[go: up one dir, main page]

JPH08136574A - Semiconductor capacity-type accelerometer - Google Patents

Semiconductor capacity-type accelerometer

Info

Publication number
JPH08136574A
JPH08136574A JP6273300A JP27330094A JPH08136574A JP H08136574 A JPH08136574 A JP H08136574A JP 6273300 A JP6273300 A JP 6273300A JP 27330094 A JP27330094 A JP 27330094A JP H08136574 A JPH08136574 A JP H08136574A
Authority
JP
Japan
Prior art keywords
acceleration
voltage
load
portions
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6273300A
Other languages
Japanese (ja)
Inventor
Michio Nemoto
道夫 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP6273300A priority Critical patent/JPH08136574A/en
Publication of JPH08136574A publication Critical patent/JPH08136574A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE: To provide a semiconductor capacity-type accelerometer which is of simple structure and can detect an acceleration with high accuracy over a wide range from a low acceleration up to a high acceleration. CONSTITUTION: One pair of acceleration-detection-element parts 10A, 10B are formed on a silicon substrate 1 for a sensor-part body. The size and the mass of beam parts 1b in the acceleration-detection-element parts 10A, 10B are changed at a prescribed rate, the degree of the displacement of load parts 1a in an acceleration is made irregular, and a change in electric capacities regarding the respective acceleration-detection-element parts 10A, 10B is made diverse. Then, the electric capacities regarding the respective acceleration- detection-element parts 10A, 10B are converted separately into voltages by a signal processing circuit, and an acceleration-detection signal is output as a result in which a plurality of voltage-detection signals obtained by comparing respective voltage signals with respective intrinsic threshold values have been ORed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば自動車のエアバ
ックや姿勢制御装置等の加速度の検出を要する各種機器
に搭載される半導体容量式加速度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor capacitive acceleration sensor mounted on various devices such as an air bag of an automobile and an attitude control device which require detection of acceleration.

【0002】[0002]

【従来の技術】従来、この種の半導体容量式加速度セン
サにおけるセンサ部本体の例としては、図4に示すよう
な構成のものが挙げられる。このセンサ部本体は、シリ
コン基板1の一面(上面)と他面(下面)とにそれぞれ
上部絶縁基板2,下部絶縁基板3(通常これらにはパイ
レックスガラス等が用いられる)が静電接合等により重
ね合わされて接合されている。
2. Description of the Related Art Conventionally, as an example of a sensor section main body in a semiconductor capacitive acceleration sensor of this type, there is a structure shown in FIG. In this sensor unit body, an upper insulating substrate 2 and a lower insulating substrate 3 (usually Pyrex glass or the like are used) are electrostatically bonded to one surface (upper surface) and the other surface (lower surface) of the silicon substrate 1, respectively. It is superposed and joined.

【0003】このうち、シリコン基板1の中央近傍部分
には、異方性エッチング等の微細加工によって所定のパ
ターンが除去されることによって梁部1bとこれより延
在する荷重部1aとから成る加速度検出素子部10が形
成されている。この加速度検出素子部10に関して、荷
重部1aは加速されたときに生じる慣性力によって変位
する箇所となり、梁部1bは変位する荷重部1aを保持
する箇所となる。又、上部絶縁基板2及び下部絶縁基板
3には、それぞれ加速度検出素子部10に対向する局部
が除去されて段差を成すことにより、加速度検出素子部
10を収納可能な収納溝が形成されている。更に、上部
絶縁基板2における収納溝の壁部には加速度検出素子部
10の荷重部1aの表面から所定の間隔(ギャップ)を
有して離間されるように上部固定電極4が設けられ、下
部絶縁基板3における収納溝の壁部にも加速度検出素子
部10の荷重部1aの表面から所定の間隔を有して離間
されるように下部固定電極5が設けられている。このセ
ンサ部本体では、荷重部1a及び上部固定電極4の間
と、荷重部1a及び下部固定電極5の間とにそれぞれ静
電容量が形成される。
Among these, in a portion near the center of the silicon substrate 1, a predetermined pattern is removed by fine processing such as anisotropic etching to accelerate the beam portion 1b and a load portion 1a extending from the beam portion 1b. The detection element unit 10 is formed. With respect to the acceleration detecting element portion 10, the load portion 1a is a portion that is displaced by the inertial force generated when it is accelerated, and the beam portion 1b is a portion that holds the displaced load portion 1a. Further, in the upper insulating substrate 2 and the lower insulating substrate 3, a storage groove capable of storing the acceleration detecting element unit 10 is formed by removing local portions facing the acceleration detecting element unit 10 to form a step. . Further, an upper fixed electrode 4 is provided on the wall portion of the storage groove in the upper insulating substrate 2 so as to be separated from the surface of the load portion 1a of the acceleration detecting element portion 10 with a predetermined gap (gap). The lower fixed electrode 5 is also provided on the wall portion of the storage groove in the insulating substrate 3 so as to be separated from the surface of the load portion 1a of the acceleration detecting element portion 10 with a predetermined distance. In this sensor part main body, electrostatic capacitances are formed between the load part 1a and the upper fixed electrode 4 and between the load part 1a and the lower fixed electrode 5, respectively.

【0004】ところで、半導体容量式加速度センサはこ
のようなセンサ部本体の他、静電容量を周波数や電圧に
変換して加速度検出信号を出力する信号処理回路を含ん
でいる。加速度Gの検出は、半導体容量式加速度センサ
が加速された場合に生じる慣性力によって加速度検出素
子部10の荷重部1aが変位するときに静電容量が変化
するため、この静電容量の変化を信号処理回路で検出し
た結果を加速度検出信号として出力することによって行
われる。
By the way, the semiconductor capacitive acceleration sensor includes, in addition to such a sensor unit main body, a signal processing circuit for converting an electrostatic capacitance into a frequency or a voltage and outputting an acceleration detection signal. The acceleration G is detected because the electrostatic capacitance changes when the load portion 1a of the acceleration detecting element portion 10 is displaced by the inertial force generated when the semiconductor capacitive acceleration sensor is accelerated. This is performed by outputting the result detected by the signal processing circuit as an acceleration detection signal.

【0005】[0005]

【発明が解決しようとする課題】上述した半導体容量式
加速度センサの場合、センサ部本体における加速度検出
素子部が単一なものであるため、検出可能な加速度の範
囲(レンジ)は梁部や荷重部における寸法及び質量と、
荷重部と上部固定電極や下部固定電極との間に形成され
る空隙寸法とによって一義的に定められてしまう。
In the case of the semiconductor capacitive acceleration sensor described above, since the acceleration detecting element portion in the sensor body is single, the range of the acceleration that can be detected is the beam portion or the load. Dimensions and mass in the section,
It is uniquely determined by the size of the void formed between the load part and the upper fixed electrode or the lower fixed electrode.

【0006】このため、低い加速度を検出するための半
導体容量式加速度センサ(例えば1G〜2Gの加速度を
検出する姿勢制御用のものが挙げられる)と高い加速度
を検出するための半導体容量式加速度センサ(例えば4
0G〜50Gの加速度を検出するエアバック用のものが
挙げられる)とは設計的に大きく相違し、別個なものと
して構成(製造)されている。
For this reason, a semiconductor capacitive acceleration sensor for detecting low acceleration (for example, an attitude control sensor for detecting 1G to 2G acceleration) and a semiconductor capacitive acceleration sensor for detecting high acceleration are provided. (Eg 4
It is significantly different in design from the one for airbag for detecting acceleration of 0G to 50G) and is configured (manufactured) as a separate one.

【0007】即ち、従来の半導体容量式加速度センサ
は、単一の製品として広い範囲で加速度検出を行い得な
いという欠点がある。
That is, the conventional semiconductor capacitive acceleration sensor has a drawback that it cannot detect acceleration in a wide range as a single product.

【0008】本発明は、かかる問題点を解決すべくなさ
れたもので、その技術的課題は、簡素な構成で低加速度
から高加速度までの広い範囲で高精度に加速度検出を行
い得る半導体容量式加速度センサを提供することにあ
る。
The present invention has been made to solve the above problems, and its technical problem is a semiconductor capacitive type capable of highly accurately detecting acceleration in a wide range from low acceleration to high acceleration with a simple structure. An object is to provide an acceleration sensor.

【0009】[0009]

【課題を解決するための手段】本発明によれば、中央近
傍部分を所定のパターンで除去してそれぞれ梁部及び該
梁部より延在する荷重部から成る複数の加速度検出素子
部が該中央近傍部分に互いに隣接されて形成されたシリ
コン基板と、シリコン基板の一面と他面とにそれぞれ重
ね合わされて接合されると共に、複数の加速度検出素子
部に対向する局部を除去して該複数の加速度検出素子部
を収納可能な収納溝が形成された一対の絶縁基板と、複
数の加速度検出素子部の荷重部にそれぞれ対向し,且つ
該荷重部の表面からそれぞれ離間されるように一対の絶
縁基板におけるそれぞれの収納溝の壁部に設けられた複
数の固定電極とを含む半導体容量式加速度センサが得ら
れる。
According to the present invention, a plurality of acceleration detecting element portions each having a beam portion and a load portion extending from the beam portion are formed by removing the central portion in a predetermined pattern. The silicon substrates formed adjacent to each other in the vicinity of the silicon substrate are bonded to one surface and the other surface of the silicon substrate, respectively. A pair of insulating substrates formed with a storage groove capable of storing the detection element portion, and a pair of insulating substrates facing the load portions of the plurality of acceleration detection element portions and separated from the surfaces of the load portions. In this way, a semiconductor capacitive acceleration sensor including a plurality of fixed electrodes provided on the wall portions of the respective housing grooves can be obtained.

【0010】又、本発明によれば、上記半導体容量式加
速度センサにおいて、複数の加速度検出素子部は、それ
ぞれ梁部或いは荷重部における寸法及び質量を所定の割
合で相違させて成る半導体容量式加速度センサが得られ
る。
Further, according to the present invention, in the semiconductor capacitance type acceleration sensor, the plurality of acceleration detection element portions are semiconductor capacitance type acceleration in which the size and mass of the beam portion or the load portion are made to differ by a predetermined ratio. A sensor is obtained.

【0011】更に、本発明によれば、上記何れかの半導
体容量式加速度センサにおいて、複数の加速度検出素子
部に関する電気容量をそれぞれ電圧に変換して電圧信号
を出力する複数の容量/電圧変換回路と、電圧信号の電
圧値をそれぞれ固有な電圧閾値と比較して電圧検出信号
を出力する複数の電圧比較回路と、複数の電圧比較回路
からの電圧検出信号を論理和加算して加速度検出信号を
出力する論理和加算回路とを含む信号処理回路を備えた
半導体容量式加速度センサが得られる。
Further, according to the present invention, in any one of the semiconductor capacitance type acceleration sensors described above, a plurality of capacitance / voltage conversion circuits for converting electric capacitances relating to a plurality of acceleration detection element portions into voltages and outputting voltage signals. And a plurality of voltage comparison circuits that output the voltage detection signal by comparing the voltage value of the voltage signal with its own voltage threshold, and the voltage detection signals from the plurality of voltage comparison circuits are logically added to obtain the acceleration detection signal. A semiconductor capacitive acceleration sensor including a signal processing circuit including an output logical sum addition circuit can be obtained.

【0012】[0012]

【実施例】以下に実施例を挙げ、本発明の半導体容量式
加速度センサについて、図面を参照して詳細に説明す
る。
The semiconductor capacitive acceleration sensor of the present invention will be described in detail below with reference to the accompanying drawings.

【0013】図1は、本発明の一実施例に係る半導体容
量式加速度センサにおけるセンサ部本体の基本構成を示
したもので、(a)はその一部を透過並びに省略して示
した斜視図であり、(b)はその側面断面図である。
FIG. 1 shows a basic structure of a sensor body of a semiconductor capacitive acceleration sensor according to an embodiment of the present invention. FIG. And (b) is a side sectional view thereof.

【0014】このセンサ部本体も、シリコン基板1の上
面と下面とにそれぞれ上部絶縁基板2,下部絶縁基板3
が静電接合等により重ね合わされて接合されているが、
シリコン基板1の中央近傍部分にはそれぞれ梁部1b及
び荷重部1aから成る一対の加速度検出素子部10A,
10Bが互いに隣接されて形成されている。各加速度検
出素子部10A,10Bに関して、それぞれの梁部1b
における幅及び厚さt1は等しくなっているが、加速度
検出素子部10Aの梁部1bの長さL2は加速度検出素
子部10Bの梁部1bの長さL1よりも大きくなってい
る。即ち、加速度検出素子部10A,10Bにおける梁
部1bは寸法及び質量を所定の割合で相違させたものに
なっており、これによって加速度検出素子部10A,1
0Bにおける荷重部1aに対して加速された場合の変位
度合いにバラツキを持たせている。この結果、加速度検
出素子部10Aは高い変位感度を有して低加速度を検出
するために,加速度検出素子部10Bは低い変位感度を
有して高加速度を検出するために適用される。
This sensor unit body also has an upper insulating substrate 2 and a lower insulating substrate 3 on the upper surface and the lower surface of the silicon substrate 1, respectively.
Are superposed and joined by electrostatic joining, etc.,
In the vicinity of the center of the silicon substrate 1, a pair of acceleration detection element portions 10A each including a beam portion 1b and a load portion 1a,
10B are formed adjacent to each other. Regarding each acceleration detection element section 10A, 10B, each beam section 1b
Although the width and the thickness t1 are the same, the length L2 of the beam portion 1b of the acceleration detecting element portion 10A is longer than the length L1 of the beam portion 1b of the acceleration detecting element portion 10B. That is, the beam portions 1b of the acceleration detecting element portions 10A and 10B have different dimensions and masses at a predetermined ratio, and thus the acceleration detecting element portions 10A and 1B.
There is variation in the degree of displacement when the load portion 1a at 0B is accelerated. As a result, the acceleration detecting element unit 10A has high displacement sensitivity and detects low acceleration, and the acceleration detecting element unit 10B has low displacement sensitivity and is used to detect high acceleration.

【0015】又、上部絶縁基板2及び下部絶縁基板3に
は、それぞれ加速度検出素子部10A,10Bに対向す
る局部が除去されて段差を成すことにより、加速度検出
素子部10A,10Bを収納可能な収納溝が形成されて
いる。更に、上部絶縁基板2における収納溝の壁部には
加速度検出素子部10A,10Bの荷重部1aの表面か
らそれぞれ所定の間隔を有して離間されるように上部固
定電極4A,4Bが設けられ、下部絶縁基板3における
収納溝の壁部にも加速度検出素子部10A,10Bの荷
重部1aの表面からそれぞれ所定の間隔を有して離間さ
れるように下部固定電極5A,5Bが設けられている。
Further, the upper insulating substrate 2 and the lower insulating substrate 3 are capable of accommodating the acceleration detecting element portions 10A and 10B by removing local portions facing the acceleration detecting element portions 10A and 10B to form steps. A storage groove is formed. Further, upper fixed electrodes 4A and 4B are provided on the wall portion of the storage groove in the upper insulating substrate 2 so as to be spaced apart from the surface of the load portion 1a of the acceleration detection element portions 10A and 10B with a predetermined distance. The lower fixed electrodes 5A and 5B are also provided on the walls of the storage groove in the lower insulating substrate 3 so as to be spaced apart from the surfaces of the load portions 1a of the acceleration detection element portions 10A and 10B at predetermined intervals. There is.

【0016】このセンサ部本体においては、加速度検出
素子部10Aに関して、荷重部1a及び上部固定電極4
Aの間と、荷重部1a及び下部固定電極5Aの間とにそ
れぞれ静電容量が形成され、加速度検出素子部10Bに
関して、荷重部1a及び上部固定電極4Bの間と、荷重
部1a及び下部固定電極5Bの間とにそれぞれ静電容量
が形成される。
In this sensor unit body, with respect to the acceleration detecting element unit 10A, the load unit 1a and the upper fixed electrode 4 are provided.
Capacitances are respectively formed between A and between the load portion 1a and the lower fixed electrode 5A, and regarding the acceleration detection element portion 10B, between the load portion 1a and the upper fixed electrode 4B and between the load portion 1a and the lower fixed electrode. Capacitance is formed between the electrodes 5B.

【0017】このようなセンサ部本体を製造する場合、
先ずシリコン基板1の基材であるシリコン基板ウェハに
対し、所定のパターンを半導体リソグラフィーによって
所定数形成した後、マイクロ・マシニング手法によるエ
ッチングを行って各所定のパターンを除去することで寸
法及び質量が異なる梁部1bと荷重部1aとから成る一
対の加速度検出素子部10A,10Bを所定数形成して
おく。
When manufacturing such a sensor body,
First, a predetermined number of predetermined patterns are formed on a silicon substrate wafer, which is a base material of the silicon substrate 1, by semiconductor lithography, and then etching is performed by a micro-machining method to remove each predetermined pattern. A predetermined number of a pair of acceleration detection element portions 10A and 10B, which are composed of different beam portions 1b and load portions 1a, are formed.

【0018】一方、上部絶縁基板2及び下部絶縁基板3
の基材である一対のパイレックスガラスの絶縁基板ウェ
ハに対し、それぞれ収納溝用のパターンを所定数形成し
た後、数ミクロンの深さで段差を成すようにエッチング
を行ってそれぞれ収納溝を形成し、引き続いて各収納溝
の壁部にスパッタリング手法等によって一方のものには
上部固定電極4A,4Bとなり,且つ他方のものには下
部固定電極5A,5Bとなるように固定電極をそれぞれ
形成しておく。
On the other hand, the upper insulating substrate 2 and the lower insulating substrate 3
After forming a predetermined number of storage groove patterns on a pair of Pyrex glass insulating substrate wafers, which are the base materials of the above, each etching groove is formed to form a step at a depth of several microns to form each storage groove. Then, the fixed electrodes are formed on the walls of the respective storage grooves by sputtering or the like so that one of them becomes the upper fixed electrodes 4A and 4B and the other becomes the lower fixed electrodes 5A and 5B. deep.

【0019】次に、シリコン基板ウェハの上面及び下面
に対し、一対のパイレックスガラスの絶縁基板ウェハを
静電接合によって接合して積層体を得た後、最終的に積
層体をダイシング加工により切断して図1(a)及び
(b)に示したようなセンサ部本体を所定数得れば良
い。
Next, a pair of Pyrex glass insulating substrate wafers are electrostatically bonded to the upper and lower surfaces of the silicon substrate wafer to obtain a laminated body, and finally the laminated body is cut by dicing. Then, a predetermined number of sensor unit bodies as shown in FIGS. 1A and 1B may be obtained.

【0020】図2は、このようなセンサ部本体に適用さ
れる信号処理回路の基本構成をブロック図により示した
ものである。
FIG. 2 is a block diagram showing the basic structure of a signal processing circuit applied to such a sensor unit main body.

【0021】この信号処理回路は、加速度検出素子部1
0Aに接続され、この加速度検出素子部10Aに関する
電気容量CA を電圧に変換して電圧信号を出力する容量
/電圧(C/V)変換回路6Aと、この容量/電圧変換
回路6Aからの電圧信号の電圧値を所定の固有な電圧閾
値(スレッシュホールド電圧値)SLA と比較して第1
の電圧検出信号を出力する電圧比較回路7Aと、加速度
検出素子部10Bに接続され、この加速度検出素子部1
0Bに関する電気容量CB を電圧に変換して電圧信号を
出力する容量/電圧(C/V)変換回路6Bと、この容
量/電圧変換回路6Bからの電圧信号の電圧値を所定の
固有な電圧閾値(スレッシュホールド電圧値)SLB
比較して第2の電圧検出信号を出力する電圧比較回路7
Bと、第1の電圧検出信号及び第2の電圧検出信号を論
理和加算して加速度検出信号を出力する論理和加算回路
8とを含んでいる。
This signal processing circuit includes an acceleration detecting element section 1
0A, a capacitance / voltage (C / V) conversion circuit 6A that converts the electric capacitance C A of the acceleration detection element unit 10A into a voltage and outputs a voltage signal, and a voltage from the capacitance / voltage conversion circuit 6A. Comparing the voltage value of the signal with a predetermined specific voltage threshold (threshold voltage value) SL A , the first
Is connected to a voltage comparison circuit 7A that outputs a voltage detection signal of the acceleration detection element section 10B.
A capacitance / voltage (C / V) conversion circuit 6B that converts the electric capacitance C B relating to 0B to a voltage and outputs a voltage signal, and a voltage value of the voltage signal from the capacitance / voltage conversion circuit 6B to a predetermined specific voltage. A voltage comparison circuit 7 that outputs a second voltage detection signal by comparing it with a threshold value (threshold voltage value) SL B.
B, and a logical sum addition circuit 8 which logically sums the first voltage detection signal and the second voltage detection signal and outputs an acceleration detection signal.

【0022】この信号処理回路と上述したセンサ部本体
とを含む半導体容量式加速度センサは、加速された場合
に生じる慣性力の大きさに応じて加速度検出素子部10
A又は加速度検出素子部10A,10Bのそれぞれの荷
重部1aが自動的に選択されて変位するときに静電容量
A 又は静電容量CA ,CB が変化するため、この変化
を信号処理回路で検出した結果を加速度検出信号として
出力することによって、低加速度と高加速度とに関して
高精度に加速度検出を行うことができる。
The semiconductor capacitive acceleration sensor including this signal processing circuit and the above-mentioned sensor section main body has an acceleration detecting element section 10 according to the magnitude of the inertial force generated when it is accelerated.
A or capacitance C A or capacitance C A , C B changes when load portions 1 a of A or acceleration detection element units 10 A, 10 B are automatically selected and displaced. By outputting the result detected by the circuit as an acceleration detection signal, acceleration detection can be performed with high accuracy for low acceleration and high acceleration.

【0023】具体的に云えば、低加速度であれば慣性力
が小さいので、変位感度の高い加速度検出素子部10A
の荷重部1aのみが変位して静電容量CA が変化する。
このため、論理和加算回路8には容量/電圧変換回路6
A及び電圧比較回路7Aを経て出力される第1の電圧検
出信号が伝送され、結果として、論理和加算回路8から
は低加速度用の加速度検出素子部10Aに関しての加速
度検出信号が出力される。
Specifically, since the inertial force is small at low acceleration, the acceleration detecting element portion 10A having high displacement sensitivity.
Only the load part 1a of 1 is displaced and the electrostatic capacitance C A is changed.
For this reason, the logical sum addition circuit 8 includes the capacitance / voltage conversion circuit 6
The first voltage detection signal output through A and the voltage comparison circuit 7A is transmitted, and as a result, the logical addition circuit 8 outputs the acceleration detection signal for the acceleration detection element unit 10A for low acceleration.

【0024】一方、高加速度であれば慣性力が大きいの
で、変位感度の低い加速度検出素子部10Bの荷重部1
aも変位して静電容量CB が変化する。このため、論理
和加算回路8には容量/電圧変換回路6B及び電圧比較
回路7Bを経て出力される第2の電圧検出信号が第1の
電圧検出信号と共に論理和加算回路8に伝送され、結果
として、論理和加算回路8からは低加速度用の加速度検
出素子部10A及び高加速度用の加速度検出素子部10
Bに関しての加速度検出信号が出力される。
On the other hand, if the acceleration is high, the inertial force is large, so that the load section 1 of the acceleration detecting element section 10B having low displacement sensitivity.
a is also displaced and the electrostatic capacitance C B is changed. Therefore, the second voltage detection signal output through the capacitance / voltage conversion circuit 6B and the voltage comparison circuit 7B is transmitted to the logical sum addition circuit 8 together with the first voltage detection signal, and the result From the logical sum addition circuit 8, the acceleration detection element unit 10A for low acceleration and the acceleration detection element unit 10 for high acceleration are
An acceleration detection signal for B is output.

【0025】ところで、上述したセンサ部本体における
加速度検出素子部10A,10Bの構成は、例えば図3
に示すように変形することができる。即ち、このセンサ
部本体においても、シリコン基板1の中央近傍部分にそ
れぞれ梁部1b及び荷重部1aから成る一対の加速度検
出素子部10´A,10´Bが互いに隣接されて形成さ
れているが、各加速度検出素子部10´A,10´Bに
関しては、それぞれの梁部1bにおける幅,厚さt2,
長さが等しくなっており、加速度検出素子部10´Aの
荷重部1aにおける縦,横の平面的寸法及び質量が加速
度検出素子部10´Bの荷重部1aよりも大きくなって
いる。これにより、加速度検出素子部10´A,10´
Bにおける荷重部1aに対して加速された場合の変位度
合いにバラツキを持たせ、加速度検出素子部10´Aを
低加速度検出用,加速度検出素子部10´Bを高加速度
検出用としている。
By the way, the structure of the acceleration detecting element portions 10A and 10B in the above-mentioned sensor portion main body is, for example, as shown in FIG.
It can be modified as shown in. That is, also in this sensor part main body, a pair of acceleration detection element parts 10'A and 10'B each including the beam part 1b and the load part 1a are formed adjacent to each other in the vicinity of the center of the silicon substrate 1. Regarding the acceleration detection element portions 10'A and 10'B, the width and thickness t2 of each beam portion 1b are
The lengths are equal, and the vertical and horizontal plane dimensions and mass of the load portion 1a of the acceleration detection element portion 10'A are larger than those of the load portion 1a of the acceleration detection element portion 10'B. Thereby, the acceleration detection element units 10'A, 10 '
The degree of displacement of the load portion 1a in B when being accelerated is varied, and the acceleration detection element portion 10'A is for low acceleration detection and the acceleration detection element portion 10'B is for high acceleration detection.

【0026】因みに、このセンサ部本体の場合、加速度
検出素子部10´Aの荷重部1aの寸法が加速度検出素
子部10´Bの荷重部1aの寸法よりも大きいため、上
部絶縁基板2,下部絶縁基板3の収納溝の壁部にはそれ
ぞれ先の実施例の場合よりも寸法の大きな図示されない
上部固定電極4´A,下部固定電極5´Aが設けられる
ことになる。
Incidentally, in the case of this sensor unit main body, the dimension of the load portion 1a of the acceleration detecting element portion 10'A is larger than the dimension of the load portion 1a of the acceleration detecting element portion 10'B. An upper fixed electrode 4'A and a lower fixed electrode 5'A (not shown) having larger dimensions than those in the previous embodiments are provided on the wall of the storage groove of the insulating substrate 3.

【0027】従って、このセンサ部本体を製造する場
合、シリコン基板ウェハに対する各所定のパターンの除
去の際に梁部1bと寸法及び質量が異なる荷重部1aと
から成る一対の加速度検出素子部10´A,10´Bが
所定数形成され、しかも一対のパイレックスガラスの絶
縁基板ウェハに対する各収納溝の壁部に一方のものには
上部固定電極4´A,4Bとなり,且つ他方のものには
下部固定電極5´A,5Bとなるように固定電極をそれ
ぞれ形成しておく点以外は先のセンサ部本体と同様に製
造できる。
Therefore, when manufacturing this sensor unit body, a pair of acceleration detecting element units 10 'comprising the beam unit 1b and the load unit 1a having different dimensions and masses when the respective predetermined patterns are removed from the silicon substrate wafer. A, 10'B are formed in a predetermined number, and the upper fixed electrodes 4'A, 4B are provided on one side of the wall of each storage groove for a pair of insulating substrate wafers of Pyrex glass, and the lower side is provided on the other side. It can be manufactured in the same manner as the above sensor main body except that the fixed electrodes are formed so as to become the fixed electrodes 5'A and 5B.

【0028】尚、上述した例では何れもシリコン基板1
の中央近傍部分に一対の加速度検出素子部を設けた場合
を説明したが、加速度の検出範囲を更に細分化する場合
にはそれぞれ梁部及び荷重部から成る3つ以上の加速度
検出素子部を設け、信号処理回路側における容量/電圧
変換回路及び電圧比較回路の数を加速度検出素子部の数
に対応させた構成とすれば良い。
In each of the above examples, the silicon substrate 1 is used.
The case where a pair of acceleration detection element parts is provided in the vicinity of the center has been described. However, in order to further subdivide the acceleration detection range, three or more acceleration detection element parts each including a beam part and a load part are provided. The number of capacitance / voltage conversion circuits and voltage comparison circuits on the signal processing circuit side may correspond to the number of acceleration detection element units.

【0029】[0029]

【発明の効果】以上に述べた通り、本発明の半導体容量
式加速度センサによれば、センサ部本体のシリコン基板
に形成される加速度検出素子部を複数とし、これら複数
の加速度検出素子部における梁部,或いは荷重部におけ
る寸法及び質量を所定の割合で相違させて加速された場
合の荷重部の変位度合いにバラツキを持たせて各加速度
検出素子部に関する電気容量の変化を多様化させると共
に、信号処理回路で各加速度検出素子部に関する電気容
量をそれぞれ別個に電圧に変換し、それぞれの電圧信号
をそれぞれ固有な閾値と比較して得られた複数の電圧検
出信号を論理和加算した結果として加速度検出信号を出
力する構成としているので、簡素な構成で単一製品によ
り低加速度から高加速度までの広い範囲での加速度検出
が行い得るようになる。
As described above, according to the semiconductor capacitive acceleration sensor of the present invention, a plurality of acceleration detecting element portions are formed on the silicon substrate of the sensor body, and the beams in the plurality of acceleration detecting element portions are provided. Section or load section is made to have a different size and mass at a predetermined ratio, and the degree of displacement of the load section is varied in the case of acceleration to diversify the change in the electric capacitance of each acceleration detection element section, and Acceleration detection is performed as a result of logical sum addition of multiple voltage detection signals obtained by converting the electric capacitances related to each acceleration detection element unit to a voltage individually by the processing circuit and comparing each voltage signal with its own threshold Since it is configured to output signals, it is possible to detect acceleration in a wide range from low acceleration to high acceleration with a single product with a simple configuration. That.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る半導体容量式加速度セ
ンサにおけるセンサ部本体の基本構成を示したもので、
(a)はその一部を透過並びに省略して示した斜視図で
あり、(b)はその側面断面図である。
FIG. 1 is a diagram showing a basic configuration of a sensor body in a semiconductor capacitive acceleration sensor according to an embodiment of the present invention,
(A) is a perspective view showing a part of it in a transparent manner and omitting it, and (b) is a side sectional view thereof.

【図2】図1に示すセンサ部本体に適用される信号処理
回路の基本構成を示したブロック図である。
FIG. 2 is a block diagram showing a basic configuration of a signal processing circuit applied to the sensor unit main body shown in FIG.

【図3】図1に示すセンサ部本体の要部を変形した場合
の基本構成を示した斜視図である。
FIG. 3 is a perspective view showing a basic configuration when a main part of the sensor unit main body shown in FIG. 1 is modified.

【図4】従来の半導体容量式加速度センサにおけるセン
サ部本体の基本構成を示した側面断面図である。
FIG. 4 is a side sectional view showing a basic configuration of a sensor unit main body in a conventional semiconductor capacitive acceleration sensor.

【符号の説明】[Explanation of symbols]

1 シリコン基板 1a 荷重部 1b 梁部 2 上部絶縁基板 3 下部絶縁基板 4,4A,4B 上部固定電極 5,5A,5B,5´A 下部固定電極 6A,6B 容量/電圧(C/V)変換回路 7A,7B 電圧比較回路 8 論理和加算回路 10,10A,10B,10´A,10´B 加速度検
出素子部
1 Silicon substrate 1a Load part 1b Beam part 2 Upper insulating substrate 3 Lower insulating substrate 4, 4A, 4B Upper fixed electrode 5, 5A, 5B, 5'A Lower fixed electrode 6A, 6B Capacitance / voltage (C / V) conversion circuit 7A, 7B Voltage comparison circuit 8 OR addition circuit 10, 10A, 10B, 10'A, 10'B Acceleration detection element section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 中央近傍部分を所定のパターンで除去し
てそれぞれ梁部及び該梁部より延在する荷重部から成る
複数の加速度検出素子部が該中央近傍部分に互いに隣接
されて形成されたシリコン基板と、前記シリコン基板の
一面と他面とにそれぞれ重ね合わされて接合されると共
に、前記複数の加速度検出素子部に対向する局部を除去
して該複数の加速度検出素子部を収納可能な収納溝が形
成された一対の絶縁基板と、前記複数の加速度検出素子
部の荷重部にそれぞれ対向し,且つ該荷重部の表面から
それぞれ離間されるように前記一対の絶縁基板における
それぞれの収納溝の壁部に設けられた複数の固定電極と
を含むことを特徴とする半導体容量式加速度センサ。
1. A plurality of acceleration detecting element portions each having a beam portion and a load portion extending from the beam portion are formed adjacent to each other in the central portion by removing the central portion in a predetermined pattern. A storage that can store the silicon substrate and the one surface and the other surface of the silicon substrate, which are superposed on each other and bonded to each other, and local portions facing the plurality of acceleration detection element portions are removed to store the plurality of acceleration detection element portions. A pair of insulating substrates in which a groove is formed and a storage groove of each of the pair of insulating substrates that face the load portions of the plurality of acceleration detecting element portions and are spaced apart from the surfaces of the load portions. A semiconductor capacitive acceleration sensor including a plurality of fixed electrodes provided on a wall.
【請求項2】 請求項1記載の半導体容量式加速度セン
サにおいて、前記複数の加速度検出素子部は、それぞれ
前記梁部,或いは前記荷重部における寸法及び質量を所
定の割合で相違させて成ることを特徴とする半導体容量
式加速度センサ。
2. The semiconductor capacitive acceleration sensor according to claim 1, wherein the plurality of acceleration detection element portions are different in size and mass in the beam portion or the load portion at a predetermined ratio. A characteristic semiconductor capacitive acceleration sensor.
【請求項3】 請求項1又は2記載の半導体容量式加速
度センサにおいて、前記複数の加速度検出素子部に関す
る電気容量をそれぞれ電圧に変換して電圧信号を出力す
る複数の容量/電圧変換回路と、前記電圧信号の電圧値
をそれぞれ固有な電圧閾値と比較して電圧検出信号を出
力する複数の電圧比較回路と、前記複数の電圧比較回路
からの電圧検出信号を論理和加算して加速度検出信号を
出力する論理和加算回路とを含む信号処理回路を備えた
ことを特徴とする半導体容量式加速度センサ。
3. The semiconductor capacitive acceleration sensor according to claim 1, further comprising: a plurality of capacitance / voltage conversion circuits that convert the electric capacitances of the plurality of acceleration detection element units into voltages and output voltage signals. A plurality of voltage comparison circuits that output a voltage detection signal by comparing the voltage value of the voltage signal with a unique voltage threshold value, and an acceleration detection signal by logically adding the voltage detection signals from the plurality of voltage comparison circuits A semiconductor capacitive acceleration sensor comprising a signal processing circuit including an output logical sum addition circuit.
JP6273300A 1994-11-08 1994-11-08 Semiconductor capacity-type accelerometer Withdrawn JPH08136574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6273300A JPH08136574A (en) 1994-11-08 1994-11-08 Semiconductor capacity-type accelerometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6273300A JPH08136574A (en) 1994-11-08 1994-11-08 Semiconductor capacity-type accelerometer

Publications (1)

Publication Number Publication Date
JPH08136574A true JPH08136574A (en) 1996-05-31

Family

ID=17525944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6273300A Withdrawn JPH08136574A (en) 1994-11-08 1994-11-08 Semiconductor capacity-type accelerometer

Country Status (1)

Country Link
JP (1) JPH08136574A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100464297B1 (en) * 1998-03-04 2005-02-28 삼성전자주식회사 A variable capacitive microaccelerometer
WO2006035688A1 (en) * 2004-09-27 2006-04-06 The Yokohama Rubber Co., Ltd. Method and device for detecting acceleration, acceleration sensor module, and tire
JP2008039664A (en) * 2006-08-09 2008-02-21 Hitachi Metals Ltd Multirange acceleration sensor
US7584662B2 (en) 2003-03-03 2009-09-08 Yamaha Corporation Electrostatic-capacity-type acceleration sensor and acceleration measuring device therewith

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100464297B1 (en) * 1998-03-04 2005-02-28 삼성전자주식회사 A variable capacitive microaccelerometer
US7584662B2 (en) 2003-03-03 2009-09-08 Yamaha Corporation Electrostatic-capacity-type acceleration sensor and acceleration measuring device therewith
WO2006035688A1 (en) * 2004-09-27 2006-04-06 The Yokohama Rubber Co., Ltd. Method and device for detecting acceleration, acceleration sensor module, and tire
JP2006090919A (en) * 2004-09-27 2006-04-06 Yokohama Rubber Co Ltd:The Acceleration detection method and its device, acceleration sensor module, and tire
JP2008039664A (en) * 2006-08-09 2008-02-21 Hitachi Metals Ltd Multirange acceleration sensor

Similar Documents

Publication Publication Date Title
JP3327595B2 (en) 3-axis accelerometer
US7168317B2 (en) Planar 3-axis inertial measurement unit
US6591678B2 (en) Semiconductor dynamic quantity sensor for detecting dynamic quantity in two axes with X-shaped mass portion
US6694814B2 (en) Dynamic sensor having capacitance varying according to dynamic force applied thereto
US6662654B2 (en) Z-axis accelerometer
US7197928B2 (en) Solid-state gyroscopes and planar three-axis inertial measurement unit
JPH05142249A (en) Three dimensional acceleration sensor
CN107003333B (en) MEMS sensor and semiconductor packages
JPH08184609A (en) Symmetrical proof-mass accelerometer having self-diagnostic capability and manufacture thereof
US9366585B2 (en) Device for measuring force components, and method for its production
JPH08136574A (en) Semiconductor capacity-type accelerometer
JP2003248016A (en) Capacitance-type accelerometer
JP2001004658A (en) Dual-shaft semiconductor acceleration sensor and manufacture thereof
KR100464309B1 (en) Micro-accelerometer for detecting acceleration and manufacturing method thereof
EP0737864B1 (en) Force sensor
JP3333285B2 (en) Semiconductor sensor
JPH05264577A (en) Acceleration sensor, air bag apparatus and body controller using the same
JPH11248737A (en) Capacitance-type multi-axial acceleration sensor
JP2002071708A (en) Semiconductor dynamic quantity sensor
US7045371B2 (en) Foreign material removing method for capacitance type dynamic quantity sensor
JP4515069B2 (en) Semiconductor dynamic quantity sensor
JP4444005B2 (en) Semiconductor dynamic quantity sensor
Okada Development of tri-axial accelerometers using piezoresistance, electrostatic capacitance and piezoelectric elements
JPH06167400A (en) Mechanical quantity sensor
JPH06222075A (en) Acceleration sensor and air bag system and car body control system employing it

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115