学薄膜の膜厚を測定しない
ため、光学薄膜の製造が完了するまで実際に形成された
光学薄膜が所要の仕様を満たしているかどうか確認でき
なかった。通常、光学薄膜形成装置は真空装置であり、
頻繁に光学薄膜を形成した基板を取り出して膜厚を測定
することは好ましくない。したがって、複数の光学薄膜
を形成する場合でも、すべての光学薄膜を形成してから
でなければ膜厚の測定は行なわれない。In such an apparatus for manufacturing a substrate with an optical thin film, the thickness of the formed optical thin film is not measured. Therefore, the optical thin film actually formed does not meet the required specifications until the manufacture of the optical thin film is completed. I couldn't confirm whether or not it met. Usually, the optical thin film forming apparatus is a vacuum apparatus,
It is not preferable to frequently take out the substrate on which the optical thin film is formed and measure the film thickness. Therefore, even when a plurality of optical thin films are formed, the film thickness cannot be measured until all the optical thin films have been formed.
【0005】ところが、一般に光学薄膜形成装置の成膜
速度などの条件は変動しやすく、かかる変動により光学
薄膜の膜厚が変動し、仕様を満たさない光学薄膜を形成
してしまうことが少なくなかった。したがって、上記の
ような成膜工程での膜厚測定を伴わない薄膜の製造方法
では、歩留まりを一定以上に保つことは困難であった。However, in general, the conditions such as the film forming speed of the optical thin film forming apparatus are easily changed, and the film thickness of the optical thin film is changed by such a change, so that the optical thin film which does not satisfy the specifications is often formed. . Therefore, it has been difficult to maintain the yield above a certain level in the method of manufacturing a thin film that does not involve film thickness measurement in the film forming step as described above.
【0006】そこで、成膜工程で光学薄膜の膜厚を測定
しながら成膜プロセスを制御することが行なわれるよう
になった。以下、ガラス板などの平面基板に反射防止膜
などの光学薄膜を真空蒸着により形成する場合を例にと
り、光学薄膜の膜厚を測定しながらその測定値に基づい
て成膜プロセスを制御して光学薄膜つき基板を製造する
従来の方法について図を用いて説明する。Therefore, it has become possible to control the film forming process while measuring the film thickness of the optical thin film in the film forming step. The following is an example of forming an optical thin film such as an antireflection film on a flat substrate such as a glass plate by vacuum evaporation, and while measuring the film thickness of the optical thin film, the film formation process is controlled based on the measured value. A conventional method for manufacturing a substrate with a thin film will be described with reference to the drawings.
【0007】図9はこのような光学薄膜つき基板の製造
の様子を基板面に平行で、かつ、基板の進行方向に垂直
な方向からみた模式図である。真空室16の内部に光学
薄膜材料3が成膜粒子束発生部位2を図の上方に向けて
置かれている。電子銃6から電子線が発せられ、図示し
ない磁界の効果により成膜粒子束発生部位2に達してこ
れを加熱し、これにより成膜粒子束5が発生するように
なっている。こうして発生された成膜粒子束5の成膜粒
子束軸9(成膜粒子の最も強く発生する向き)またはそ
の近傍に成膜モニタ板8が固定して設けられ、この成膜
モニタ板8に形成された光学薄膜の膜厚を光学的に測定
する光干渉式膜厚測定装置7がさらに上方に設けられて
いる。成膜粒子束発生部位2と成膜モニタ板8との間に
おける成膜粒子束軸9付近を、成膜対象基板群1(1
a、1b、1c、1d、・・・)が成膜粒子束軸9に垂
直な方向(図の右方向)に移動しながら成膜粒子束5に
さらされて、光学薄膜が成膜対象基板群1の各基板の下
面に形成されるようになっている。また、成膜粒子束5
に成膜対象基板群1がさらされる範囲の成膜対象基板群
1の進行方向における大きさを制限するために、補正板
4a、4bが成膜粒子束発生部位2と成膜対象基板群1
との中間に設けられている。また、成膜粒子束5を必要
に応じて遮るシャッター11も同様に設けられている。FIG. 9 is a schematic view of the state of manufacturing such a substrate with an optical thin film, as viewed from a direction parallel to the substrate surface and perpendicular to the traveling direction of the substrate. The optical thin film material 3 is placed inside the vacuum chamber 16 with the film-forming particle flux generation site 2 facing upward in the drawing. An electron beam is emitted from the electron gun 6, reaches the film formation particle bundle generation site 2 by the effect of a magnetic field (not shown), and heats it, whereby the film formation particle bundle 5 is generated. A film formation monitor plate 8 is fixedly provided at or near the film formation particle bundle axis 9 (the direction in which the film formation particles are most strongly generated) of the film formation particle bundle 5 thus generated. An optical interference type film thickness measuring device 7 for optically measuring the film thickness of the formed optical thin film is provided further above. The vicinity of the film-forming particle bundle axis 9 between the film-forming particle bundle generation site 2 and the film-forming monitor plate 8 is set to the film-forming target substrate group 1 (1
a), 1b, 1c, 1d, ...) are exposed to the film-forming particle bundle 5 while moving in the direction perpendicular to the film-forming particle bundle axis 9 (right direction in the figure), and the optical thin film is formed on the film formation target substrate. It is adapted to be formed on the lower surface of each substrate of group 1. In addition, the film-forming particle bundle 5
In order to limit the size in the traveling direction of the film formation target substrate group 1 in the range to which the film formation target substrate group 1 is exposed, the correction plates 4 a and 4 b are provided with the film formation particle flux generation site 2 and the film formation target substrate group 1.
It is provided in the middle of. A shutter 11 for blocking the film-forming particle bundle 5 as needed is also provided.
【0008】図10は、この様子を成膜モニタ板8の位
置から成膜粒子束軸9の反対の向きに向かって見た図で
ある。成膜対象基板10a、10b、10c、10d、
10a′、10b′、10c′、10d′は、たとえば
図に示すように2列に配列され、各成膜対象基板群1に
おいては、成膜粒子束軸9の軸線上もしくはその近傍で
基板等が成膜粒子束5を遮らないよう隙間が形成されて
いる。この隙間から成膜粒子が成膜モニタ板8に到達す
るように成膜モニタ板8が固定されている。FIG. 10 is a view showing this state from the position of the film formation monitor plate 8 in the direction opposite to the film formation particle bundle axis 9. Substrates 10a, 10b, 10c, 10d for film formation,
10a ′, 10b ′, 10c ′, and 10d ′ are arranged in two rows as shown in the figure, and in each substrate group 1 for film formation, the substrate or the like is provided on or near the axis of the film formation particle flux axis 9. A gap is formed so as not to block the film formation particle bundle 5. The film formation monitor plate 8 is fixed so that the film formation particles reach the film formation monitor plate 8 through this gap.
【0009】成膜対象基板群1の各基板10a、10
b、10c、10d、10a′、10b′、10c′、
10d′に光学薄膜を形成するときは、電子銃6から発
した電子線により光学薄膜材料3の成膜粒子束発生部位
2を継続的に加熱し、ここから成膜粒子を発生させる。
このとき、はじめはシャッター11が閉じられており、
成膜粒子は成膜対象基板に到達することができない。成
膜粒子束発生部位2の温度が定常状態に達すると成膜粒
子の発生強度も定常状態に達する。これを確認してシャ
ッター11を開くと同時に成膜対象基板群1を図9の左
方より一定速度で右方に移動させる。成膜粒子束発生部
位2から発生した成膜粒子は、成膜粒子束軸9の方向を
中心とする方向に放射状に飛翔し、成膜対象基板群1の
各基板に至る。このとき、十分な量の成膜粒子が飛翔す
る範囲を、成膜粒子束5とする。また、成膜粒子束軸9
の軸線上またはその近傍の隙間を通って、一部の成膜粒
子は成膜モニタ板8に到達する。The substrates 10a, 10 of the substrate group 1 for film formation
b, 10c, 10d, 10a ', 10b', 10c ',
When forming the optical thin film on 10d ', the film-forming particle bundle generation site 2 of the optical thin-film material 3 is continuously heated by the electron beam emitted from the electron gun 6 to generate the film-forming particles.
At this time, the shutter 11 is initially closed,
The film-forming particles cannot reach the film-forming target substrate. When the temperature of the film-forming particle bundle generation site 2 reaches a steady state, the strength of the film-forming particles generated also reaches a steady state. When this is confirmed, the shutter 11 is opened and at the same time, the film formation target substrate group 1 is moved to the right at a constant speed from the left in FIG. The film-forming particles generated from the film-forming particle bundle generating portion 2 fly radially in a direction centered on the direction of the film-forming particle bundle axis 9 and reach each substrate of the film-forming target substrate group 1. At this time, the range in which a sufficient amount of film-forming particles fly is defined as the film-forming particle bundle 5. Also, the film-forming particle bundle axis 9
Part of the film-forming particles reach the film-forming monitor plate 8 through the gap on or near the axis of the film-forming film.
【0010】成膜対象基板群1の各基板における光学薄
膜の膜厚は、成膜モニタ板8に形成されたモニタ薄膜の
膜厚を光干渉式膜厚測定装置7で測定することにより、
間接的に測定される。成膜モニタ板8上には成膜対象基
板群1の各基板と近似した条件でモニタ薄膜が形成され
る。そのため、モニタ薄膜の膜厚は成膜対象基板群1の
各基板に形成された光学薄膜の膜厚と一定の相関関係を
持つ膜厚となる。The film thickness of the optical thin film on each substrate of the film formation target substrate group 1 is obtained by measuring the film thickness of the monitor thin film formed on the film formation monitor plate 8 by the optical interference type film thickness measuring device 7.
It is measured indirectly. A monitor thin film is formed on the film formation monitor plate 8 under conditions similar to those of the substrates of the film formation target substrate group 1. Therefore, the film thickness of the monitor thin film has a certain correlation with the film thickness of the optical thin film formed on each substrate of the film formation target substrate group 1.
【0011】理想的には、10群の各成膜対象基板10
a、10b、10c、10d、10a′、10b′、1
0c′、10d′の成膜対象基板群1に光学薄膜を形成
したときには、成膜モニタ板8上のモニタ薄膜の膜厚は
成膜対象基板群1に形成された光学薄膜の約10倍の膜
厚となる。実際にはこのような対応関係は実験により厳
密に求められる。また、この結果により、成膜モニタ板
8のモニタ薄膜の膜厚の単位時間当たりの変化と、成膜
対象基板群1に形成された光学薄膜の膜厚の単位時間当
たりの変化の対応関係が求められる。Ideally, each of the groups 10 of film formation target substrates 10 is to be formed.
a, 10b, 10c, 10d, 10a ', 10b', 1
When an optical thin film is formed on the film formation target substrate group 1 of 0c ′ and 10d ′, the film thickness of the monitor thin film on the film formation monitor plate 8 is about 10 times that of the optical thin film formed on the film formation target substrate group 1. The film thickness. In reality, such a correspondence is strictly obtained by experiments. Further, from this result, there is a correspondence relationship between the change in the film thickness of the monitor thin film of the film formation monitor plate 8 per unit time and the change in the film thickness of the optical thin film formed on the film formation target substrate group 1 per unit time. Desired.
【0012】この光学薄膜の膜厚測定の結果に基づき、
成膜中の成膜速度や形成される光学薄膜の屈折率などの
特性を調節したり、所要の膜厚が得られた時にシャッタ
ー11を閉じて成膜を終了するといった成膜プロセスの
制御を行なう。Based on the result of the film thickness measurement of this optical thin film,
Control of the film formation process such as adjusting characteristics such as the film formation speed during film formation and the refractive index of the optical thin film to be formed, and closing the shutter 11 to end the film formation when a required film thickness is obtained. To do.
【0013】光学薄膜の膜厚測定を上記のように成膜粒
子束軸の軸線上またはその近傍に固定された成膜モニタ
板を用いて行ないながら成膜のプロセスを制御する装置
については、たとえば特開平1−306560号公報な
どに開示されている。An apparatus for controlling the film formation process while performing the film thickness measurement of the optical thin film by using the film formation monitor plate fixed on or near the axis of the film formation particle flux axis as described above is, for example, It is disclosed in Japanese Laid-Open Patent Publication No. 1-306560.
【0014】[0014]
【発明が解決しようとする課題】ところが、本発明者ら
はこのような従来の光学薄膜つき基板の製造装置には、
以下のような問題点があることを見出した。すなわち、
光学薄膜の膜厚測定を成膜粒子束軸の軸線上またはその
近傍に成膜モニタ板を固定し、成膜モニタ板にモニタ薄
膜を形成するため、成膜粒子束の中央部に隙間を設け、
この隙間を成膜対象基板が遮ることがないように成膜対
象基板を配置および移動させなければならなかった。こ
れは、成膜対象基板が光学レンズのように小型の基板で
あるときには、いずれにしても多数の成膜対象基板を数
列に配列するため問題とはなりにくかった。However, the present inventors have found that the conventional apparatus for manufacturing a substrate with an optical thin film is
We have found the following problems. That is,
For film thickness measurement of the optical thin film, a film formation monitor plate is fixed on or near the axis of the film formation particle bundle axis, and a thin film is formed on the film formation monitor plate.Therefore, a gap is provided in the center of the film formation particle bundle. ,
The film formation target substrate had to be arranged and moved so that the film formation target substrate did not block this gap. This is not a problem when the substrate to be film-formed is a small substrate such as an optical lens, since a large number of substrates to be film-formed are arranged in several rows in any case.
【0015】ところが、本発明者らは、対角線長さが1
4インチ(35cm)以上の表示装置の表面反射防止フ
ィルターなどの大型の成膜対象基板に光学薄膜を形成す
る場合には、光学薄膜の膜厚測定を成膜粒子束軸の軸線
上またはその近傍に成膜モニタ板を置くことが生産設備
の好ましくない大型化あるいは生産性の著しい低下を招
くという問題が発生することを見出した。すなわち、成
膜対象基板が成膜粒子束の中央部の隙間を遮らないため
には、図10に示したように成膜対象基板群1は少なく
とも2列の列をなし、成膜対象基板列同士の中間に隙間
が常に形成されるように配置しなければならない。した
がって、成膜対象基板群1が成膜粒子束5にさらされる
範囲(図10で二点鎖線で示した成膜領域20)は、成
膜対象基板の幅の少なくとも2倍以上の幅を有する必要
があった。However, the present inventors have found that the diagonal length is 1
When an optical thin film is formed on a large film formation target substrate such as a surface antireflection filter of a display device of 4 inches (35 cm) or more, the film thickness of the optical thin film is measured on or near the axis of the film formation particle flux axis. It has been found that placing the film formation monitor plate on the substrate causes an undesired increase in the size of the production facility or a significant decrease in productivity. That is, in order to prevent the film formation target substrate from blocking the central gap of the film formation particle bundle, the film formation target substrate group 1 has at least two rows as shown in FIG. They must be arranged so that a gap is always formed between them. Therefore, the range in which the film formation target substrate group 1 is exposed to the film formation particle bundle 5 (the film formation region 20 shown by the chain double-dashed line in FIG. 10) has a width that is at least twice the width of the film formation target substrate. There was a need.
【0016】さらに、製造する成膜対象基板の品種の変
更に伴う成膜対象基板の寸法の変更を行なうとき、成膜
モニタが成膜粒子束軸近傍に固定されていると、成膜対
象基板やその支持部材などが成膜モニタと成膜粒子束発
生部位との間を遮るため、成膜モニタによる成膜プロセ
スの制御が行なえない場合があった。言い換えると、固
定された成膜モニタによって成膜プロセスを制御するた
めには、成膜対象基板の寸法や形状に厳しい制約を課さ
なければならなかった。Further, when the size of the film formation target substrate is changed according to the change of the type of the film formation target substrate to be manufactured, if the film formation monitor is fixed in the vicinity of the film formation particle flux axis, the film formation target substrate In some cases, the film forming process cannot be controlled by the film forming monitor because the film forming monitor and the supporting member and the like block the space between the film forming monitor and the part where the film forming particle flux is generated. In other words, in order to control the film formation process by the fixed film formation monitor, it was necessary to impose severe restrictions on the size and shape of the film formation target substrate.
【0017】また、本発明者らの知見によれば、基板列
と基板列との中間の隙間をかなり大きくしなければ、成
膜モニタ板上に形成されるモニタ薄膜が成膜対象基板上
に形成される光学薄膜よりもはるかに薄くなる場合があ
る。本発明者らは、この原因が、主に真空室内に残った
気体分子と衝突した成膜粒子が成膜対象基板やこれを保
持する基板ホルダなどに遮られるためであることを突き
止めた。図11にこの様子を示す。もし、真空室内に気
体分子が存在しなければ、成膜粒子は成膜粒子束の発生
源から何物にも遮られずに基板列と基板列の間の隙間を
通って成膜モニタ板に至る。したがって、この場合は成
膜モニタ板に形成されるモニタ薄膜の膜厚は成膜対象基
板上に形成される光学薄膜とほとんど同一になる。とこ
ろが、実際には真空ポンプの性能の制約や成膜プロセス
上の必要性のため、いくらかの気体分子14が真空室内
に残っている。そのため、成膜粒子13はこれらの気体
分子14と衝突しながら成膜対象基板や成膜モニタ板に
達する。成膜対象基板と成膜粒子束の発生源との間には
遮るものがないため、このようにして気体分子14と衝
突した成膜粒子13は、飛翔コースを曲げられながらも
成膜対象基板に至ることができる。ところが、成膜モニ
タ板の場合には成膜対象基板が成膜粒子束の発生源との
間に介在するため、基板列間の隙間が十分大きくなけれ
ば、気体分子14と衝突した成膜粒子13が成膜対象基
板1b、1cなどに遮られる。また、通常成膜モニタ板
を成膜粒子束軸近傍に設ける場合には、成膜対象基板よ
りも成膜粒子束発生源からの距離が長い。そのため、飛
翔方向としては成膜モニタ板に向かっていても、気体粒
子14と衝突して成膜モニタ板に達しない成膜粒子13
の割合が高くなる。このため、成膜モニタ板に形成され
るモニタ薄膜は、たとえば、成膜対象基板上の光学薄膜
の半分以下となる。したがって、成膜領域の幅は成膜対
象基板の幅の2倍よりも、かなり大きくとる必要があっ
た。このように、成膜対象基板が大型化するほどこの問
題は深刻化する。Further, according to the knowledge of the present inventors, the monitor thin film formed on the film formation monitor plate is formed on the film formation target substrate unless the gap between the substrate lines is made considerably large. It may be much thinner than the optical film formed. The present inventors have found out that this is mainly because the film-forming particles that have collided with the gas molecules remaining in the vacuum chamber are blocked by the film-forming target substrate or the substrate holder that holds the same. This state is shown in FIG. If there are no gas molecules in the vacuum chamber, the film-forming particles will not be blocked by the source of the film-forming particle bundle and will pass through the gap between the substrate rows to the film-forming monitor plate. Reach Therefore, in this case, the film thickness of the monitor thin film formed on the film formation monitor plate is almost the same as the optical thin film formed on the film formation target substrate. However, in reality, some gas molecules 14 remain in the vacuum chamber due to the performance limitation of the vacuum pump and the necessity of the film forming process. Therefore, the film formation particles 13 reach the film formation target substrate or the film formation monitor plate while colliding with the gas molecules 14. Since there is no obstruction between the film-forming target substrate and the source of the film-forming particle bundle, the film-forming particles 13 that have collided with the gas molecules 14 in this way can be deflected in the flight course, but the film-forming target substrate. Can be reached. However, in the case of the film formation monitor plate, the film formation target substrate is interposed between the film formation particle flux generation source and the film formation particles that collide with the gas molecules 14 unless the gap between the substrate rows is sufficiently large. The film 13 is blocked by the film formation target substrates 1b and 1c. Further, when the film formation monitor plate is usually provided in the vicinity of the film formation particle flux axis, the distance from the film formation particle flux generation source is longer than that of the film formation target substrate. Therefore, even if the flight direction is toward the film formation monitor plate, the film formation particle 13 does not reach the film formation monitor plate by colliding with the gas particles 14.
Will be higher. Therefore, the monitor thin film formed on the film formation monitor plate is, for example, half or less of the optical thin film on the film formation target substrate. Therefore, the width of the film formation region needs to be considerably larger than twice the width of the film formation target substrate. As described above, this problem becomes more serious as the substrate for film formation becomes larger.
【0018】したがって、生産設備としては成膜領域を
広くとることができるのに、成膜モニタ板の位置の制約
から、これをすべて有効に使用することができず、結果
的に生産性を著しくそこなう場合が多かった。たとえ
ば、成膜領域の幅が1mの生産設備を用いて対角線長さ
14インチ(35cm)の表示装置用の表面反射防止フ
ィルター(短辺26cm)に光学薄膜を形成する場合
に、かかる成膜対象基板を3列に並べることは物理的に
は可能である。にもかかわらず、成膜粒子束軸近傍(す
なわち成膜領域中央部)に成膜モニタを置きこれを遮ら
ないように成膜対象基板を配置する必要があるため、成
膜対象基板は2列に配列しなければならなかった。すな
わち、潜在的な生産性の2/3の生産性でしか上記のよ
うな成膜対象基板を製造することができなかったのであ
る。Therefore, although the film forming region can be widened as a production facility, it cannot be used effectively due to the restriction of the position of the film forming monitor plate, resulting in a remarkable increase in productivity. There were many cases of failure. For example, when an optical thin film is formed on a surface antireflection filter (short side 26 cm) for a display device having a diagonal length of 14 inches (35 cm) using a production facility with a film forming region width of 1 m, the film forming target It is physically possible to arrange the substrates in three rows. Nevertheless, since it is necessary to place the film formation monitor near the axis of the film formation particle flux (that is, in the center of the film formation region) and arrange the film formation target substrate so as not to block this, the film formation target substrates are arranged in two rows. Had to arrange in. That is, the film-forming target substrate as described above could be manufactured only with a productivity of 2/3 of the potential productivity.
【0019】また、上記の例では、成膜モニタを成膜対
象基板の列の間(たとえば、第1列と第2列の間)、す
なわち、成膜領域の幅の1/6だけ成膜粒子束軸より外
側の位置に成膜モニタを配置すれば、成膜対象基板を3
列に配列して成膜できる可能性がある。Further, in the above example, the film formation monitor is formed between the rows of the film formation target substrates (for example, between the first row and the second row), that is, only 1/6 of the width of the film formation region is formed. If the film formation monitor is placed outside the particle flux axis, the film formation target substrate
There is a possibility that the films may be arranged in rows.
【0020】しかしながら、たとえば対角線長さ21イ
ンチ(53cm)の表示装置用の表面反射防止フィルタ
ー(短辺38cm)に成膜対象基板の品種を変更する
と、物理的にはかかる成膜対象基板を2列に配列するこ
とは可能であるが、そうすると、この成膜対象基板が成
膜モニタ板を遮ることになるために、結局、成膜対象基
板を1列に配列しなければならなかった。この場合に
は、生産性は半減せざるを得なかった。However, if the type of film formation target substrate is changed to a surface antireflection filter (short side 38 cm) for a display device having a diagonal length of 21 inches (53 cm), for example, the film formation target substrate is physically changed to 2 Although it is possible to arrange the films in rows, the film formation target substrates block the film formation monitor plate, so that the film formation target substrates had to be arranged in one line in the end. In this case, the productivity had to be halved.
【0021】そこで本発明の目的は、光学薄膜が成膜さ
れる基板の大型化に伴う生産設備の好ましくない大型化
や生産性の低下を起こすことがなく、多品種(多サイ
ズ)生産を同一の生産設備で可能とする光学薄膜つき基
板の製造装置を提供することにある。[0021] Therefore, an object of the present invention is to achieve the same multi-product (multi-size) production without causing an undesired increase in the size of production equipment and a decrease in productivity accompanying the increase in size of the substrate on which the optical thin film is formed. To provide an apparatus for manufacturing a substrate with an optical thin film, which is possible with the production facility of.
【0022】[0022]
【課題を解決するための手段】上記目的を達成するため
に、本発明の光学薄膜つき基板の製造装置は、成膜粒子
束発生源と、該成膜粒子束発生源により発生させられた
成膜粒子束にさらされる領域を通過するように成膜対象
基板を移動させる成膜対象基板移動手段と、該成膜対象
基板が前記成膜粒子束にさらされる範囲の外側を含む範
囲を移動可能な成膜モニタ板と、光干渉式膜厚測定装置
と、該光干渉式膜厚測定装置および前記成膜モニタ板の
間を光学的に結合させる光ファイバー束と、前記光干渉
式膜厚測定装置により測定された、前記成膜モニタ板に
形成されたモニタ薄膜の膜厚に基づいて成膜プロセスを
制御する成膜プロセス制御手段と、を備えてなることを
特徴とするものからなる。In order to achieve the above object, the apparatus for producing a substrate with an optical thin film of the present invention comprises a film-forming particle flux generating source and a film-forming particle flux generating source. A film formation target substrate moving unit that moves the film formation target substrate so as to pass through a region exposed to the film particle bundle, and a range including the outside of the range in which the film formation target substrate is exposed to the film formation particle bundle can be moved. Film deposition monitor plate, an optical interference type film thickness measuring device, an optical fiber bundle for optically coupling the optical interference type film thickness measuring device and the film forming monitor plate, and the optical interference type film thickness measuring device. And a film forming process control means for controlling the film forming process based on the film thickness of the monitor thin film formed on the film forming monitor plate.
【0023】以下、本発明の光学薄膜つき基板の製造装
置を、図面を参照しながら説明する。本発明において、
成膜対象基板としては、ガラス平板やプラスチック平
板、あるいはプラスチックシートやプラスチックシート
をテープ状に加工したものなどが好ましく用いられる。
また、成膜対象基板は透明または半透明のものが好まし
く用いられる。また、成膜対象基板としてプラスチック
シートをテープ状に加工したものを用いる場合は、たと
えば、ロール状に巻き取ったテープ状基板を別のロール
に巻き返す途中で成膜粒子束にさらすことにより光学薄
膜を形成する。An apparatus for manufacturing a substrate with an optical thin film according to the present invention will be described below with reference to the drawings. In the present invention,
As the film formation target substrate, a glass flat plate, a plastic flat plate, or a plastic sheet or a plastic sheet processed into a tape shape is preferably used.
In addition, a transparent or semitransparent substrate is preferably used as the film formation target substrate. When a plastic sheet processed into a tape is used as the film formation target substrate, for example, an optical thin film is formed by exposing the tape-shaped substrate wound in a roll shape to a film formation particle bundle while being rewound on another roll. To form.
【0024】また、成膜対象基板が大型である場合ほ
ど、また多品種(多サイズ)生産をする場合ほど本発明
の効果は大きい。さらに本発明に係る装置は、成膜対象
基板の短辺(成膜対象基板としてテープ状基板を用いる
場合は、テープ状基板の幅)が20cm以上の場合に好
適であり、26cm以上の場合にさらに好適である。Further, the effect of the present invention is greater when the substrate to be film-formed is larger and when a large number of products (many sizes) are produced. Further, the apparatus according to the present invention is suitable when the short side of the film formation target substrate (when the tape-shaped substrate is used as the film formation target substrate, the width of the tape-shaped substrate) is 20 cm or more, and when it is 26 cm or more. It is more preferable.
【0025】また、図10に示したように、成膜対象基
板を移動方向に列をなすように配置し、この成膜対象基
板の列を複数並べて同時に成膜粒子束にさらしながら光
学薄膜を形成してもよい。また、成膜対象基板の列は成
膜対象基板が直線状に並んでいるものばかりでなく、円
のような曲線に沿って成膜対象基板が並んだものでもよ
い。たとえば、成膜対象基板を円に沿って並べ、成膜中
にこれらの基板を前記円に沿って回転させ、同一の基板
が成膜領域をくり返し通過または内部を移動するように
してもよい。Further, as shown in FIG. 10, the substrate to be film-formed is arranged in a row in the moving direction, and a plurality of rows of the substrate to be film-formed are arranged side by side to simultaneously expose the optical thin film to the film-forming particle bundle. You may form. Further, the row of the film formation target substrates is not limited to one in which the film formation target substrates are linearly arranged, but may be one in which the film formation target substrates are arranged along a curve such as a circle. For example, the target substrates for film formation may be arranged along a circle, and during film formation, these substrates may be rotated along the circle so that the same substrate repeatedly passes through the film formation region or moves inside.
【0026】なお、成膜対象基板の移動は、基板ホルダ
あるいは基板ドームに成膜対象基板を載置し、これを成
膜粒子束にさらされる範囲の内部を移動または通過する
ように搬送することが好ましく行われる。また、成膜対
象基板としてプラスチックシートをテープ状に加工した
ものを用いる場合には、ロール状に巻き取ったテープ状
基板を別のロールに巻き返すのが好ましい。The film formation target substrate is moved by placing the film formation target substrate on the substrate holder or the substrate dome and moving it so as to move or pass through the area exposed to the film formation particle bundle. Is preferably carried out. When a plastic sheet processed into a tape is used as the film formation target substrate, it is preferable to rewind the tape-shaped substrate wound into a roll onto another roll.
【0027】また、成膜対象基板が成膜粒子束にさらさ
れる範囲の外側とは、成膜粒子束の内側(モニタ薄膜を
形成するのに十分な量の成膜粒子が飛翔する範囲)であ
って、成膜対象基板が移動中に通過して成膜粒子束にさ
らされる部位を含む範囲(成膜領域)を成膜粒子束発生
源側からみたときに、成膜領域の外側の見える位置を指
す。ただし、成膜対象基板が複数の列をなすように配置
する場合には、成膜対象基板列同士の間の隙間は上記成
膜領域に含まれるものとする(たとえば図10の成膜領
域20)。The outside of the range in which the film formation target substrate is exposed to the film formation particle bundle means the inside of the film formation particle bundle (the range in which a sufficient amount of film formation particles fly to form a monitor thin film). Therefore, when the range (film formation region) including the part that the film formation target substrate passes while moving and is exposed to the film formation particle bundle is seen from the film formation particle bundle generation source side, the outside of the film formation region can be seen. Refers to the position. However, when the film formation target substrates are arranged in a plurality of rows, the gap between the film formation target substrate rows is included in the film formation area (for example, the film formation area 20 in FIG. 10). ).
【0028】また、本発明において用いる成膜モニタ板
は、成膜粒子束の内側であり、かつ成膜対象基板の大き
さや形状に応じてこれら成膜対象基板に遮られない位置
に置けるように、成膜対象の成膜対象基板が成膜粒子束
にさらされる範囲の外側を含む範囲まで移動可能なもの
である必要がある。ここで成膜モニタ板の位置とは、成
膜モニタ板のうちモニタ薄膜を形成する部位の位置を指
す。この条件をみたせば、成膜粒子束の発生源と成膜モ
ニタの間に介在するものをなくすることができるため、
成膜対象基板に形成される光学薄膜と同等のモニタ薄膜
を形成することができ、精度よく成膜プロセスを制御す
ることができる。また、成膜モニタの移動可能範囲は、
成膜対象基板が成膜粒子束にさらされる範囲の外縁から
成膜粒子束の外縁までを含むのが好ましい。成膜対象基
板が成膜粒子束にさらされる範囲の内側のみに成膜モニ
タ板が移動するようにすると、前述したように成膜対象
基板等が成膜モニタ板よりも成膜粒子束の発生源に近い
位置を移動するために、成膜対象基板等により一部の成
膜粒子が遮られる場合がある(特に成膜対象基板の列の
間隔が狭いとき)。また、これを避けるためには、成膜
対象基板列の間に大きな隙間を設けないとモニタ薄膜の
膜厚が薄くなる。結局、成膜対象基板への成膜領域のす
ぐ外側が最も好適な成膜モニタ板の位置である場合が少
なくない。The film formation monitor plate used in the present invention is placed inside the film formation particle bundle and can be placed at a position where it is not blocked by the film formation target substrate depending on the size and shape of the film formation target substrate. It is necessary that the film formation target substrate of the film formation target can be moved to a range including the outside of the range exposed to the film formation particle bundle. Here, the position of the film formation monitor plate refers to the position of the portion of the film formation monitor plate where the monitor thin film is formed. If this condition is satisfied, it is possible to eliminate the interposition between the generation source of the film formation particle flux and the film formation monitor.
A monitor thin film equivalent to the optical thin film formed on the film formation target substrate can be formed, and the film formation process can be accurately controlled. Also, the movable range of the film formation monitor is
It is preferable to include from the outer edge of the range in which the film formation target substrate is exposed to the film formation particle bundle to the outer edge of the film formation particle bundle. When the film formation monitor plate is moved only within the range where the film formation target substrate is exposed to the film formation particle bundle, as described above, the film formation target substrate generates the film formation particle bundle more than the film formation monitor plate. Some film-forming particles may be blocked by the film-forming target substrate or the like to move to a position close to the source (especially when the distance between the rows of the film-forming target substrate is small). Further, in order to avoid this, unless a large gap is provided between the film formation target substrate rows, the thickness of the monitor thin film becomes thin. After all, the most suitable position of the film formation monitor plate is often just outside the film formation region on the film formation target substrate.
【0029】図1は、本発明の光学薄膜つき基板の製造
装置の一実施態様の模式図である。この態様では、成膜
モニタ板移動機構230を設け、成膜モニタ板208を
紙面に垂直な方向に移動可能としている。ここで、光干
渉式膜厚測定装置7は成膜領域の中央付近の図の上方に
固定している。この固定された光干渉式膜厚測定装置7
と移動可能な成膜モニタ板208との間は、柔軟な光フ
ァイバーを数10本以上束ねた光ファイバー束240を
用いて光学的に結合されている。ここで光学的に結合さ
れているとは、光干渉式膜厚測定装置7の光源よりの光
が干渉可能な状態を保ったまま成膜モニタ板208に照
射され、ここで反射または透過された光(干渉光)が光
干渉式膜厚測定装置7の受光部により受光できるように
接続されていることを指す。上記の各点以外は、図10
に示した構成と同様である。つまり、真空室16の内部
に光学薄膜材料3が成膜粒子束発生部位2を図の上方に
向けて置かれ、電子銃6から発せられた電子線によって
加熱されて、成膜粒子束5を発生する。成膜粒子束軸9
を有する成膜粒子束5は、必要に応じてシャッタ11で
遮られ、成膜対象基板群201a、201b、201
c、201d、・・・の進行方向(矢印方向)における
大きさは、補正板4a、4bで制限される。これら成膜
対象基板群は、図の矢印方向に適当な成膜対象基板移動
手段250によって移動される。そして、光干渉式膜厚
測定装置7からの信号、つまり該装置により測定され
た、成膜モニタ板208に形成されたモニタ薄膜の膜厚
に基づいて、成膜プロセス制御手段260により、各種
成膜プロセスが制御されるようになっている。図2は、
図1の光学薄膜つき基板の製造装置を成膜対象基板21
0、210′の移動方向から見た図である。成膜対象基
板210、210′の寸法に応じて成膜モニタ板208
を、たとえば208a、208b、208c、208d
に示す位置X、Y、Z、Wに移動させることができる。
220は、成膜領域を示している。FIG. 1 is a schematic view of an embodiment of the apparatus for producing a substrate with an optical thin film of the present invention. In this aspect, the film formation monitor plate moving mechanism 230 is provided, and the film formation monitor plate 208 can be moved in a direction perpendicular to the paper surface. Here, the optical interference type film thickness measuring device 7 is fixed near the center of the film forming region in the upper part of the drawing. This fixed optical interference type film thickness measuring device 7
The movable film formation monitor plate 208 and the movable film formation monitor plate 208 are optically coupled by using an optical fiber bundle 240 in which several tens of flexible optical fibers are bundled. Here, “optically coupled” means that the light from the light source of the optical interference type film thickness measuring device 7 is irradiated onto the film formation monitor plate 208 while maintaining the state of being able to interfere, and is reflected or transmitted here. It means that light (interference light) is connected so that it can be received by the light receiving portion of the optical interference type film thickness measuring device 7. Other than the above points, FIG.
The configuration is the same as that shown in FIG. That is, the optical thin film material 3 is placed inside the vacuum chamber 16 with the film formation particle bundle generation site 2 facing upward in the figure, and is heated by the electron beam emitted from the electron gun 6 to generate the film formation particle bundle 5. appear. Film-forming particle bundle axis 9
The film formation particle bundle 5 having the film is blocked by the shutter 11 as necessary, and the film formation target substrate groups 201a, 201b, 201 are formed.
The sizes of c, 201d, ... In the traveling direction (arrow direction) are limited by the correction plates 4a, 4b. These film formation target substrate groups are moved by an appropriate film formation target substrate moving means 250 in the direction of the arrow in the figure. Then, based on the signal from the optical interference type film thickness measuring device 7, that is, the film thickness of the monitor thin film formed on the film forming monitor plate 208 measured by the device, the film forming process control means 260 performs various processes. The membrane process is becoming controlled. Figure 2
The apparatus for manufacturing a substrate with an optical thin film of FIG.
It is the figure seen from the moving direction of 0 and 210 '. The film formation monitor plate 208 is formed according to the dimensions of the film formation target substrates 210 and 210 '.
, For example, 208a, 208b, 208c, 208d
Can be moved to the positions X, Y, Z, W shown in.
220 indicates a film forming region.
【0030】図3〜6は、様々な寸法の成膜対象基板に
光学薄膜を形成する場合に好適な成膜モニタ板の位置の
例を示す図であり、図1、図2に示した装置を成膜対象
基板面に垂直な方向から見た図である。図3は成膜対象
基板210a、210b、210c、210a′、21
0b′、210c′、・・・を2列に並べて成膜対象基
板群201a、201b、201c、・・・を移動させ
ながら成膜する場合に好適な成膜モニタ板208の位置
を示すもので、この場合成膜モニタ板208は成膜領域
220の外側でかつ近傍であり、また成膜対象基板の成
膜面と同じ水平面に近い位置Yに置くのが好ましい。図
4は、幅の異なる成膜対象基板列を並べて成膜する場合
に好適な成膜モニタ板208の位置を示すもので、この
場合も成膜モニタ板208は成膜領域220の外側でか
つ近傍であり、また成膜対象基板の成膜面と同じ水平面
に近い位置Xに置くのが好ましい。図5は、成膜対象基
板210a、210b、210c、210a′、210
b′、210c′、210a″、210b″、210
c″、・・・を3列に並べて成膜する場合に好適な成膜
モニタ板208の位置を示すもので、この場合も成膜モ
ニタ板208は成膜領域220の外側でかつ近傍であ
り、また成膜対象基板の成膜面と同じ水平面に近い位置
Zに置くのが好ましい。また、図6は大型の成膜対象基
板210a、210b、210c、・・・を1列に並べ
て成膜する場合に好適な成膜モニタ板208の位置を示
すもので、この場合も成膜モニタ板208は成膜領域2
20の外側かつ近傍であり、また成膜対象基板の成膜面
と同じ水平面に近い位置Wに置くのが好ましい。FIGS. 3 to 6 are views showing examples of positions of the film formation monitor plate suitable for forming an optical thin film on the film formation target substrates of various sizes, and the apparatus shown in FIGS. 1 and 2. FIG. 3 is a view of FIG. 6 as viewed from a direction perpendicular to the surface of the film formation target substrate. FIG. 3 shows substrates 210a, 210b, 210c, 210a ', 21 for film formation.
0b ', 210c', ... Are arranged in two rows to indicate the position of the film formation monitor plate 208 suitable for film formation while moving the film formation target substrate groups 201a, 201b, 201c ,. In this case, it is preferable that the film formation monitor plate 208 is placed outside and in the vicinity of the film formation region 220, and at a position Y close to the same horizontal plane as the film formation surface of the film formation target substrate. FIG. 4 shows a position of the film formation monitor plate 208 which is suitable for forming film formation target substrate rows having different widths side by side. In this case also, the film formation monitor plate 208 is outside the film formation region 220 and It is preferably placed at a position X which is in the vicinity and close to the same horizontal plane as the film formation surface of the film formation target substrate. FIG. 5 shows the target substrates 210a, 210b, 210c, 210a ', 210 for film formation.
b ', 210c', 210a ", 210b", 210
The position of the film formation monitor plate 208 suitable for forming films by arranging c ″, ... In three rows is shown. In this case as well, the film formation monitor plate 208 is outside and near the film formation region 220. Further, it is preferable to place the film formation target substrate at a position Z which is close to the same horizontal plane as the film formation surface of the film formation target substrate, and the large film formation target substrates 210a, 210b, 210c, ... In this case, the position of the film formation monitor plate 208 suitable for the film formation monitor plate 208 is shown.
It is preferable to place it at a position W that is outside and in the vicinity of 20, and near the same horizontal plane as the film formation surface of the film formation target substrate.
【0031】これらの実施態様では、成膜モニタ板20
8の移動可能範囲は成膜領域220の周辺部分から成膜
領域の外側に及ぶ範囲としたが、これは、基板サイズに
より成膜領域が変化するためで、この変化する成膜領域
に対してできるだけその近傍に成膜モニタ板208を置
けるようにするためである。In these embodiments, the film formation monitor plate 20
The movable range of 8 is the range extending from the peripheral portion of the film formation region 220 to the outside of the film formation region. This is because the film formation region changes depending on the substrate size. This is so that the film formation monitor plate 208 can be placed as close to it as possible.
【0032】また、成膜モニタ板208に形成されるモ
ニタ薄膜の成膜条件が成膜対象基板に形成される光学薄
膜の成膜条件に近似しているのが好ましい。目的とする
光学薄膜の特性にもよるが、たとえば屈折率、密度、電
気的特性などの物理特性および膜厚が成膜領域220内
と近似するモニタ薄膜を得るのが好ましい。Further, it is preferable that the film forming conditions of the monitor thin film formed on the film forming monitor plate 208 are similar to the film forming conditions of the optical thin film formed on the target substrate. Although depending on the characteristics of the target optical thin film, it is preferable to obtain a monitor thin film whose physical properties such as refractive index, density, and electrical properties and the film thickness are close to those in the film formation region 220.
【0033】上述のようにモニタ薄膜の成膜条件が成膜
対象基板に形成される光学薄膜に近似するためには、以
下の条件を満たしているのが好ましい。第1に、成膜モ
ニタ板208の位置と成膜粒子束5の発生部位2(発生
源)とを結ぶ直線および成膜粒子束軸9がなす角度θの
変化する範囲の少なくとも一部は、成膜領域のうち成膜
粒子束の発生部位までの距離が最も長い点と発生部位と
を結ぶ直線および成膜粒子束軸9のなす角度θ0 の2倍
以内の範囲に含まれるのが好ましい。図7にこの様子を
示す。図でθ0 は、成膜領域20から成膜粒子束の発生
源30までの最長距離を与える成膜領域の外縁の点34
と前記発生源30とを結ぶ直線35と成膜粒子束軸9の
なす角を表す。円錐面33は、成膜粒子束の発生源30
に頂点を有し、成膜粒子束軸9に対し2×θ0 の角度を
有する直線の集合である。したがって、成膜モニタ板2
08の位置の好ましい範囲は、この円錐面33の内側で
あり、かつ、成膜粒子束の発生源30からみて成膜領域
20の外側である範囲であると言える。なお、成膜粒子
束の発生源が点とみなせない広がりを持つ場合や発生源
を複数用いる場合は、発生源のあらゆる点を頂点とする
上記条件を満たす円錐面のいずれかの内側が成膜モニタ
板の位置として好ましい。また、成膜モニタ板の移動可
能範囲の少なくとも一部はこの範囲内に含まれるのが好
ましい。この範囲に成膜モニタ板を移動させて成膜すれ
ば、形成されるモニタ薄膜の膜厚や物理特性(屈折率、
均一性、密度、電気特性等)を成膜対象基板に形成され
る光学薄膜と近似させることができる。In order to approximate the film forming conditions of the monitor thin film to the optical thin film formed on the film formation target substrate as described above, the following conditions are preferably satisfied. First, at least a part of the range in which the angle θ formed by the straight line connecting the position of the film formation monitor plate 208 and the generation site 2 (generation source) of the film formation particle bundle 5 and the film formation particle bundle axis 9 changes is: It is preferable to be included in a range within twice the angle θ 0 formed by the straight line connecting the point where the film formation particle flux is generated in the film formation region and the generation site and the film formation particle flux axis 9. . This is shown in FIG. In the figure, θ 0 is a point 34 at the outer edge of the film formation region that gives the longest distance from the film formation region 20 to the source 30 of the film formation particle flux.
Represents the angle formed by the straight line 35 connecting the above and the generation source 30 and the film-forming particle bundle axis 9. The conical surface 33 is the source 30 of the film-forming particle bundle.
Is a set of straight lines having an apex at and an angle of 2 × θ 0 with respect to the film-forming particle bundle axis 9. Therefore, the film formation monitor plate 2
It can be said that the preferable range of the position of 08 is inside the conical surface 33 and outside the film formation region 20 when viewed from the film formation particle flux generation source 30. In addition, when the source of the film-forming particle flux has a spread that cannot be regarded as a point, or when multiple sources are used, the inside of any one of the conical surfaces that satisfy the above conditions with all points of the source as apexes It is preferable as the position of the monitor plate. Further, it is preferable that at least a part of the movable range of the film formation monitor plate is included in this range. If the film formation monitor plate is moved within this range to form a film, the film thickness and physical characteristics (refractive index,
Uniformity, density, electrical characteristics, etc.) can be approximated to that of the optical thin film formed on the target substrate.
【0034】第2に、成膜モニタ板208から成膜粒子
束の発生源30までの距離範囲の少なくとも一部は、成
膜領域20と前記発生源30での距離の最短距離の0.
9倍以上であり、かつ、最長距離の1.1倍以下の範囲
に含まれるのが好ましい。図8にこの状況を示す。図8
でh1 は、成膜粒子束の発生源30と成膜領域20との
間の最短距離を表し、h2 は最長距離を表す。成膜粒子
束の発生源30から前記最短距離の0.9倍の距離にあ
る位置とは前記発生源30を中心とする球面31の面上
の各点を、前記最長距離の1.1倍の距離にある位置と
は前記発生源30を中心とする球面32の面上の各点
を、それぞれ意味する。したがって、成膜モニタ板20
8の位置の好ましい範囲は、これら球面31と球面32
の間の空間であり、かつ、前記発生源30から成膜領域
20を見て外側の範囲であると言える。なお、成膜粒子
束の発生源が点とみなせない広がりを持つ場合や発生源
を複数用いる場合は、発生源のいずれかの点から上記距
離の条件を満たす位置が、成膜モニタ板208の位置と
して好ましい。この範囲内に成膜モニタ板208が配置
されるように移動すると、これに形成されるモニタ薄膜
の膜厚や物理特性(屈折率、均一性、密度、電気特性
等)を成膜対象基板に形成される光学薄膜と近似させる
ことができる。上述の第1の条件を同時に満たすのが、
さらに好ましい。Second, at least a part of the distance range from the film formation monitor plate 208 to the generation source 30 of the film formation particle flux is 0. which is the shortest distance between the film formation region 20 and the generation source 30.
It is preferably 9 times or more and 1.1 times or less of the longest distance. This situation is shown in FIG. FIG.
Where h 1 represents the shortest distance between the generation source 30 of the film formation particle flux and the film formation region 20, and h 2 represents the longest distance. The position at a distance of 0.9 times the shortest distance from the generation source 30 of the film-forming particle bundle means that each point on the surface of the spherical surface 31 centered on the generation source 30 is 1.1 times the longest distance. The position at the distance of means the respective points on the surface of the spherical surface 32 with the source 30 as the center. Therefore, the film formation monitor plate 20
The preferable range of the position of 8 is the spherical surface 31 and the spherical surface 32.
It can be said that it is the space between them and the outside of the film formation region 20 when viewed from the generation source 30. When the source of the film-forming particle bundle has a spread that cannot be regarded as a point or when a plurality of sources are used, the position satisfying the above distance condition from any point of the source is the film-forming monitor plate 208. Preferred as position. When the film formation monitor plate 208 is moved so as to be arranged within this range, the film thickness and physical characteristics (refractive index, uniformity, density, electric characteristics, etc.) of the monitor thin film formed on the film formation target board are set on the film formation target substrate. It can be approximated to the optical thin film to be formed. To satisfy the above first condition at the same time,
More preferable.
【0035】第3に、成膜モニタ板208の位置と成膜
粒子束の発生源30とを結ぶ直線および成膜モニタ板2
08のモニタ薄膜形成面の法線がなす角度φの変化する
範囲の少なくとも一部は、40°以下の範囲に含まれる
のが好ましく、30°以下の範囲に含まれるのがさらに
好ましい。モニタ薄膜を形成するときに光学薄膜の成膜
方向(モニタ薄膜形成面の法線方向と一致する。)と成
膜粒子の飛翔方向とのなす角度が大きく異なると、いわ
ゆる斜入射析出となり、物理特性などの特性値が成膜領
域の成膜粒子束軸近傍の成膜対象基板に形成される光学
薄膜と異なることが多い。ただし、成膜領域の外縁近く
の成膜条件と特に一致させたいときは、前記角度をその
部位における成膜粒子の飛翔方向と光学薄膜の成膜方向
のなす角度に近くするのが好ましい。また、上述の第1
または第2もしくは両方の条件を同時に満たすのが、さ
らに好ましい。Third, the straight line connecting the position of the film formation monitor plate 208 and the source 30 of the film formation particle flux and the film formation monitor plate 2
At least a part of the range in which the angle φ formed by the normal to the monitor thin film formation surface of No. 08 changes within 40 ° or less, and more preferably within 30 ° or less. When the monitor thin film is formed, if the angle between the optical thin film forming direction (which coincides with the normal direction of the monitor thin film forming surface) and the flying direction of the film forming particles is greatly different, so-called oblique incidence precipitation occurs and Characteristic values such as characteristics are often different from those of the optical thin film formed on the film formation target substrate in the vicinity of the film formation particle flux axis in the film formation region. However, if it is particularly desired to match the film forming conditions near the outer edge of the film forming region, it is preferable that the angle be close to the angle formed by the flight direction of the film forming particles and the film forming direction of the optical thin film at that portion. In addition, the above-mentioned first
Alternatively, it is more preferable to simultaneously satisfy the second or both conditions.
【0036】本発明において光学薄膜は、光の透過また
は反射特性を制御する光学薄膜つき基板に用いられるも
のならばどのようなものでもよい。特に、各種表示装置
の反射防止膜は、成膜対象基板が大型のものが多く、好
適である。In the present invention, the optical thin film may be any one as long as it is used for a substrate with an optical thin film for controlling light transmission or reflection characteristics. In particular, the antireflection film of various display devices is suitable because the target substrate for film formation is often large.
【0037】また、光干渉式膜厚測定装置7としては、
たとえば特定の波長あるいは白色光をモニタ板に照射
し、ここでの光の反射強度や透過強度を測定するものな
どが用いられる。これは、光学薄膜の屈折率と膜厚によ
って光の干渉の様子が異なり、光の反射率や透過率が成
膜中に周期的に変化することを利用するもので、たとえ
ば、反射光強度の極大や極小をとらえて膜厚を測定す
る。この場合、膜厚だけでなく屈折率の影響も同時に測
定結果に反映されるが、光学薄膜の場合は光学薄膜の膜
厚そのものではなく、薄膜内部の光学的光路長を特定の
値にすることを目的とする場合が多く、むしろ好まし
い。Further, as the optical interference type film thickness measuring device 7,
For example, a device in which a monitor plate is irradiated with a specific wavelength or white light and the reflection intensity or transmission intensity of the light is measured is used. This utilizes the fact that the state of light interference differs depending on the refractive index and film thickness of the optical thin film, and that the light reflectance and transmittance periodically change during film formation. Measure the film thickness by capturing the maximum and minimum. In this case, not only the film thickness but also the influence of the refractive index is reflected in the measurement results at the same time.In the case of an optical thin film, the optical optical path length inside the thin film should be set to a specific value, not the film thickness of the optical thin film itself. In many cases, it is rather preferable.
【0038】光干渉式膜厚測定装置では、干渉光の強度
が膜厚に対して周期的に変化することを利用して成膜プ
ロセスを制御することが好ましく行なわれる。すなわ
ち、光学薄膜内の光学的光路長(膜厚と屈折率の積に比
例する)が測定光の波長λの1/4倍の整数倍のときに
干渉光の強度が極値を持つため、この条件が満たされる
ときに成膜を中止すれば、光学薄膜内の光学的光路長は
測定光の1/4倍の整数倍となることが保証される。し
たがって、干渉光の強度の絶対値により制御するよりも
再現性よく膜厚を測定することができる。In the optical interference type film thickness measuring apparatus, it is preferable to control the film forming process by utilizing the fact that the intensity of the interference light changes periodically with respect to the film thickness. That is, when the optical optical path length (proportional to the product of film thickness and refractive index) in the optical thin film is an integral multiple of 1/4 times the wavelength λ of the measurement light, the intensity of the interference light has an extreme value, If film formation is stopped when this condition is satisfied, it is guaranteed that the optical optical path length in the optical thin film will be an integral multiple of 1/4 times the measurement light. Therefore, it is possible to measure the film thickness with better reproducibility than when controlling the absolute value of the intensity of the interference light.
【0039】本発明においては、成膜モニタ板208と
光干渉式膜厚測定装置7との間の接続には光ファイバー
を束ねて製造した光ファイバー束240を用いる必要が
ある。これは、以下のような理由による。In the present invention, it is necessary to use an optical fiber bundle 240 manufactured by bundling optical fibers for the connection between the film formation monitor plate 208 and the optical interference type film thickness measuring device 7. This is for the following reasons.
【0040】すなわち、光ファイバー束240を用いる
と、光干渉式膜厚測定装置7を固定しておくことができ
るためである。光干渉式膜厚測定装置7を固定しない場
合には次のような問題が発生する可能性がある。即ち、
光干渉式膜厚測定装置7は一般に大型であり、しかも精
密機器である。したがって、成膜モニタ板208ととも
に移動させると、振動などにより光軸が狂うなどのトラ
ブルが発生する場合がある。また、光干渉式膜厚測定装
置7を成膜モニタ板208とともに移動させる場合は、
光干渉式膜厚測定装置7を成膜室(たとえば、真空チャ
ンバー)内で移動させなければならない場合が多い。ま
た、成膜室内は雰囲気を特定条件(たとえば、高度の真
空に特定の物質粒子を特定の量だけ含んだ状態など)に
保持されるのが普通である。ところが、光干渉式膜厚測
定装置7は複数の干渉フィルターをレボルバなどの干渉
フィルターの交換機構により交換しながら測定に使用す
る光の波長を選ぶことができるようになっている場合が
多い。このような干渉フィルターの交換機構は多くの場
合機械的に干渉フィルターを交換するものであり、ダス
トや油分などを発散する場合がある。したがって、かか
る光干渉式膜厚測定装置を成膜室に置くことは、成膜プ
ロセスに好ましくない影響を与える場合がある。That is, when the optical fiber bundle 240 is used, the optical interference type film thickness measuring device 7 can be fixed. If the optical interference type film thickness measuring device 7 is not fixed, the following problems may occur. That is,
The optical interference type film thickness measuring device 7 is generally large and is a precision instrument. Therefore, when it is moved together with the film formation monitor plate 208, a trouble such as a deviation of the optical axis due to vibration may occur. Further, when the optical interference type film thickness measuring device 7 is moved together with the film formation monitor plate 208,
In many cases, the optical interference type film thickness measuring device 7 needs to be moved within a film forming chamber (for example, a vacuum chamber). Further, the atmosphere inside the film forming chamber is usually maintained under a specific condition (for example, a state in which a specific amount of specific substance particles is contained in a high vacuum). However, in many cases, the optical interference type film thickness measuring device 7 is capable of selecting the wavelength of light used for measurement while exchanging a plurality of interference filters by an interference filter exchanging mechanism such as a revolver. In many cases, such an interference filter replacement mechanism mechanically replaces the interference filter and may emit dust, oil, or the like. Therefore, placing such an optical interference type film thickness measuring device in the film forming chamber may adversely affect the film forming process.
【0041】もしも、光ファイバー束240を用いずに
光干渉式膜厚測定装置7を成膜室の外側に置き、かつ成
膜モニタ板208と連動させて移動させるようにする
と、成膜室に光を干渉可能な状態のまま透過する成膜モ
ニタ板208の移動場所に応じた大きな窓を設け、しか
も移動するごとに光軸合わせあるいは光束調整を厳密に
行わなければならない。このような場合特に測定に用い
る光の光路長が長くなり、光軸合わせあるいは光束調整
はさらに困難になる。そのため、成膜モニタ板208の
移動に際しての調整に長い時間を要する。If the optical interference type film thickness measuring device 7 is placed outside the film forming chamber without using the optical fiber bundle 240 and is moved in conjunction with the film forming monitor plate 208, the light is transmitted to the film forming chamber. It is necessary to provide a large window corresponding to the moving position of the film formation monitor plate 208 that allows the light to pass through in the state of being able to interfere with each other, and moreover, strictly adjust the optical axis or adjust the luminous flux each time the film is moved. In such a case, the optical path length of the light used for the measurement becomes long, and it becomes more difficult to align the optical axis or adjust the light flux. Therefore, it takes a long time to adjust the film formation monitor plate 208 when it is moved.
【0042】光ファイバー束240を用いて光干渉式膜
厚測定装置7と成膜モニタ板208とを光学的に結合す
ると、光ファイバーが機械的に柔軟であるため、光干渉
式膜厚測定装置7を適当な位置に固定したまま成膜モニ
タ板208を移動することができる。しかも、光ファイ
バーを用いると真空などのシールが容易であるため光干
渉式膜厚測定装置7を必ずしも成膜室の中に置く必要が
ない。When the optical interference type film thickness measuring device 7 and the film formation monitor plate 208 are optically coupled with each other by using the optical fiber bundle 240, the optical interference type film thickness measuring device 7 is used because the optical fiber is mechanically flexible. The film formation monitor plate 208 can be moved while being fixed at an appropriate position. Moreover, the optical interference type film thickness measuring device 7 does not necessarily have to be placed in the film forming chamber because it is easy to seal vacuum or the like by using the optical fiber.
【0043】光の伝送通路としての光ファイバー束24
0は光ファイバーを数10〜数万本束ねて使用する。光
ファイバーの材料としては大きく分類して石英系ガラ
ス、多成分系ガラス、プラスチックの3種類が挙げられ
るが、本発明においては、石英系ガラス、多成分系ガラ
スが好ましく、さらに石英系ガラスがより好ましく用い
られる。これは、薄膜の光学的測定が目的であるため、
紫外域から近赤外(200〜2000nm)の光を最も
少ない損失で伝送することが好ましいからである。また
NA(Numerical Aperture)が小さ
いため後述する成膜モニタ板との関係からくる損失も最
も少ないためでもある。Optical fiber bundle 24 as a light transmission path
0 is used by bundling tens to tens of thousands of optical fibers. Materials of the optical fiber are roughly classified into three types, that is, silica glass, multi-component glass, and plastic. In the present invention, silica glass and multi-component glass are preferable, and silica glass is more preferable. Used. This is because the purpose is optical measurement of thin film,
This is because it is preferable to transmit light in the near infrared region (200 to 2000 nm) from the ultraviolet region with the least loss. Further, this is also because the NA (Numerical Aperture) is small, so that the loss due to the relationship with the film formation monitor plate described later is the smallest.
【0044】本発明においては、光ファイバー束240
の両端部は、その端面図である図12(a)あるいは図
12(b)に示すように加工した上で端面を研磨し光源
や光センサの形状に合わせて選択するが、加工がしやす
いことから図12(b)のものが好ましい。図におい
て、37は光ファイバー、38はシール材を示してい
る。In the present invention, the optical fiber bundle 240
Both ends are processed as shown in the end view of FIG. 12 (a) or FIG. 12 (b), and the end surfaces are polished and selected according to the shape of the light source or the optical sensor, but the processing is easy. Therefore, the one shown in FIG. 12 (b) is preferable. In the figure, 37 is an optical fiber and 38 is a sealing material.
【0045】本発明で真空中に導入する光ファイバー束
は、例えば図13に示すように真空フランジ40とシー
ムレスパイプ42とを位置41で真空シールを行ない
(ろー付け)、さらに束ねてあるそれぞれの光ファイバ
ーの端面にシール材を挿入して真空シールを行なう(4
3は真空シール部分を示している)。この時端面図12
(a)あるいは、端面図12(b)に示した光ファイバ
ーガイド筒36としては、真空中での放出ガス量の少な
いステンレス材が好ましく用いられる。このような構造
体にすると、光ファイバー束の先端部51および成膜モ
ニタ板部分52は、図14に示すように真空中において
自由にモニタする角度および位置を変更することができ
る。なお図14において、53は光ファイバー束先端部
51と成膜モニタ板52との固定部材を示している。In the optical fiber bundle introduced into the vacuum in the present invention, for example, as shown in FIG. 13, a vacuum flange 40 and a seamless pipe 42 are vacuum-sealed (rolled) at a position 41 and further bundled. Insert a sealant into the end face of the optical fiber and vacuum seal (4
3 indicates a vacuum seal portion). End view at this time 12
Alternatively, as the optical fiber guide tube 36 shown in FIG. 12A or FIG. 12B, a stainless material that emits a small amount of gas in a vacuum is preferably used. With such a structure, the tip end portion 51 of the optical fiber bundle and the film formation monitor plate portion 52 can freely change the angle and position to be monitored in vacuum as shown in FIG. In FIG. 14, reference numeral 53 indicates a fixing member for fixing the optical fiber bundle tip portion 51 and the film formation monitor plate 52.
【0046】図15に示すように、光ファイバー束51
の端面から出射された光束は、光ファイバーの特性から
ある広がりをもって放出するため、成膜モニタ板52に
光束を当て反射光を光ファイバー束51に導く方法とし
ては、例えば図15(a)、(b)に示す方法がある。
図15(b)で示す方法は、光ファイバー束51を成膜
モニタ板52に近接する方法である。この場合小型化で
き光路長が短いために細かな光軸合せや光束合せなどの
調整を必要としないため好適である。As shown in FIG. 15, an optical fiber bundle 51.
Since the light flux emitted from the end surface of the optical fiber is emitted with a certain spread due to the characteristics of the optical fiber, as a method of applying the light flux to the film formation monitor plate 52 and guiding the reflected light to the optical fiber bundle 51, for example, FIGS. ) Is available.
The method shown in FIG. 15B is a method of bringing the optical fiber bundle 51 close to the film formation monitor plate 52. In this case, it is suitable because the size can be reduced and the optical path length is short, so that fine adjustments of the optical axis and the adjustment of the light flux are not required.
【0047】本発明では成膜モニタ板から光ファイバー
先端までの距離は30mm以下にするのがより好まし
い。30mm以下にすると受光部のシリコンフォトダイ
オードなど電流−電圧変換時の増幅率を大きくしなくて
も済むため精度が良くなるためである。In the present invention, the distance from the film formation monitor plate to the tip of the optical fiber is more preferably 30 mm or less. This is because if the thickness is 30 mm or less, it is not necessary to increase the amplification factor at the time of current-voltage conversion such as the silicon photodiode of the light receiving portion, and the accuracy is improved.
【0048】図15(a)に示す方法は、光ファイバー
束より出射された光束をレンズ54、55を通して効率
良く成膜モニタ板52に導き成膜モニタ板52からの光
も効率良く光ファイバー束51に入射できる構造であ
る。真空装置内で使用する場合は、位置関係に厳密性の
要らない図15(b)の方法がより好ましく用いられ
る。この場合、光ファイバー束にNAの小さい光ファイ
バーを使用することが好ましい。本発明ではNA≦0.
5とするのがさらに好ましい。こうすると光束の広がり
による損失を少なくでき、成膜モニタ板と光ファイバー
の先端との位置関係に高い精度が要求されなくなる。よ
って現在の技術では石英系ガラスを使用することが好ま
しい。In the method shown in FIG. 15A, the luminous flux emitted from the optical fiber bundle is efficiently guided to the film formation monitor plate 52 through the lenses 54 and 55, and the light from the film formation monitor plate 52 is also efficiently guided to the optical fiber bundle 51. It is a structure that can be incident. When used in a vacuum device, the method of FIG. 15 (b), which does not require strictness in positional relationship, is more preferably used. In this case, it is preferable to use an optical fiber having a small NA as the optical fiber bundle. In the present invention, NA ≦ 0.
More preferably, it is 5. In this way, the loss due to the spread of the light flux can be reduced, and high positional accuracy between the film formation monitor plate and the tip of the optical fiber is not required. Therefore, it is preferable to use quartz glass in the present technology.
【0049】本発明に用いられる光ファイバー束の一例
を図16に示す。光ファイバー束は、単純配列、ランダ
ムミックス、単純2分割配列、ランダムミックス2分割
配列および同軸配列など様々な光学系で使用可能であ
る。そのなかでも図16に示すランダムミックス2分割
配列の光ファイバー束240aが好ましく用いられる。
これは光干渉式膜厚計のように1方向に光源を配置しも
う1方向に光センサーを配置する時2分岐の光量の均一
性が非常に高いためである。FIG. 16 shows an example of the optical fiber bundle used in the present invention. The optical fiber bundle can be used in various optical systems such as a simple array, a random mix, a simple bisection array, a random mix bisection array, and a coaxial array. Among them, the optical fiber bundle 240a of the random mix two-division array shown in FIG. 16 is preferably used.
This is because when the light source is arranged in one direction and the optical sensor is arranged in the other direction like the optical interference type film thickness meter, the uniformity of the light quantity of the two branches is very high.
【0050】また本発明において、成膜粒子束を発生さ
せる成膜プロセスとしては、真空蒸着、イオンプレーテ
ィング、スパッタリングあるいはアブレーションなどが
好ましく使用される。In the present invention, vacuum deposition, ion plating, sputtering, ablation, etc. are preferably used as the film forming process for generating the film forming particle bundle.
【0051】真空蒸着とは、たとえば、真空中で光学薄
膜材料を加熱して蒸着あるいは昇華させることにより光
学薄膜を形成する方法である。光学薄膜材料の加熱はた
とえば電子線などの荷電粒子線を光学薄膜材料の表面に
照射して行なう。イオンプレーティングとは、たとえ
ば、グロー放電などのプラズマ中で、電位が自然バイア
スあるいは、強制バイアスされた成膜対象基板に対して
行なわれる真空蒸着であり、成膜対象基板に対して成膜
粒子束発生源の反対側に電極を置いてプラズマ中で電離
したイオン粒子を引き寄せるものである。スパッタリン
グとは真空雰囲気中でイオン、分子や原子などの高エネ
ルギー粒子線を光学薄膜材料の表面に照射し、そのエネ
ルギーを光学薄膜材料の成膜粒子(原子、分子、あるい
はそのクラスタ)に直接与え、加熱によらずに真空雰囲
気中に放出させるものである。また、アブレーションは
同様のエネルギーの供給を光を用いて行なうものであ
る。The vacuum vapor deposition is, for example, a method of forming an optical thin film by heating or vapor depositing or sublimating an optical thin film material in a vacuum. The heating of the optical thin film material is performed by irradiating the surface of the optical thin film material with a charged particle beam such as an electron beam. Ion plating is, for example, vacuum vapor deposition performed on a film formation target substrate whose potential is naturally biased or forcibly biased in plasma such as glow discharge. An electrode is placed on the opposite side of the flux generating source to attract ion particles ionized in plasma. Sputtering irradiates the surface of the optical thin film material with high-energy particle beams such as ions, molecules, and atoms in a vacuum atmosphere, and directly applies the energy to the film-forming particles (atoms, molecules, or clusters) of the optical thin film material. It is released into a vacuum atmosphere without depending on heating. Also, ablation is the same energy supply using light.
【0052】これらはいずれも真空中に光学薄膜の材料
粒子を飛翔させる手段であり、成膜粒子源から特定の方
向(たとえば成膜粒子束発生源面の法線方向など)を中
心とする方向に放射状に広がる成膜粒子束を発生させる
ものである。この成膜粒子の飛翔の中心となる方向軸を
成膜粒子束軸とよぶ。一般に成膜粒子束軸に沿った方向
に最も多数の成膜粒子が飛翔し、この軸より離れるほど
成膜粒子の数が少なくなり、同時に成膜粒子の持つ運動
エネルギーが小さくなる傾向がある。All of these are means for flying the material particles of the optical thin film in a vacuum, and a direction centered on a specific direction from the film-forming particle source (for example, the normal direction of the film-forming particle bundle generation source surface). This is to generate a film-forming particle bundle that spreads radially to the inside. The direction axis, which is the center of flight of the film-forming particles, is called the film-forming particle bundle axis. Generally, the largest number of film-forming particles fly in the direction along the axis of the film-forming particle bundle, and as the distance from this axis increases, the number of film-forming particles decreases, and at the same time, the kinetic energy of the film-forming particles tends to decrease.
【0053】成膜粒子の持つ運動エネルギーは、成膜対
象基板に形成される光学薄膜の屈折率などの特性に影響
を及ぼす場合が多い。一般に成膜粒子の運動エネルギー
が高いほど、屈折率が高く均質な光学薄膜が形成され
る。また、成膜粒子の飛翔方向が成膜対象基板上の光学
薄膜の形成方向、すなわち基板面の法線方向に近いほど
形成される薄膜の屈折率が高くなる。したがって、成膜
領域の中央部(成膜粒子束軸近傍)において形成される
光学薄膜は屈折率が高く、成膜領域の外縁に近づくほど
屈折率が低くなる。同時に上述のように成膜粒子の数も
少なくなるので膜厚も薄くなる。The kinetic energy of the film-forming particles often affects characteristics such as the refractive index of the optical thin film formed on the film-forming target substrate. Generally, the higher the kinetic energy of the film-forming particles, the higher the refractive index and the more uniform the optical thin film is formed. Further, the closer the flight direction of the film forming particles is to the forming direction of the optical thin film on the film forming target substrate, that is, the direction normal to the substrate surface, the higher the refractive index of the formed thin film. Therefore, the optical thin film formed in the central part of the film formation region (near the axis of the film formation particle flux) has a high refractive index, and the refractive index decreases as it approaches the outer edge of the film formation region. At the same time, since the number of film-forming particles is reduced as described above, the film thickness is also reduced.
【0054】本発明において、成膜プロセスの制御手段
としては、(1)成膜対象基板または成膜対象基板群が
成膜粒子束にさらされる範囲の成膜対象基板の進行方向
の長さを制御する制御手段、(2)成膜対象基板または
成膜対象基板群が成膜粒子束にさらされる範囲を通過す
る時間により制御する制御手段、(3)成膜対象基板ま
たは成膜対象基板群が成膜粒子束にさらされる範囲に単
位時間当たりに到達する成膜粒子量により制御する制御
手段、(4)成膜対象基板または成膜対象基板群の表面
温度により制御する制御手段、などがある。いずれも、
コンピュータや電子回路等を用いて実現される。In the present invention, as means for controlling the film forming process, (1) the length in the traveling direction of the film forming object substrate within the range in which the film forming object substrate or the film forming object substrate group is exposed to the film forming particle bundle Controlling means for controlling, (2) Controlling means for controlling by the time for which the film-forming target substrate or film-forming target substrate group passes through the range exposed to the film-forming particle bundle, (3) film-forming target substrate or film-forming target substrate group Control means for controlling by the amount of film forming particles that reach the range exposed to the film forming particle bundle per unit time, (4) control means for controlling by the surface temperature of the film forming target substrate or group of film forming target, and the like. is there. In each case,
It is realized by using a computer or an electronic circuit.
【0055】まず(1)の手段を用いた成膜プロセスの
制御について説明する。成膜対象基板に形成される光学
薄膜の膜厚は、基本的に基板の表面に達する成膜粒子束
の単位時間当たりの成膜粒子数と、その表面が成膜領域
にある時間の積に比例する。したがって、成膜領域の基
板の進行方向の大きさを調整することによって、成膜対
象基板に形成される光学薄膜の膜厚を制御することがで
きる。First, the control of the film forming process using the means (1) will be described. The film thickness of the optical thin film formed on the film formation target substrate is basically a product of the number of film formation particles per unit time of the film formation particle bundle reaching the surface of the substrate and the time when the surface is in the film formation region. Proportional. Therefore, the film thickness of the optical thin film formed on the film formation target substrate can be controlled by adjusting the size of the film formation region in the traveling direction of the substrate.
【0056】ただ、成膜対象基板を成膜領域を移動させ
ながら成膜するため、成膜対象基板の同一の表面の部位
が成膜粒子束を横切りながら成膜される。上述のように
成膜粒子束内部でも、成膜粒子束軸近傍と周辺では成膜
粒子の数などの条件が異なる。したがって、成膜対象基
板の中でも成膜中に成膜粒子束軸の近傍を通過する部位
と周辺部のみを通過する部位とでは、同じ時間だけ成膜
領域にさらされていても膜厚あるいは物理特性が異なる
ものとなる。そのため、図3に示した成膜領域20のよ
うに、成膜領域の形状は一般に糸巻き型にするのが好ま
しい。そのために、半月状の形状をした補正板を成膜粒
子の飛翔経路に置くことによって、成膜領域の形状を基
板の進行方向に弧をなす糸巻き状の形状に補正すること
が好ましく行なわれる。なお、この補正板は、たとえ
ば、まずいわゆる余弦則(成膜膜厚が、成膜粒子の飛翔
方向と成膜粒子束軸のなす角度の余弦の3乗または4乗
に比例するという法則)に基づいて製作し、これを用い
て満足な膜厚および屈折率の分布を得るまで成膜の実験
をくり返し、最終的な形状を決定するなどして製作す
る。また、この補正板を上下または基板の進行方向に移
動させることにより、光学薄膜の膜厚を制御することも
好ましく行なわれる。However, since the film formation target substrate is formed while moving in the film formation region, the film formation target substrate is formed while crossing the film formation particle bundle on the same surface portion. As described above, even within the film-forming particle bundle, the conditions such as the number of film-forming particles are different between the vicinity of the film-forming particle bundle axis and its periphery. Therefore, even if the portion of the substrate to be deposited that passes near the axis of the deposition particle flux during deposition and the portion that passes only the periphery of the deposition target substrate are exposed to the deposition area for the same time, the film thickness or physical The characteristics will be different. Therefore, it is generally preferable that the shape of the film-forming region is a pincushion type, like the film-forming region 20 shown in FIG. For this reason, it is preferable to correct the shape of the film formation region into a pincushion shape that makes an arc in the direction of travel of the substrate by placing a correction plate having a half-moon shape in the flight path of the film formation particles. Note that this correction plate, for example, first follows the so-called cosine law (the law that the film thickness of a film formation is proportional to the third power or fourth power of the cosine of the angle formed by the flight direction of the film formation particles and the axis of the film formation particle bundle). It is manufactured by repeating the film forming experiment until a satisfactory film thickness and refractive index distribution are obtained, and the final shape is determined. Further, it is also preferable to control the film thickness of the optical thin film by moving the correction plate up and down or in the traveling direction of the substrate.
【0057】次に(2)の手段を用いた成膜プロセスの
制御について説明する。これは具体的には、成膜対象基
板の移動速度を成膜モニタ板に成膜される膜厚に応じて
変化させることである。これは、(1)の手段と同様
に、成膜対象基板の表面が成膜粒子束にさらされる時間
の長さを制御するものである。一般に成膜源から飛翔す
る成膜粒子量あるいはその運動エネルギーは、真空容器
の状態すなわち真空度、容器の汚れ状態、投入する基板
からの脱ガス効果により変化する。そのため、それらに
よる成膜の変動を移動速度により光学薄膜が均一に付け
られるように、モニタ板膜厚の変化(すなわち成膜速
度)を監視しながら変化させる。たとえば成膜速度が速
ければ、移動速度を速くし、逆に成膜速度が遅ければ、
移動速度も遅くするといった制御が好ましく行なわれ
る。Next, the control of the film forming process using the means (2) will be described. Specifically, this is to change the moving speed of the film formation target substrate according to the film thickness formed on the film formation monitor plate. This is to control the length of time during which the surface of the film formation target substrate is exposed to the film formation particle bundle, as in the case of (1). In general, the amount of film-forming particles flying from the film-forming source or the kinetic energy thereof changes depending on the state of the vacuum container, that is, the degree of vacuum, the state of contamination of the container, and the degassing effect from the substrate to be charged. Therefore, the variation of the film formation due to them is changed while monitoring the change of the film thickness of the monitor plate (that is, the film formation speed) so that the optical thin film can be uniformly attached by the moving speed. For example, if the film forming speed is high, the moving speed is increased, and conversely, if the film forming speed is low,
Control such as slowing down the moving speed is preferably performed.
【0058】次に(3)の手段を用いた成膜プロセスの
制御について説明する。これは膜厚モニタ板における監
視膜厚に応じて、発生源に投入するエネルギーを調節す
る方法である。これにより、成膜領域に達する単位時間
当たりの成膜粒子数や成膜粒子のエネルギーを制御する
ことができる。たとえば、光学薄膜材料の成膜粒子発生
部位に電子銃によってエネルギーを与える場合、成膜速
度が速ければ、電子銃のフィラメント電流を小さくし、
成膜速度が遅ければ、電子銃のフィラメント電流を大き
くするといった方法により、成膜プロセスを制御するこ
とができる。この方法の場合、モニタ板薄膜の膜厚を測
定することによってプロセスのフィードバック制御を行
なうことができる。Next, the control of the film forming process using the means (3) will be described. This is a method of adjusting the energy input to the generation source according to the monitored film thickness of the film thickness monitor plate. This makes it possible to control the number of film-forming particles per unit time reaching the film-forming region and the energy of the film-forming particles. For example, when the electron gun is used to apply energy to the part where the film-forming particles of the optical thin film material are generated, if the film-forming speed is high, the filament current of the electron gun is reduced,
If the film forming speed is low, the film forming process can be controlled by increasing the filament current of the electron gun. In this method, feedback control of the process can be performed by measuring the film thickness of the monitor plate thin film.
【0059】次に(4)の手段を用いた成膜プロセスの
制御について説明する。成膜領域に達する成膜粒子の数
が同じでも、成膜対象基板の表面温度が高いと成膜速度
が高く、かつ形成される光学薄膜の屈折率が高くなる。
この性質を利用して、成膜対象基板の表面温度により成
膜速度や屈折率などの成膜プロセスの制御を行なうこと
ができる。また、成膜プロセスの制御は成膜モニタ板に
形成されたモニタ薄膜の膜厚そのもの、また成膜速度な
どに基づいて行なうのが好ましい。Next, the control of the film forming process using the means (4) will be described. Even if the number of film-forming particles reaching the film-forming region is the same, when the surface temperature of the substrate to be film-formed is high, the film-forming speed is high and the refractive index of the optical thin film formed is high.
By utilizing this property, it is possible to control the film forming process such as the film forming speed and the refractive index depending on the surface temperature of the film forming target substrate. Further, it is preferable to control the film forming process based on the film thickness itself of the monitor thin film formed on the film forming monitor plate, the film forming speed, and the like.
【0060】[0060]
【実施例】以下実施例を挙げて説明するが、本発明はこ
れらに限定されるものではない。 実施例1 成膜モニタ板を図1および図2に示すように成膜粒子束
内部を移動可能として様々な寸法の成膜対象基板に光学
薄膜を形成し、成膜モニタ板に形成されたモニタ光学薄
膜の膜厚を測定しながら成膜対象基板群に光学薄膜を形
成し、光学薄膜つき基板を製造した。この光学薄膜つき
基板は表示装置の反射防止フィルターとして用いるもの
で、薄膜は光学薄膜であり、厳しい薄膜管理が必要なも
のである。成膜プロセスは真空蒸着で、成膜対象基板の
素材には透明なプラスチックを用いた。成膜領域の幅は
1mとした。成膜モニタ板と成膜粒子束の発生源との距
離範囲は、成膜領域と前記発生源の最短距離と最長距離
の間の距離とし、成膜モニタ板の法線方向と、成膜モニ
タ板の位置での成膜粒子の飛翔方向を一致させた。EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto. Example 1 A monitor formed on a film formation monitor plate by forming an optical thin film on a film formation target substrate of various sizes by making the film formation monitor plate movable inside the film formation particle bundle as shown in FIGS. 1 and 2. The optical thin film was formed on the substrate group for film formation while measuring the film thickness of the optical thin film to manufacture a substrate with an optical thin film. This substrate with an optical thin film is used as an antireflection filter of a display device, and the thin film is an optical thin film, which requires strict thin film management. The film formation process was vacuum evaporation, and transparent plastic was used as the material for the film formation target substrate. The width of the film formation region was 1 m. The distance range between the film formation monitor plate and the generation source of the film formation particle flux is a distance between the shortest distance and the longest distance between the film formation region and the generation source, and the normal direction of the film formation monitor plate and the film formation monitor. The flight directions of the film-forming particles at the position of the plate were matched.
【0061】以下の4種類の場合についてそれぞれ成膜
対象基板に光学薄膜を形成した。 (1)図3に示したように310×380mmの成膜対
象基板を2列に並べた構成で光学薄膜つき基板を製造し
た。このとき、図3に示すYの位置に成膜モニタ板を移
動させて膜厚測定を行なった。成膜モニタ板がYの位置
にあるとき、成膜対象基板に形成される光学薄膜の膜厚
t1 と成膜完了時のモニタ薄膜の膜厚tm との相関関係
は、成膜対象基板群が成膜領域を通過する数をnとする
と、tm =0.9×t1 ×nとなった。この関係を利用
して成膜を行なった。この位置に成膜モニタ板を移動さ
せることにより、モニタ膜厚の測定結果に基づく成膜プ
ロセスの制御を行なうことができた。Optical thin films were formed on the respective substrates for film formation in the following four cases. (1) As shown in FIG. 3, a substrate with an optical thin film was manufactured with a configuration in which substrate for film formation of 310 × 380 mm were arranged in two rows. At this time, the film formation monitor plate was moved to the position Y shown in FIG. 3 to measure the film thickness. When the film formation monitor plate is at the Y position, the correlation between the film thickness t 1 of the optical thin film formed on the film formation target substrate and the film thickness t m of the monitor thin film when the film formation is completed is Assuming that the number of groups passing through the film formation region is n, then t m = 0.9 × t 1 × n. Film formation was performed using this relationship. By moving the film formation monitor plate to this position, it was possible to control the film formation process based on the measurement result of the monitor film thickness.
【0062】(2)図4に示したように260×330
mmと310×380mmの成膜対象基板を各1列づつ
並べた構成で光学薄膜つき基板を製造した。この時、図
4に示す成膜モニタ板をXの位置に移動させて膜厚測定
を行なった。成膜モニタ板がXの位置にあるとき、成膜
対象基板に形成される光学薄膜の膜厚t1 と成膜完了時
のモニタ薄膜の膜厚tm との相関関係は、成膜対象基板
群が成膜領域を通過する数をnとすると、tm =1.0
×t1 ×nとなった。この関係を利用して成膜を行なっ
た。この位置に成膜モニタ板を移動させることにより、
モニタ膜厚の測定結果に基づく成膜プロセスの制御を行
なうことができた。(2) 260 × 330 as shown in FIG.
mm and 310.times.380 mm film-forming target substrates were arranged in a row, and a substrate with an optical thin film was manufactured. At this time, the film formation monitor plate shown in FIG. 4 was moved to the X position to measure the film thickness. When the film formation monitor plate is at the X position, the correlation between the film thickness t 1 of the optical thin film formed on the film formation target substrate and the film thickness t m of the monitor thin film when the film formation is completed is When the number of groups passing through the film formation region is n, t m = 1.0
× became the t 1 × n. Film formation was performed using this relationship. By moving the film formation monitor plate to this position,
It was possible to control the film formation process based on the measurement result of the monitor film thickness.
【0063】(3)図5に示したように200×330
mmの成膜対象基板を3列に並べた構成で光学薄膜つき
基板を製造した。この時、図5に示す成膜モニタ板をZ
の位置に移動させて膜厚測定を行なった。成膜モニタ板
がZの位置にあるとき、成膜対象基板に形成される光学
薄膜の膜厚t1 と成膜完了時のモニタ薄膜の膜厚tm と
の相関関係は、成膜対象基板群が成膜領域を通過する数
をnとすると、tm =0.85×t1 ×nとなった。こ
の関係を利用して成膜を行なった。この位置に成膜モニ
タ板を設けることにより、モニタ膜厚の測定結果に基づ
く成膜プロセスの制御を行なうことができた。(3) 200 × 330 as shown in FIG.
A substrate with an optical thin film was manufactured with a structure in which the film-forming target substrates having a size of 3 mm were arranged in three rows. At this time, the film formation monitor plate shown in FIG.
The film thickness was measured by moving it to the position. When the film formation monitor plate is at the Z position, the correlation between the film thickness t 1 of the optical thin film formed on the film formation target substrate and the film thickness t m of the monitor thin film when the film formation is completed is Assuming that the number of groups passing through the film formation region is n, t m = 0.85 × t 1 × n. Film formation was performed using this relationship. By providing the film formation monitor plate at this position, it was possible to control the film formation process based on the measurement result of the monitor film thickness.
【0064】(4)図6に示したように400×900
mmの成膜対象基板を1列に並べた構成で光学薄膜つき
基板を製造した。この時、図5に示す成膜モニタ板をW
の位置に移動させて膜厚測定を行なった。成膜モニタ板
がWの位置にあるとき、成膜対象基板に形成される光学
薄膜の膜厚t1 と成膜完了時のモニタ薄膜の膜厚tm と
の相関関係は、成膜対象基板群が成膜領域を通過する数
をnとすると、tm =0.80×t1 ×nとなった。こ
の関係を利用して成膜を行なった。この位置に成膜モニ
タ板を設けることにより、成膜対象基板に形成される光
学薄膜と近似した好適な条件でモニタ薄膜を形成するこ
とができた。成膜モニタ板への光導入を光ファイバーを
用いて行なったため成膜モニタ板の位置換えに際しても
手間がほとんどかからなかった。(4) 400 × 900 as shown in FIG.
A substrate with an optical thin film was manufactured with a structure in which the substrates to be film-formed with a size of mm were arranged in one row. At this time, the film formation monitor plate shown in FIG.
The film thickness was measured by moving it to the position. When the film formation monitor plate is at the position W, the correlation between the film thickness t 1 of the optical thin film formed on the film formation target substrate and the film thickness t m of the monitor thin film at the time of completion of film formation is Assuming that the number of groups passing through the film formation region is n, then t m = 0.80 × t 1 × n. Film formation was performed using this relationship. By providing the film formation monitor plate at this position, the monitor thin film could be formed under suitable conditions similar to those of the optical thin film formed on the film formation target substrate. Since light was introduced into the film formation monitor plate using an optical fiber, there was almost no trouble in changing the position of the film formation monitor plate.
【0065】比較例1 成膜モニタ板の位置を図9および図10に示した位置に
固定配置したこと以外は実施例1と同様の生産設備で、
モニタ薄膜の膜厚を測定しながら成膜対象基板群に光学
薄膜を形成し、光学薄膜つき基板を製造した。成膜対象
基板に形成される光学薄膜の膜厚t1 と成膜完了時のモ
ニタ板光学薄膜の膜厚tm との相関関係は、成膜対象基
板群が成膜領域を通過する数をnとすると、tm =0.
4×t1 ×nとなる。この関係を利用して成膜を行なっ
た。310mm×380mmの成膜対象基板を2列並べ
て光学薄膜を形成することができたが、200×330
mmの成膜対象基板を3列に並べた構成や400×90
0mmの成膜対象基板を1列に並べた構成では成膜対象
基板が成膜モニタ板の位置を遮ってしまうため生産でき
なかった。実際、物理的には、450mm×380mm
の成膜対象基板を2枚並べることは可能であるが、成膜
モニタ板に十分に成膜されるようにするには2枚の成膜
対象基板の間の隙間を約150mmから200mmとら
なければいけなかったので、310mm×380mmを
2枚並べるのが限界であった。Comparative Example 1 The same production equipment as in Example 1 was used except that the position of the film formation monitor plate was fixed at the position shown in FIGS. 9 and 10.
While measuring the film thickness of the monitor thin film, an optical thin film was formed on the substrate group to be film-formed, and a substrate with an optical thin film was manufactured. The correlation between the film thickness t 1 of the optical thin film formed on the film formation target substrate and the film thickness t m of the monitor plate optical thin film when the film formation is completed depends on the number of the film formation target substrates passing through the film formation region. n, t m = 0.
4 × t 1 × n. Film formation was performed using this relationship. It was possible to form an optical thin film by arranging two 310 mm × 380 mm film formation target substrates in two rows, but 200 × 330
mm substrate to be deposited in three rows or 400 x 90
With the structure in which the film-forming target substrates of 0 mm are arranged in a line, the film-forming target substrate blocks the position of the film-formation monitor plate, and thus cannot be produced. Actually, physically, 450 mm x 380 mm
Although it is possible to arrange the two film-forming target substrates side by side, in order to form a sufficient film on the film-forming monitor plate, the gap between the two film-forming target substrates must be about 150 mm to 200 mm. Since it was not possible, it was a limit to arrange two 310 mm x 380 mm sheets.
【0066】比較例2 成膜モニタ板移動部分の真空室上部に大きなガラス窓を
設けて、光ファイバーを用いなかったこと以外は実施例
1と同様な生産設備で、モニタ薄膜の膜厚を測定しなが
ら成膜対象基板群に光学薄膜を形成し、光学薄膜つき基
板を製造した。成膜対象基板に形成される光学薄膜の膜
厚t1 と成膜完了時のモニタ薄膜の膜厚tm との相関関
係は、成膜対象基板群が成膜領域を通過する数をnとす
ると、ほぼ同様の関係式で成膜が可能であった。これら
の関係を利用して成膜を行なった。モニタ膜厚の測定結
果に基づく成膜プロセスの制御を行なうことができた。
しかしながら、サイズが変わるごとに光干渉式膜厚測定
装置と成膜モニタ板の光軸合せを精密に行なわなければ
ならず、また移動した光干渉式膜厚測定装置の固定にも
時間を要し、品種切替え時に実施例よりも多くの時間を
要した。Comparative Example 2 The film thickness of the monitor thin film was measured with the same production equipment as in Example 1 except that a large glass window was provided above the vacuum chamber in the moving portion of the film formation monitor plate and no optical fiber was used. On the other hand, an optical thin film was formed on the group of substrates for film formation to manufacture a substrate with an optical thin film. The correlation between the film thickness t 1 of the optical thin film formed on the film formation target substrate and the film thickness t m of the monitor thin film at the time of completion of the film formation is that the number of film formation target substrates passing through the film formation region is n. Then, it was possible to form a film with almost the same relational expression. Film formation was performed by utilizing these relationships. It was possible to control the film formation process based on the measurement result of the monitor film thickness.
However, each time the size changes, the optical axis of the optical interference type film thickness measuring device and the film formation monitor plate must be precisely aligned, and it takes time to fix the moved optical interference type film thickness measuring device. It took more time to switch the product type than in the example.
【0067】[0067]
【発明の効果】本発明の光学薄膜つき基板の製造装置に
よれば、成膜モニタ板と光干渉式膜厚測定装置を光ファ
イバーで光学的に結合させ、このモニタ板を移動可能と
したことにより、大型の成膜対象基板に光学薄膜を形成
する場合でも、より小さな製造設備を用いて光学薄膜お
よび光学薄膜つき基板を製造することができる。According to the apparatus for manufacturing a substrate with an optical thin film of the present invention, the film formation monitor plate and the optical interference type film thickness measuring device are optically coupled by an optical fiber, and the monitor plate is movable. Even when an optical thin film is formed on a large substrate for film formation, the optical thin film and the substrate with the optical thin film can be manufactured by using a smaller manufacturing facility.
【0068】また、本発明の光学薄膜つき基板の製造装
置によれば、大型の成膜対象基板に光学薄膜を形成する
場合でも、成膜対象基板の配置の自由度を高くすること
ができ、光学薄膜つき基板の製造工程の生産性を高める
ことができる。Further, according to the apparatus for manufacturing a substrate with an optical thin film of the present invention, the degree of freedom in arranging the substrate for film formation can be increased even when the optical thin film is formed on a large substrate for film formation. The productivity of the manufacturing process of the substrate with the optical thin film can be improved.
【0069】さらに、本発明の光学薄膜つき基板の製造
装置によれば、光ファイバーを用いているため、成膜モ
ニタ板の位置を自由に移動できる。また、移動に際して
光軸合わせなどを要しないため、光ファイバーを用いな
い場合に比べて、品種変更を迅速に行なうことができ
る。Further, according to the apparatus for manufacturing a substrate with an optical thin film of the present invention, since the optical fiber is used, the position of the film formation monitor plate can be freely moved. Further, since the optical axis alignment or the like is not required at the time of movement, the product type can be changed more quickly than in the case where no optical fiber is used.
【図1】本発明の一実施態様に係る光学薄膜つき基板の
製造装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an apparatus for manufacturing a substrate with an optical thin film according to an embodiment of the present invention.
【図2】図1の装置の成膜対象基板の移動方向から見た
概略構成図である。FIG. 2 is a schematic configuration diagram of the apparatus of FIG. 1 viewed from a moving direction of a film formation target substrate.
【図3】本発明の光学薄膜つき基板の製造装置における
成膜モニタ板の好ましい位置の例を示す概略平面図であ
る。FIG. 3 is a schematic plan view showing an example of preferable positions of a film formation monitor plate in the apparatus for manufacturing a substrate with an optical thin film of the present invention.
【図4】本発明の光学薄膜つき基板の製造装置における
成膜モニタ板の好ましい位置の別の例を示す概略平面図
である。FIG. 4 is a schematic plan view showing another example of preferable positions of the film formation monitor plate in the apparatus for manufacturing a substrate with an optical thin film of the present invention.
【図5】本発明の光学薄膜つき基板の製造装置における
成膜モニタ板の好ましい位置のさらに別の例を示す概略
平面図である。FIG. 5 is a schematic plan view showing still another example of preferable positions of the film formation monitor plate in the apparatus for manufacturing a substrate with an optical thin film of the present invention.
【図6】本発明の光学薄膜つき基板の製造装置における
成膜モニタ板の好ましい位置のさらに別の例を示す概略
平面図である。FIG. 6 is a schematic plan view showing still another example of preferable positions of the film formation monitor plate in the apparatus for manufacturing a substrate with an optical thin film of the present invention.
【図7】本発明の光学薄膜つき基板の製造装置における
成膜モニタ板の好ましい位置範囲を示す概略平面図であ
る。FIG. 7 is a schematic plan view showing a preferable position range of the film formation monitor plate in the apparatus for manufacturing a substrate with an optical thin film of the present invention.
【図8】本発明の光学薄膜つき基板の製造装置における
成膜モニタ板の別の方向から見た好ましい位置範囲を示
す概略構成図である。FIG. 8 is a schematic configuration diagram showing a preferable position range of the film formation monitor plate in another direction in the apparatus for manufacturing a substrate with an optical thin film of the present invention.
【図9】従来の光学薄膜つき基板の製造装置の概略構成
図である。FIG. 9 is a schematic configuration diagram of a conventional apparatus for manufacturing a substrate with an optical thin film.
【図10】図9の装置を成膜粒子束軸の方向から見た概
略部分底面図である。FIG. 10 is a schematic partial bottom view of the apparatus of FIG. 9 as seen from the direction of the film formation particle bundle axis.
【図11】成膜モニタ板へのモニタ薄膜の形成の様子を
示す説明図である。FIG. 11 is an explanatory diagram showing a state of forming a monitor thin film on a film formation monitor plate.
【図12】(a)、(b)はそれぞれ光ファイバー束端
面の正面図である。12A and 12B are front views of an end face of an optical fiber bundle, respectively.
【図13】光ファイバー束を真空室へ導く方法の一例を
示す概略側面図である。FIG. 13 is a schematic side view showing an example of a method of introducing an optical fiber bundle into a vacuum chamber.
【図14】光ファイバー束の先端部の自由度を示す概略
構成図である。FIG. 14 is a schematic configuration diagram showing the degree of freedom of the tip portion of the optical fiber bundle.
【図15】(a)、(b)はそれぞれ光ファイバー束の
先端部分と成膜モニタ板との位置関係を示す概略構成図
である。15A and 15B are schematic configuration diagrams showing the positional relationship between the tip portion of the optical fiber bundle and the film formation monitor plate.
【図16】光ファイバー束の構造の一例を示す部分側面
図である。FIG. 16 is a partial side view showing an example of the structure of an optical fiber bundle.
1、1a、1b、1c、1d 成膜対象基板群 2 成膜粒子束発生部位(成膜粒子発生源) 3 光学薄膜材料 4a、4b 補正板 5 成膜粒子束 6 電子銃 7 光干渉式膜厚測定装置 8 成膜モニタ板 9 成膜粒子束軸 10a、10a′、10b、10b′、10c、10
c′、10d、10d′成膜対象基板 11 シャッター 13 成膜粒子 14 気体分子 16 真空室 20 成膜領域 30 成膜粒子束発生源 31、32 球面 33 円錐面 34 成膜領域の外縁の点 35 直線 36 光ファイバーガイド筒 37 光ファイバー 38 シール材 40 真空フランジ 41 真空ろー付け部分 42 真空用シームレスパイプ 43 真空シール部分 51 光ファイバー束先端部 52 成膜モニタ板 53 光ファイバー先端部と成膜モニタ板との固定部材 54、55 レンズ 201a、201b、201c、201d 成膜対象基
板群 207 膜厚測定装置 208 成膜モニタ板 210、210′210a、210a′、210a″、
210b、210b′、210b″、210c、210
c′、210c″ 成膜対象基板 220 成膜領域 230 成膜モニタ板移動機構 240、240a 光ファイバー束 250 成膜対象基板移動手段 260 成膜プロセス制御手段1, 1a, 1b, 1c, 1d Substrate group for film formation 2 Film-forming particle flux generation site (film-forming particle generation source) 3 Optical thin film material 4a, 4b Correction plate 5 Film-forming particle bundle 6 Electron gun 7 Optical interference film Thickness measuring device 8 Deposition monitor plate 9 Deposition particle flux axis 10a, 10a ', 10b, 10b', 10c, 10
c ′, 10d, 10d ′ Substrate to be film-formed 11 Shutter 13 Film-forming particles 14 Gas molecule 16 Vacuum chamber 20 Film-forming region 30 Film-forming particle flux source 31, 32 Spherical surface 33 Conical surface 34 Point at outer edge of film-forming region 35 Straight line 36 Optical fiber guide tube 37 Optical fiber 38 Sealing material 40 Vacuum flange 41 Vacuum filtering part 42 Seamless pipe for vacuum 43 Vacuum sealing part 51 Optical fiber bundle tip part 52 Film formation monitor plate 53 Fixing of optical fiber tip part and film formation monitor plate Members 54, 55 Lenses 201a, 201b, 201c, 201d Film forming target substrate group 207 Film thickness measuring device 208 Film forming monitor plate 210, 210'210a, 210a ', 210a ",
210b, 210b ', 210b ", 210c, 210
c ′, 210c ″ Deposition target substrate 220 Deposition region 230 Deposition monitor plate moving mechanism 240, 240a Optical fiber bundle 250 Deposition target substrate moving means 260 Deposition process control means
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/203 S 9545−4M 21/66 P 7735−4M (72)発明者 菊池 和夫 東京都品川区南大井3丁目2番6号 株式 会社シンクロン内 (72)発明者 松本 繁治 東京都品川区南大井3丁目2番6号 株式 会社シンクロン内 (72)発明者 税所 慎一郎 東京都品川区南大井3丁目2番6号 株式 会社シンクロン内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location H01L 21/203 S 9545-4M 21/66 P 7735-4M (72) Inventor Kazuo Kikuchi Shinagawa, Tokyo 3-26 Minami-Oi, Ward, within Syncron Co., Ltd. (72) Inventor Shigeharu Matsumoto 3-26, Minami-Oi, Shinagawa-ku, Tokyo Within Syncron, Inc. (72) Inventor Shinichiro Tax Office Minami-Oi, Shinagawa-ku, Tokyo 3-2-6 In Syncron Co., Ltd.
Claims (1)
源により発生させられた成膜粒子束にさらされる領域を
通過するように成膜対象基板を移動させる成膜対象基板
移動手段と、該成膜対象基板が前記成膜粒子束にさらさ
れる範囲の外側を含む範囲を移動可能な成膜モニタ板
と、光干渉式膜厚測定装置と、該光干渉式膜厚測定装置
および前記成膜モニタ板の間を光学的に結合させる光フ
ァイバー束と、前記光干渉式膜厚測定装置により測定さ
れた、前記成膜モニタ板に形成されたモニタ薄膜の膜厚
に基づいて成膜プロセスを制御する成膜プロセス制御手
段と、を備えてなることを特徴とする光学薄膜つき基板
の製造装置。1. A film formation target substrate movement for moving the film formation target substrate so as to pass through a film formation particle bundle generation source and a region exposed to the film formation particle bundle generated by the film formation particle bundle generation source. Means, a film formation monitor plate capable of moving within a range including the outside of the range where the film formation target substrate is exposed to the film formation particle bundle, an optical interference type film thickness measuring device, and the optical interference type film thickness measuring device And a film formation process based on an optical fiber bundle that optically couples the film formation monitor plate and the film thickness of the monitor thin film formed on the film formation monitor plate, measured by the optical interference type film thickness measurement device. An apparatus for producing a substrate with an optical thin film, comprising: a film forming process control means for controlling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30314094A JP3242802B2 (en) | 1994-11-11 | 1994-11-11 | Equipment for manufacturing substrates with optical thin films |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30314094A JP3242802B2 (en) | 1994-11-11 | 1994-11-11 | Equipment for manufacturing substrates with optical thin films |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08136710A true JPH08136710A (en) | 1996-05-31 |
JP3242802B2 JP3242802B2 (en) | 2001-12-25 |
Family
ID=17917367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30314094A Expired - Fee Related JP3242802B2 (en) | 1994-11-11 | 1994-11-11 | Equipment for manufacturing substrates with optical thin films |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3242802B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7304744B1 (en) | 1998-12-24 | 2007-12-04 | Sharp Kabushiki Kaisha | Apparatus and method for measuring the thickness of a thin film via the intensity of reflected light |
-
1994
- 1994-11-11 JP JP30314094A patent/JP3242802B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7304744B1 (en) | 1998-12-24 | 2007-12-04 | Sharp Kabushiki Kaisha | Apparatus and method for measuring the thickness of a thin film via the intensity of reflected light |
Also Published As
Publication number | Publication date |
---|---|
JP3242802B2 (en) | 2001-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0834596B1 (en) | Method of manufacturing substrate with thin film, and manufacturing apparatus | |
US7435300B2 (en) | Dynamic film thickness control system/method and its utilization | |
KR100356492B1 (en) | Thin film substrate, its manufacturing method and manufacturing apparatus | |
US5777792A (en) | Optical film, an antireflection film, a reflection film, a method for forming the optical film, the antireflection film or the reflection film and an optical device | |
GB738592A (en) | A method and devices for the formation of deposits by evaporation | |
KR101317536B1 (en) | Optical film thickness meter and thin film forming apparatus provided with optical film thickness meter | |
JPH11241162A (en) | Sputtering method capable of optically monitoring and device therefor | |
US5410411A (en) | Method of and apparatus for forming multi-layer film | |
US20200230741A1 (en) | Laser crystallizing apparatus | |
JP3242802B2 (en) | Equipment for manufacturing substrates with optical thin films | |
JP3298682B2 (en) | Multilayer film forming apparatus, optical characteristic measuring method and film forming method | |
CN1458297A (en) | Dynamic film thickness monitoring system and method | |
US4416216A (en) | Apparatus for forming an inhomogeneous optical layer | |
US3939052A (en) | Depositing optical fibers | |
JPH0790583A (en) | Thin film forming method | |
JPH07109569A (en) | Formation of thin film | |
JP3306394B2 (en) | Film thickness measuring device and film thickness measuring method | |
List et al. | On-line control of the deposition of optical coatings by magnetron sputtering | |
JPH0790584A (en) | Thin film forming method | |
JP2022181017A (en) | Sputtering apparatus, film deposition method, and manufacturing method of article | |
Glocker et al. | System for Sputtering Uniform Optical Coatings on Flat and Curved Surfaces Without Masks | |
JP2024179102A (en) | Film forming apparatus, film forming method, and method for manufacturing electronic device | |
CN118326340A (en) | Monitoring device and monitoring method for realizing evaporation film material characteristics based on multi-point light control | |
CN119717090A (en) | Laser lens, laser collimator and laser beam quality modulation method thereof | |
Dubs et al. | Production of stable interference filters by low voltage reactive ion plating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081019 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091019 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091019 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131019 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |