[go: up one dir, main page]

JPH08136588A - Optical voltage sensor - Google Patents

Optical voltage sensor

Info

Publication number
JPH08136588A
JPH08136588A JP6279124A JP27912494A JPH08136588A JP H08136588 A JPH08136588 A JP H08136588A JP 6279124 A JP6279124 A JP 6279124A JP 27912494 A JP27912494 A JP 27912494A JP H08136588 A JPH08136588 A JP H08136588A
Authority
JP
Japan
Prior art keywords
electro
optical
optical element
voltage sensor
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6279124A
Other languages
Japanese (ja)
Inventor
Kimihiko Shibuya
公彦 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6279124A priority Critical patent/JPH08136588A/en
Publication of JPH08136588A publication Critical patent/JPH08136588A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE: To provide a high-precision optical voltage sensor which is excellent in a temperature characteristic and has an irregularity in sensitivity in the optical voltage sensor which is used to monitor the voltage state of a high- voltage distribution line or the like. CONSTITUTION: A wavelength-selection transmission film 5 is formed on the radiation face of an electro-optical element 2. The optical axis of incident light on the electro-optical element 2 is adjusted in such a way that reflected light becomes maximum by means of light at a wavelength which agrees with the total reflection condition of the wavelength-selection transmission film 5. Then, the axial deviation of the incident light on the electro-optical element 2 is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高圧配電線などの電圧状
態を監視するために用いる光電圧センサに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical voltage sensor used for monitoring a voltage condition of a high voltage distribution line or the like.

【0002】[0002]

【従来の技術】近年配電の自動化、高信頼化、高付加価
値化の時代のニーズに応えるべく各電力会社において配
電線の事故点を検出する事故点評定システムの開発が行
われている。この中で、従来、電気式の電流、電圧セン
サ(変流、変圧器)が用いられてきたが、地絡等の事故
をセンサ自身の設置によって誘発しないようにその絶縁
性、信頼性を保つべくさまざまの改良が行われてきた
が、その結果として装置が大がかりになる、大きな設置
面積を必要とする、そしてコスト高になる等の問題を生
じている。
2. Description of the Related Art In recent years, each electric power company has developed an accident point evaluation system for detecting an accident point of a distribution line in order to meet the needs of the times of automation, high reliability, and high added value of power distribution. Among these, electric current and voltage sensors (current transformers, transformers) have been used in the past, but their insulation and reliability are maintained so that accidents such as ground faults are not triggered by the installation of the sensor itself. Although various improvements have been made to this end, problems such as a large scale of the device, a large installation area, and a high cost have arisen as a result.

【0003】そこで、この問題を解決すべく磁気光学素
子、電気光学素子を用いた光電流、電圧センサによる事
故点評定システムが開示されている(芹沢、電気評論1
992.3参照)。
Therefore, in order to solve this problem, an accident point evaluation system using a photocurrent and voltage sensor using a magneto-optical element and an electro-optical element has been disclosed (Serizawa, Electric Review 1).
992.3).

【0004】以下に、従来の光電圧センサについて説明
する。図4は従来の光電圧センサの構成を示すものであ
る。また、図5は光電圧センサの検出原理を示した模式
図である。1は偏光子、2は電気光学素子であるLiN
1-XTaX3(0≦X≦1)単結晶、3は1/4波長
板、4は検光子、6は電気光学素子2に電圧を印加する
ためのリード線、7はレンズ、8はフェルール、9は光
ファイバ、10はレンズホルダーである。一方の光ファ
イバ9、フェルール8、レンズ7を通して通ってくる入
射光は偏光子1によって1偏光成分のみ直線に偏光さ
れ、1/4波長板3によって円偏光に変換される。この
円偏光は電気光学素子2を通過する。電気光学素子2を
通過した光は偏光子1と同一透過偏向方向を持つように
配された検光子4を通し、他方のレンズ7、フェルール
8、光ファイバ9を通して取出される。
A conventional optical voltage sensor will be described below. FIG. 4 shows the configuration of a conventional optical voltage sensor. FIG. 5 is a schematic diagram showing the detection principle of the optical voltage sensor. 1 is a polarizer, 2 is an electro-optical element LiN
b 1-X Ta X O 3 (0 ≦ X ≦ 1) single crystal, 3/4 wavelength plate, 4 analyzer, 6 lead wire for applying voltage to electro-optical element 2, 7 lens , 8 is a ferrule, 9 is an optical fiber, and 10 is a lens holder. The incident light passing through one of the optical fiber 9, the ferrule 8 and the lens 7 is linearly polarized by the polarizer 1 with only one polarization component, and is converted into circularly polarized light by the quarter wavelength plate 3. This circularly polarized light passes through the electro-optical element 2. The light that has passed through the electro-optical element 2 passes through an analyzer 4 arranged so as to have the same transmission deflection direction as the polarizer 1, and is extracted through the other lens 7, ferrule 8, and optical fiber 9.

【0005】このとき、電気光学素子2は、屈折率nが
印加された電圧に比例して変化する現象を有する(電気
光学効果)。
At this time, the electro-optical element 2 has a phenomenon in which the refractive index n changes in proportion to the applied voltage (electro-optical effect).

【0006】[0006]

【外1】 [Outside 1]

【0007】ここで、Δnは屈折率の変化量、n0は電
気光学素子の屈折率、rは電気光学係数、Eは印加電圧
である。
Here, Δn is the amount of change in the refractive index, n 0 is the refractive index of the electro-optical element, r is the electro-optical coefficient, and E is the applied voltage.

【0008】電気光学素子2にリード線6を通して電圧
が印加されていないときは、円偏光は電気光学素子2を
素通りし検光子4を1/2の光量が通過する。電圧が印
加されると電気光学素子2の屈折率が変化する。この屈
折率変化は電圧印加方向とその垂直方向で実効的な屈折
率の差を生じ、入射円偏光は電圧印加方向に偏光する光
とこれに垂直に偏光する光との間に位相差を生じ、電気
光学素子2通過後の光の偏光状態は電気光学素子2に印
加される電圧の大きさによって変化することになる。こ
れを検光子4を通過する光量として検出し、電圧の大き
さを逆算するのが光電圧センサの動作原理である。な
お、1/4波長板3を電気光学素子2と検光子4の間に
配しても等価である。
When no voltage is applied to the electro-optical element 2 through the lead wire 6, circularly polarized light passes through the electro-optical element 2 and passes through the analyzer 4 with a half light amount. When a voltage is applied, the refractive index of the electro-optical element 2 changes. This change in the refractive index causes a difference in effective refractive index between the direction in which the voltage is applied and the direction perpendicular thereto, and the incident circularly polarized light causes a phase difference between the light polarized in the voltage applied direction and the light polarized perpendicularly thereto. The polarization state of the light after passing through the electro-optical element 2 changes depending on the magnitude of the voltage applied to the electro-optical element 2. The principle of operation of the photovoltage sensor is to detect this as the amount of light passing through the analyzer 4 and back-calculate the magnitude of the voltage. It is equivalent to disposing the quarter-wave plate 3 between the electro-optical element 2 and the analyzer 4.

【0009】[0009]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、光電圧センサ組立時に各構成部品の精度
ばらつきにより電気光学素子2であるLiNb1-XTaX
3(0≦X≦1)への入射光の軸ズレ(傾き)を生
じ、その結果温度特性劣化、感度のばらつき等が発生す
るという問題点を有していた。
However, in the above-mentioned structure, the LiNb 1-X Ta X, which is the electro-optical element 2, is generated due to the variation in accuracy of each component when the optical voltage sensor is assembled.
There has been a problem that an axial deviation (inclination) of incident light to O 3 (0 ≦ X ≦ 1) occurs, resulting in deterioration of temperature characteristics, variation in sensitivity, and the like.

【0010】本発明は上記問題点を解決するもので、温
度特性に優れ、感度ばらつきの少ない高精度の光電圧セ
ンサを提供するものである。
The present invention solves the above problems, and provides a high-precision optical voltage sensor having excellent temperature characteristics and less variation in sensitivity.

【0011】[0011]

【課題を解決するための手段】この目的を達成するため
に本発明の光電圧センサは、電気光学素子の出射面に波
長選択透過膜を設け、前記波長選択透過膜の全反射条件
に合致した波長の光を用いて反射光が最大になるように
前記電気光学素子への入射光の光軸を調整し、前記電気
光学素子への入射光の軸ズレを抑制する構成を有してい
る。
In order to achieve this object, the optical voltage sensor of the present invention is provided with a wavelength selective transmission film on the emission surface of the electro-optical element and meets the total reflection condition of the wavelength selective transmission film. The optical axis of the incident light to the electro-optical element is adjusted so that the reflected light is maximized by using the light of the wavelength, and the axial deviation of the incident light to the electro-optical element is suppressed.

【0012】[0012]

【作用】この構成によって、電気光学素子への入射光の
軸ズレを抑制することが可能になり、温度特性に優れ、
感度ばらつきの少ない高精度の光電圧センサを提供する
ことができる。
With this configuration, it is possible to suppress the axial deviation of the incident light on the electro-optical element, which is excellent in temperature characteristics,
It is possible to provide a highly accurate photovoltage sensor with little sensitivity variation.

【0013】[0013]

【実施例】以下に、本発明の実施例について図面を参照
しながら説明する。図1は本発明の一実施例における光
電圧センサの一部断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a partial sectional view of an optical voltage sensor according to an embodiment of the present invention.

【0014】図1において、1は偏光子、2は電気光学
素子、3は1/4波長板、4は検光子、5は波長選択透
過膜、6は電気光学素子2に電圧を印加するためのリー
ド線、7はレンズ、8はフェルール、9は光ファイバ、
10はレンズホルダーである。
In FIG. 1, 1 is a polarizer, 2 is an electro-optical element, 3 is a quarter wavelength plate, 4 is an analyzer, 5 is a wavelength selective transmission film, and 6 is for applying a voltage to the electro-optical element 2. Lead wire, 7 is a lens, 8 is a ferrule, 9 is an optical fiber,
Reference numeral 10 is a lens holder.

【0015】電気光学素子2は、LiNbO3単結晶で
光の入射、出射面はそれぞれZ面で光の進行方向はZ軸
である。前記入出射面はそれぞれZ軸に対して±3分以
内の精度で直角に鏡面研磨されている。この前記電気光
学素子2の出射面即ち1/4波長板3に相対する面に
は、誘電体多層膜からなる波長選択透過膜5が蒸着され
ている。
The electro-optical element 2 is made of a LiNbO 3 single crystal and has a Z-plane as a light incident surface and a Z-plane as an emission surface, and the Z-axis is the traveling direction of the light. The entrance and exit surfaces are mirror-polished at right angles to the Z axis with an accuracy of within ± 3 minutes. A wavelength selective transmission film 5 made of a dielectric multilayer film is deposited on the emission surface of the electro-optical element 2, that is, the surface facing the quarter-wave plate 3.

【0016】本実施例で使用する波長選択透過膜5は、
入射波長600nm近傍でほぼ100%反射し、850
nm近傍でほぼ100%透過する特性になっている。本
実施例では、波長850nm、半値幅50nmのLED
をセンサとしての光源に用い、632.8nmのHe−
Neレーザを光軸調整用の参照光として用いる。即ち、
前記センサ用光源である850nmのLED波長には、
波長選択透過膜5は透明な媒体として作用し、光電圧セ
ンサの動作には何等寄与しない。
The wavelength selective transmission film 5 used in this embodiment is
Approximately 100% reflection at an incident wavelength of around 600 nm, 850
It has a characteristic of transmitting almost 100% in the vicinity of nm. In this embodiment, an LED having a wavelength of 850 nm and a half width of 50 nm is used.
Is used as a light source as a sensor, and a He- of 632.8 nm is used.
A Ne laser is used as a reference light for adjusting the optical axis. That is,
In the LED wavelength of 850 nm which is the light source for the sensor,
The wavelength selective transmission film 5 acts as a transparent medium and does not contribute to the operation of the photovoltage sensor.

【0017】一方、前記632.8nmのHe−Neレ
ーザの波長に対しては全反射ミラーとして作用し、光電
圧センサとしては機能せず、光軸調整用の参照光源とし
てのみの機能を有する。
On the other hand, it functions as a total reflection mirror for the wavelength of the He-Ne laser of 632.8 nm, does not function as a photovoltage sensor, and has a function only as a reference light source for adjusting the optical axis.

【0018】図2に本実施例の光軸調整方法の概略図を
示す。レンズ7、フェルール8を同軸に保持するレンズ
ホルダー10を回転ステージに取り付け、参照光源13
からの光をカプラー11によって分岐し、光ファイバ
9、フェルール8、レンズ7を通して偏光子1で電気光
学素子2に入射させ、波長選択透過膜5で反射させ、偏
光子1、レンズ7、フェルール8、光ファイバ9を通し
てカプラー11で分岐して光パワーメータ12に導かれ
た参照光の波長選択透過膜5での反射光をモニターしな
がら反射光量が最大になるように回転ステージを14,
15方向に調整する。前記反射光量が最大になったとき
電気光学素子2への入射光軸が入射面に対して垂直に調
整されたことになる。
FIG. 2 shows a schematic view of the optical axis adjusting method of this embodiment. A lens holder 10 for holding the lens 7 and the ferrule 8 coaxially is attached to a rotary stage, and a reference light source 13
The light from is branched by the coupler 11, is made incident on the electro-optical element 2 by the polarizer 1 through the optical fiber 9, the ferrule 8 and the lens 7, and is reflected by the wavelength selective transmission film 5, and the polarizer 1, the lens 7 and the ferrule 8 are made. , While monitoring the reflected light at the wavelength selective transmission film 5 of the reference light which is branched by the coupler 11 through the optical fiber 9 and guided to the optical power meter 12, the rotary stage 14 is arranged so as to maximize the reflected light amount,
Adjust in 15 directions. When the amount of reflected light becomes maximum, the incident optical axis to the electro-optical element 2 is adjusted to be perpendicular to the incident surface.

【0019】この条件のもとに作製した光電圧センサの
検出原理は、従来の技術の項に示したものと何等変わる
ものではない。感度の温度特性を図3に示す。−20〜
80℃の範囲内において±1%以内の良好な特性が得ら
れている。また、前記条件のもと作製した光電圧センサ
の感度の個片ばらつきは、±3%以内であった。
The detection principle of the optical voltage sensor manufactured under these conditions is no different from that described in the section of the prior art. The temperature characteristic of sensitivity is shown in FIG. -20 to
Good characteristics within ± 1% are obtained within the range of 80 ° C. Further, the individual variation in the sensitivity of the optical voltage sensor manufactured under the above conditions was within ± 3%.

【0020】以上のように電気光学素子2の出射面に設
けられた波長選択透過膜5の反射特性を利用して入射光
軸を調整することにより、温度特性の優れた感度ばらつ
きの少ない高精度の光電圧センサを実現できる。
As described above, the incident optical axis is adjusted by utilizing the reflection characteristic of the wavelength selective transmission film 5 provided on the emission surface of the electro-optical element 2 so that the temperature characteristic is excellent and the sensitivity is high and the precision is small. Can be realized.

【0021】[0021]

【発明の効果】以上のように本発明は電気光学素子の出
射面に波長選択透過膜を設けることにより、電気光学素
子への入射光の軸ズレを抑制することが可能になり、温
度特性に優れ、感度ばらつきの少ない高精度の光電圧セ
ンサを提供するものである。
As described above, according to the present invention, by providing the wavelength selective transmission film on the emission surface of the electro-optical element, it is possible to suppress the axial deviation of the incident light to the electro-optical element and to improve the temperature characteristics. It is intended to provide a highly accurate photovoltage sensor with excellent sensitivity and little variation in sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における光電圧センサの
構成図
FIG. 1 is a configuration diagram of an optical voltage sensor according to a first embodiment of the present invention.

【図2】本発明の第1の実施例における光電圧センサの
光軸調整法を示す説明図
FIG. 2 is an explanatory diagram showing an optical axis adjusting method of the optical voltage sensor according to the first embodiment of the present invention.

【図3】本発明の第1の実施例における光電圧センサの
感度の温度特性を示す特性図
FIG. 3 is a characteristic diagram showing temperature characteristics of sensitivity of the optical voltage sensor according to the first embodiment of the present invention.

【図4】従来の光電圧センサの構成図FIG. 4 is a configuration diagram of a conventional optical voltage sensor.

【図5】従来の光電圧センサの動作原理を説明する図FIG. 5 is a diagram for explaining the operation principle of a conventional optical voltage sensor.

【符号の説明】[Explanation of symbols]

1 偏光子 2 電気光学素子 3 1/4波長板 4 検光子 5 波長選択透過膜 6 電圧印加用リード線 7 レンズ 8 フェルール 9 光ファイバ 10 レンズホルダー 11 カプラー 12 光パワーメータ 13 参照光源 14,15 光軸調整方向 DESCRIPTION OF SYMBOLS 1 Polarizer 2 Electro-optical element 3 1/4 wavelength plate 4 Analyzer 5 Wavelength selective transmission film 6 Voltage application lead wire 7 Lens 8 Ferrule 9 Optical fiber 10 Lens holder 11 Coupler 12 Optical power meter 13 Reference light source 14, 15 light Axis adjustment direction

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光の入射方向に対して、偏光子、電気光
学素子、波長板、検光子の順に配され、前記電気光学素
子の出射面即ち波長板と相対する面に波長選択透過膜を
設けた光電圧センサ。
1. A polarizer, an electro-optical element, a wave plate, and an analyzer are arranged in this order with respect to the incident direction of light, and a wavelength-selective transmission film is provided on the emission surface of the electro-optical element, that is, the surface facing the wave plate. Optical voltage sensor provided.
【請求項2】 電気光学素子としてLiNb1-XTaX
3(0≦X≦1)を用いることを特徴とする請求項1記
載の光電圧センサ。
2. LiNb 1-X Ta X O as an electro-optical element
3. The optical voltage sensor according to claim 1, wherein 3 (0 ≦ X ≦ 1) is used.
JP6279124A 1994-11-14 1994-11-14 Optical voltage sensor Pending JPH08136588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6279124A JPH08136588A (en) 1994-11-14 1994-11-14 Optical voltage sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6279124A JPH08136588A (en) 1994-11-14 1994-11-14 Optical voltage sensor

Publications (1)

Publication Number Publication Date
JPH08136588A true JPH08136588A (en) 1996-05-31

Family

ID=17606769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6279124A Pending JPH08136588A (en) 1994-11-14 1994-11-14 Optical voltage sensor

Country Status (1)

Country Link
JP (1) JPH08136588A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8791831B2 (en) 2011-09-23 2014-07-29 Eaton Corporation System including an indicator responsive to an electret for a power bus
US9093867B2 (en) 2011-09-23 2015-07-28 Eaton Corporation Power system including an electret for a power bus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8791831B2 (en) 2011-09-23 2014-07-29 Eaton Corporation System including an indicator responsive to an electret for a power bus
US8994544B2 (en) 2011-09-23 2015-03-31 Eaton Corporation System including an indicator responsive to an electret for a power bus
US9093867B2 (en) 2011-09-23 2015-07-28 Eaton Corporation Power system including an electret for a power bus
US9385622B2 (en) 2011-09-23 2016-07-05 Eaton Corporation Power system including an electret for a power bus

Similar Documents

Publication Publication Date Title
EP0086373B1 (en) Magneto-optical converter
DE68905757T2 (en) INTEGRATED OPTICAL DEVICE FOR MEASURING THE REFRACTING INDEX OF A LIQUID.
US8233754B2 (en) Optical high voltage sensor
De Brabander et al. Integrated optical ring resonator with micromechanical diaphragms for pressure sensing
CA2233880C (en) Verdet constant temperature-compensated current sensor
FR2473729A1 (en) VOLTAGE MEASURING AND ELECTRIC FIELD DEVICE USING LIGHT
DE4416298A1 (en) Method and device for optically determining a physical quantity
US4531092A (en) Optoelectronic system for measuring electric or magnetic quantities utilizing a dual light beam of different wavelengths
EP1101124B1 (en) Polarimetric sensor for optical detection of a measured variable and utilization of said polarimetric sensor
US5255068A (en) Fringe pattern analysis of a birefringent modified spectrum to determine environmental temperature
US4608535A (en) Magnetic field and current measuring device using a Faraday cell with a thin electrically conductive film substantially covering the Faraday cell
US5304920A (en) Optical current transformer
EP0864098B1 (en) Process and device for measuring a quantity, in particular an electric current, with a high measurement resolution
DE3528294C2 (en)
JPH08136588A (en) Optical voltage sensor
RU2627987C1 (en) Optical ac voltage meter in high-voltage networks
RU2723238C1 (en) Faraday cell for current meters in high-voltage networks
JPH0260985B2 (en)
JPH0445813B2 (en)
KR101098666B1 (en) Optical Electric-Field Sensors
JP3235301B2 (en) Light voltage sensor
RU2829569C1 (en) Two-channel faraday cell for measuring alternating current in high-voltage networks
DE102023205899B3 (en) Optically based current measurement system and its use
Yoshino et al. Polygonal Faraday effect current sensor with polarization-preserving dielectric mirrors
Bayvel Electro-optic coefficient in BSO-type crystals with optical activity measurement and application to sensors