[go: up one dir, main page]

JPH08136491A - Ambient air detecting apparatus - Google Patents

Ambient air detecting apparatus

Info

Publication number
JPH08136491A
JPH08136491A JP27005994A JP27005994A JPH08136491A JP H08136491 A JPH08136491 A JP H08136491A JP 27005994 A JP27005994 A JP 27005994A JP 27005994 A JP27005994 A JP 27005994A JP H08136491 A JPH08136491 A JP H08136491A
Authority
JP
Japan
Prior art keywords
atmosphere
current
sensor
humidity
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27005994A
Other languages
Japanese (ja)
Other versions
JP3331070B2 (en
Inventor
Junji Manaka
順二 間中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Seiki Co Ltd
Original Assignee
Ricoh Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Seiki Co Ltd filed Critical Ricoh Seiki Co Ltd
Priority to JP27005994A priority Critical patent/JP3331070B2/en
Publication of JPH08136491A publication Critical patent/JPH08136491A/en
Application granted granted Critical
Publication of JP3331070B2 publication Critical patent/JP3331070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE: To prevent gases and water from adhering to an ambient air sensor and precisely detect the ambient air in the environment by heating the ambient air sensor at low temperature by applying small electric current at normal time. CONSTITUTION: Small current is applied to an atmospheric sensor to carry out heat radiation at as low temperature as about 100 deg.C, so that adhesion of gases and water to the atmospheric sensor which sometimes causes a detection error can be prevented. Detection of ambient temperature is carried out during the low temperature heating period and detection of the atmosphere is carried out during the time when the atmospheric sensor is heated to high temperature. In this ways, heating to high temperature can be done only by increasing the intensity of the current to be applied to the atmospheric sensor. In the case, for example, 2mA current is for the time of low temperature heating and 8mA current for the time of high temperature heating, a rated current power source with 6mA should be prepared and detection can be carried out only by turning the rated current power source on or off. Consequently, not like a conventional one, a switching circuit is made no need and a pause period in which gases and water adheres to the atmospheric sensor can be shortened. As a result, the atmosphere in the environment can be detected precisely.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、雰囲気検出装置に関
し、より詳細には、測定雰囲気中で加熱される抵抗体セ
ンサを有し、該センサに周囲雰囲気に感応しない程度の
小電流を流して周囲温度に関連した出力電圧を検出する
とともに、該センサに周囲雰囲気に感応する比較的大き
な電流を流して周囲温度及び周囲雰囲気に関連した出力
電圧を検出し、両出力電圧の差より周囲雰囲気を検出す
るようにした雰囲気検出装置に係り、例えば、温度計,
湿度計,ガス濃度計,赤外線計,分圧計,流量計,真空
計、露点計や熱線式風速計などの各種計器に利用できる
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an atmosphere detecting device, and more particularly, it has a resistor sensor which is heated in a measuring atmosphere, and a small current which is insensitive to the surrounding atmosphere is applied to the sensor. In addition to detecting the output voltage related to the ambient temperature, a relatively large current sensitive to the ambient atmosphere is passed through the sensor to detect the output voltage related to the ambient temperature and the ambient atmosphere. Related to an atmosphere detecting device for detecting, for example, a thermometer,
It can be used for various instruments such as hygrometers, gas densitometers, infrared meters, partial pressure gauges, flow meters, vacuum gauges, dew point meters and hot-wire anemometers.

【0002】[0002]

【従来の技術】混合気体雰囲気に含まれる所定の気体濃
度を、当該所定気体の分子量に応じて変化する熱伝導率
の差に基づいて熱的に検出する方法が知られている。こ
の原理を利用した雰囲気計の中で、特に、湿度計は、利
用範囲が拡く、半導体等電子機器部品,光学精密機器,
繊維,食品等各工業面のプロセスにおける湿度制御用と
しての品質管理面や,病院,ビル等の環境管理面の検出
端として広く利用されているので、以下、雰囲気計を湿
度計に適用した場合を例に説明するが、本発明は湿度計
に限定されるものではなく、混合気体濃度の異なる一般
の雰囲気計、具体的には、前述の各種計器に関するもの
である。而して、例えば、湿度計の湿度検出の原理とし
ては、大別して湿気によって電気的および機械的に変化
する変化量を検出するものがあるが電気的および機械的
なものでも各種の原理に基づくものがある。
2. Description of the Related Art There is known a method of thermally detecting a predetermined gas concentration contained in a mixed gas atmosphere based on a difference in thermal conductivity which changes according to the molecular weight of the predetermined gas. Among the atmosphere meters that utilize this principle, hygrometers have a particularly wide range of applications, such as electronic equipment parts such as semiconductors, optical precision equipment,
It is widely used as a detection end for quality control for humidity control in industrial processes such as textiles and foods, and for environmental control in hospitals, buildings, etc. However, the present invention is not limited to a hygrometer, but relates to a general atmosphere meter having different mixed gas concentrations, specifically, the above-mentioned various instruments. Thus, for example, the principles of humidity detection of hygrometers are roughly classified into those that detect the amount of change that changes electrically and mechanically due to humidity, but both electrical and mechanical ones are based on various principles. There is something.

【0003】この中で気体の熱伝導率を利用した湿度計
は応答性が優れ、しかも信頼性が高いことが知られてい
る。等方性物体内の所定断面の上下面を通り法線方向に
単位時間に流れる熱量は、法線方向の温度傾斜と断面積
に比例するが、この比例定数が熱伝導率である。気体の
熱伝導率は定圧比熱の関数であり、且つ定圧比熱は気体
分子量の関数である。従って、空気だけの場合と、空気
中に分子量の異なるガス成分や水分が含まれている場合
とでは熱伝導率が異なる。気体の熱伝導率の違いを利用
した湿度計は、加熱された抵抗体から雰囲気中に放熱さ
れる放熱量の差によって生ずる抵抗体の抵抗値変化量か
ら湿度を求めるものである。
Among these, a hygrometer utilizing the thermal conductivity of gas is known to have excellent responsiveness and high reliability. The amount of heat that flows through the upper and lower surfaces of a predetermined cross section in the isotropic body in the normal direction in a unit time is proportional to the temperature gradient in the normal direction and the cross-sectional area, and this proportional constant is the thermal conductivity. The thermal conductivity of a gas is a function of the constant pressure specific heat, and the constant pressure specific heat is a function of the gas molecular weight. Therefore, the thermal conductivity differs between the case where only air is used and the case where the air contains gas components or water having different molecular weights. A hygrometer utilizing the difference in thermal conductivity of gas obtains humidity from the amount of change in resistance value of a resistor caused by the difference in the amount of heat released from a heated resistor into the atmosphere.

【0004】図2は、本出願人が先に提案した前述の雰
囲気検出装置の一例としての湿度計の原理を説明するた
めの図で、説明を解り易くするために、従来の湿度計の
湿度測定原理と対比して説明する。図2において、白抜
き矢印(a1)→(b1)→(c1)→(d1)は本出願人
による湿度測定のフロー、(a1)→(b1),(a2
→(b2)→(b3)は従来の湿度測定のフローを示す。
図2(a1)は、湿度検出素子の構造図、図2(a2)は
温度補償素子構造図であり、図中、1は抵抗体(センサ
と呼ぶ)、2は封止キャップ、3はメッシュ、4は均熱
板(ベース)、5はリードピンで、図2(a1)に示し
た湿度検出素子は、高熱伝導材のベース4にハーメチッ
クシールを介して所定の微小間隔を隔て貫通配設された
平行なリードピン5の先端に、検出素子1を溶着してメ
ッシュ3を有する封止キャップ2をベース4に固着した
ものである。検出素子1としては、正の温度特性を有す
る、例えば、白金、タングステン、ニクロム、カンタ
ル、又は負の温度係数を有する、例えば、SiC(炭化
けい素)、TaN(窒化タンタル)等の微細線もしくは
薄膜、サーミスタ等の微小感温素子が接続される。
FIG. 2 is a diagram for explaining the principle of a hygrometer as an example of the above-mentioned atmosphere detecting device proposed by the applicant of the present invention. In order to make the explanation easy to understand, FIG. 2 shows the humidity of a conventional hygrometer. Description will be made in comparison with the measurement principle. In FIG. 2, white arrows (a 1 ) → (b 1 ) → (c 1 ) → (d 1 ) are flow charts of humidity measurement by the applicant, (a 1 ) → (b 1 ), (a 2 ).
→ (b 2 ) → (b 3 ) shows the flow of the conventional humidity measurement.
FIG. 2 (a 1 ) is a structural diagram of the humidity detecting element, and FIG. 2 (a 2 ) is a structural diagram of the temperature compensating element. In the figure, 1 is a resistor (called a sensor), 2 is a sealing cap, 3 2 is a mesh, 4 is a soaking plate (base), and 5 is a lead pin. The humidity detecting element shown in FIG. 2 (a 1 ) penetrates the base 4 made of a high thermal conductive material at a predetermined minute interval via a hermetic seal. The detection element 1 is welded to the tips of the parallel lead pins 5 arranged, and the sealing cap 2 having the mesh 3 is fixed to the base 4. The detection element 1 has a positive temperature characteristic, for example, platinum, tungsten, nichrome, kanthal, or a negative temperature coefficient, for example, a fine wire such as SiC (silicon carbide), TaN (tantalum nitride), or the like. A micro temperature sensitive element such as a thin film or a thermistor is connected.

【0005】上述の検出素子1の抵抗値は、低温又は高
温で加熱されたとき、周囲温度および湿度に応じて変化
するものであり、その熱容量は非常に小さくしてある。
このため、検出素子1は微細線又は微小体からなる微小
感温素子をマイクロブリッジ構造で使用し、加熱時は微
小時間で所定の熱平衡温度に到達し、加熱電力を停止し
たときは、ただちに周囲温度に戻るようにしている。
The resistance value of the above-mentioned detection element 1 changes according to the ambient temperature and humidity when it is heated at a low temperature or a high temperature, and its heat capacity is extremely small.
For this reason, the detection element 1 uses a micro temperature sensitive element composed of a fine wire or a micro body in a micro bridge structure, reaches a predetermined thermal equilibrium temperature in a short time during heating, and immediately stops the ambient temperature when heating power is stopped. I try to return to the temperature.

【0006】また、図2(a2)に示した温度補償素子
1は、図2(a1)に示した湿度検出素子1と同一規格
で、メッシュのない封止キャップで検出素子1を密閉し
たものである。以下、以上の構造をもった図2(a1
に示した湿度検出素子と図2(a2)に示した温度補償
素子を用いた従来の湿度検出原理と、図2(a1)に示
した湿度検出素子のみを用いた、本出願人が先に提案し
た湿度検出原理について説明する。
Further, the temperature compensating element 1 shown in FIG. 2 (a 2 ) has the same standard as the humidity detecting element 1 shown in FIG. 2 (a 1 ) and the detecting element 1 is hermetically sealed with a mesh-less sealing cap. It was done. Hereinafter, FIG. 2 (a 1 ) having the above structure
The conventional and humidity detection principle using the temperature compensation device shown in humidity sensing element and Fig. 2 (a 2) as shown, using only humidity sensing element shown in FIG. 2 (a 1), the present applicant The previously proposed humidity detection principle will be described.

【0007】図3(a),(b)は、湿度検出素子の電圧
電流特性図であり、図3(a)は、湿度特性を示す図
で、図2(a1)の湿度検出素子において、周囲温度が
30℃一定で湿度が200g/m3の時の電圧電流特性
1(点線)と0g/m3の時の電圧電流特性A2(実
線)を示す特性曲線、図3(b)は温度特性を示す図
で、湿度0g/m3における温度20℃の時の電圧電流
特性B1(点線)、30℃の時の電圧電流特性B2(実
線)、40℃の時の電圧電流特性B3(点線)を示す特
性曲線で、横軸に検出素子印加電圧、縦軸に検出素子印
加電流を示す。
FIGS. 3 (a) and 3 (b) are voltage-current characteristic diagrams of the humidity detecting element, and FIG. 3 (a) is a diagram showing the humidity characteristic, in the humidity detecting element of FIG. 2 (a 1 ). , characteristic curve showing a voltage-current characteristic a 2 (solid line) when the voltage-current characteristic a 1 (dotted line) and 0 g / m 3 when the humidity is 200 g / m 3 at ambient temperature 30 ° C. constant, FIG. 3 (b ) Is a diagram showing temperature characteristics, and the voltage-current characteristics B 1 (dotted line) at a temperature of 20 ° C., the voltage-current characteristics B 2 (solid line) at a temperature of 30 ° C., and the voltage at 40 ° C. at a humidity of 0 g / m 3 A characteristic curve showing the current characteristic B 3 (dotted line), where the horizontal axis represents the detection element applied voltage and the vertical axis represents the detection element applied current.

【0008】図3(a)の湿度特性を示す30℃におけ
る電圧電流曲線では、湿度検出素子への印加電流が2m
A以下の小さい加熱電流では、A1曲線とA2曲線とが略
々重なって対応する電圧は約0.8V以下を示してお
り、この低電流加熱時では、湿度の影響を受けない温度
特性のみを示し、検出素子印加電流が8mAの大電流で
は、A1曲線は略3V(ボルト)、A2曲線は略4Vを示
し、大電流加熱では湿度が大きい程検出素子に生ずる電
圧が小さくなり、湿度に対応した電圧を得ることができ
る。
In the voltage-current curve at 30 ° C. showing the humidity characteristic of FIG. 3A, the applied current to the humidity detecting element is 2 m.
At a small heating current of A or less, the corresponding voltage is about 0.8 V or less because the A 1 curve and the A 2 curve are substantially overlapped with each other, and the temperature characteristics not affected by humidity at the time of this low current heating. For a large current of 8 mA applied to the detection element, the A 1 curve shows about 3 V (volts) and the A 2 curve shows about 4 V. With high current heating, the higher the humidity, the smaller the voltage generated in the detection element. , The voltage corresponding to the humidity can be obtained.

【0009】図3(b)の温度特性を示す湿度0g/m
3における電圧電流曲線では、検出素子の周囲には湿度
がないので、検出素子に定電流、例えば、2mAを印加
した場合、検出素子の両端に生ずる電圧は曲線B1
2,B3に示すように周囲温度が高い程高く、周囲温度
が低い程小さいことを示めす。
Humidity 0 g / m showing the temperature characteristics of FIG. 3 (b)
In the voltage-current curve in 3, since there is no humidity around the detecting element, when a constant current, for example, 2 mA is applied to the detecting element, the voltage generated across the detecting element is the curve B 1 ,
As shown in B 2 and B 3, it is shown that the higher the ambient temperature, the higher the temperature, and the lower the ambient temperature, the lower the temperature.

【0010】図2において、図2(b1),(b2),(b3),
(c1),(d1)は、共に、横軸に絶体湿度(g/m3)、
縦軸に出力電圧(V)を示したグラフである。図2(b
1)は、図2(a1)に示した湿度検出素子1に8mAの
電流を印加したときの周囲温度が20℃,30℃,40
℃における絶対湿度と出力電圧との関係を示した直線B
11,B12およびB13を示した図であり、出力電圧と絶体
湿度とは負の比例関係にあり、周囲温度に比例する。
In FIG. 2, in FIG. 2 (b 1 ), (b 2 ), (b 3 ),
(c 1 ), (d 1 ) are the absolute humidity (g / m 3 ) on the horizontal axis,
6 is a graph showing the output voltage (V) on the vertical axis. 2 (b)
1), the ambient temperature is 20 ° C. when applying a current of 8mA humidity detecting device 1 shown in FIG. 2 (a 1), 30 ℃ , 40
Line B showing the relationship between absolute humidity at ℃ and output voltage
11 is a diagram showing B 12, and B 13 , in which the output voltage and the absolute humidity have a negative proportional relationship and are proportional to the ambient temperature.

【0011】一方、図2(a2)に示した温度補償素子
では、図2(b2)に示すように、出力電圧は、当然乍
ら絶対湿度に無関係で周囲温度のみに比例して変化す
る。周囲温度が20℃,30℃,40℃の直線を各々B
21,B22およびB23とする。
On the other hand, in the temperature compensating element shown in FIG. 2 (a 2 ), as shown in FIG. 2 (b 2 ), the output voltage naturally changes irrespective of absolute humidity in proportion to only the ambient temperature. To do. Straight lines with ambient temperatures of 20 ℃, 30 ℃, and 40 ℃ are B
21 , B 22 and B 23 .

【0012】図2(b1)と図2(b2)とから同一の周
囲温度での絶体湿度に対応する出力を減算する。直線B
13,からB23を、B12からB22を、B11からB21を各々
減算すると、図2(b3)に示すように、周囲温度によ
らず、絶体湿度のみに負の比例関係にある絶体湿度と出
力電圧との関係直線B33が得られる。
The output corresponding to absolute humidity at the same ambient temperature is subtracted from FIGS. 2 (b 1 ) and 2 (b 2 ). Straight line B
13, the B 23 from the B 22 from B 12, when each subtracting B 21 from B 11, as shown in FIG. 2 (b 3), regardless of the ambient temperature, the negative proportional only to the absolute humidity A straight line B 33 between the absolute humidity and the output voltage is obtained.

【0013】図2(a1)に示した湿度計においては、
検出素子1を低電流、例えば1mAで駆動したときは、
図2(a),(b)に示すように、絶対湿度に影響され
ず周囲湿度20℃,30℃および40℃のみに比例した
出力電圧が得られ、図2(c1)に示す平行直線c1,c
2,c3が得られる。これは図2(b2)と同一の関係を
示すものであり、図2(c1)と図2(b1)の関係とか
ら、図2(d1)に示すように、図2(b3)の特性と等
しい絶対湿度のみに負の比例関係にある出力直線B0
得られる。
In the hygrometer shown in FIG. 2 (a 1 ),
When the detection element 1 is driven with a low current, for example, 1 mA,
As shown in FIGS. 2 (a) and 2 (b), an output voltage proportional to only ambient humidity of 20 ° C., 30 ° C. and 40 ° C. is obtained without being affected by the absolute humidity, and the parallel straight lines shown in FIG. 2 (c 1 ). c 1 , c
2 and c 3 are obtained. This represents the same relationship as FIG. 2 (b 2), and a relation of FIG. 2 (c 1) and 2 (b 1), as shown in FIG. 2 (d 1), 2 ( An output straight line B 0 having a negative proportional relationship is obtained only in the absolute humidity equal to the characteristic of b 3 ).

【0014】以上の説明において、湿度検出素子を定電
流で駆動した場合について述べたが、検出素子1の熱容
量は極めて小さく応答性が優れているので時間幅の短い
パルス電流で駆動してもよい。また、定電圧又は定電圧
パルス駆動でもよい。
In the above description, the case where the humidity detecting element is driven by a constant current has been described. However, since the heat capacity of the detecting element 1 is extremely small and the response is excellent, it may be driven by a pulse current having a short time width. . Alternatively, constant voltage or constant voltage pulse driving may be used.

【0015】図4は、図2(a1)に示した湿度検出素
子の駆動方式を説明するための図であり、図4(a1
はパルス電流駆動方式、図4(a2)はパルス電圧駆動
方式を示す。即ち、この湿度検出素子は、図3(a)の
湿度特性曲線および図2(b)の温度特性曲線に従った
駆動であれば駆動パルスが定電流の場合でも定電圧の場
合でもよい。図4(a1)に示した定電流パルス駆動の
場合は、定電流パルス電源6と検出素子1とを直列接続
して検出素子1の両端電圧Voutを検出する。図4
(a2)のパルス電圧駆動方式においては、定電圧パル
ス電源7と検出抵抗R0および検出素子1とを直列接続
して検出抵抗R0の両端電圧Voutを検出する。何れ
の場合も検出素子1に対し、駆動時の温度値が異なる2
種類の定電流又は定電圧パルスが印加される。
[0015] Figure 4 is a diagram for explaining a driving method of the humidity detecting element shown in FIG. 2 (a 1), 4 (a 1)
Shows a pulse current drive system, and FIG. 4 (a 2 ) shows a pulse voltage drive system. That is, the humidity detecting element may be driven by a constant current or a constant voltage as long as it is driven according to the humidity characteristic curve of FIG. 3A and the temperature characteristic curve of FIG. 2B. In the case of the constant current pulse drive shown in FIG. 4 (a 1 ), the constant current pulse power supply 6 and the detection element 1 are connected in series to detect the voltage Vout across the detection element 1. FIG.
In the pulse voltage driving method of (a 2 ), the constant voltage pulse power supply 7 and the detection resistor R 0 and the detection element 1 are connected in series to detect the voltage Vout across the detection resistor R 0 . In either case, the temperature value during driving is different from that of the detecting element 1.
A type of constant current or constant voltage pulse is applied.

【0016】図4(b)は、図4(a1)電流パルス駆
動時における電流パルス列の一例を示す図で、検出素子
1に対し時間t1から時間t2に到る間は、波高値2m
A,パルス幅50ms(ミリ秒)の小パルス電流を印加
し、続いて、時間t2からt3に到る間は、波高値8mA
でパルス幅50msの大パルス電流を印加する。時間t
3からt4に到る100msの休止時間を置いて、再び同
じ時間幅の2mA,8mAの小電流パルスと大電流パル
スによる電流パルス列により駆動される。
FIG. 4 (b) is shown in FIG. 4 (a).1) Current pulse drive
FIG. 3 is a diagram showing an example of a current pulse train during operation, in which the detection element
Time t for 11From time t2While reaching the peak value of 2m
A, small pulse current of pulse width 50ms (millisecond) is applied
And then time t2To t3Peak value of 8mA
Applies a large pulse current with a pulse width of 50 ms. Time t
3To tFourAfter a pause of 100 ms to reach
2mA and 8mA small current pulse and large current pulse of the same time width
Driven by a current pulse train.

【0017】図4(c)は、図4(b)に示した電流パ
ルス駆動により検出素子1間に発生する電圧(Vou
t)の電圧パルス列を示すもので、電流パルスの立ち上
げにおいては時間遅れを伴う電圧パルスが生ずる。この
ため、電圧検出は電圧値が安定したc1,c2の時間幅内
で行うことが必要である。尚、図4(b)に示した駆動
電流パルス列の時間t3〜t4間の休止期間は、8mAの
パルス電流印加後、検出素子1の発熱温度が略周囲温度
になる時間幅を選んだものである。
FIG. 4C shows a voltage (Vou) generated between the detection elements 1 by the current pulse driving shown in FIG. 4B.
The voltage pulse train of t) is shown, and a voltage pulse with a time delay occurs at the rise of the current pulse. Therefore, it is necessary to detect the voltage within the time width of c 1 and c 2 where the voltage value is stable. In the rest period between the times t 3 and t 4 of the drive current pulse train shown in FIG. 4B, the time width in which the heat generation temperature of the detection element 1 becomes substantially the ambient temperature after applying the pulse current of 8 mA was selected. It is a thing.

【0018】図4(b)においては、小電流パルスと大
電流パルスとを連続して検出素子1に印加したが、小電
流を印加してから所定の安定時間を経てから大電流を印
加することでもよいが、各駆動電流パルス毎に時間遅れ
が生ずるので高応答性の検出はできない。これに対して
図4(b)に示した駆動方法によると、図4(d)に点
線d1にて示すように、大電流パルスを印加したときの
出力電圧の応答性が小電流駆動による予熱のため高めら
れる。
In FIG. 4B, the small current pulse and the large current pulse are continuously applied to the detecting element 1. However, a large current is applied after a predetermined stabilization time has elapsed after the small current was applied. However, since a time delay occurs for each drive current pulse, high response cannot be detected. On the other hand, according to the driving method shown in FIG. 4B, the response of the output voltage when a large current pulse is applied is small current driving as shown by the dotted line d 1 in FIG. 4D. Increased due to preheating.

【0019】図5(a),(b)は、大電流パルス駆動連
続して小電流パルス電流駆動したときの電流パルス波形
および電圧パルス出力波形を示したもので、最初、時間
幅T1で温湿度検出のための大電流パルス(8mA)で
駆動し、その後連続して時間幅T2の温度検出の小電流
パルス(2mA)で駆動した場合、出力電圧は図5
(b)のB1に示すように、大電流パルス駆動時の立ち
上げの時間遅れが大きくなり、同様に、B2に示すよう
に、立ち下げ時の時間遅れも大きくなるので、小電流パ
ルス駆動時の出力電圧安定時間が長くなり応答性のすぐ
れた検出ができなくなる。
FIGS. 5 (a) and 5 (b) show the current pulse waveform and the voltage pulse output waveform when the large current pulse drive is continuously driven by the small current pulse current. First, in the time width T 1 . When driven with a large current pulse (8 mA) for temperature / humidity detection and then continuously driven with a small current pulse (2 mA) for temperature detection having a time width T 2 , the output voltage is as shown in FIG.
As shown by B 1 in (b), the time delay of the start-up at the time of driving the large current pulse becomes large, and similarly, the time delay at the time of the fall becomes large as shown by B 2 , so that the small current pulse The output voltage stabilization time during driving becomes long and detection with excellent responsiveness cannot be performed.

【0020】図6(a),(b),(c),(d)は、図
2(a1)に示した湿度検出素子の環境変化と出力特性
との関係を説明するための図で、図6(a)は時間軸上
の温度変化、図6(b)は時間軸上の湿度変化、図6
(c)は印加電流波形、図6(d)は上記温度変化およ
び湿度変化に対応した印加電流による検出出力電圧波形
を示す。
FIGS. 6A, 6B, 6C and 6D are views for explaining the relationship between the environmental change and the output characteristic of the humidity detecting element shown in FIG. 2A 1 . 6A is a temperature change on the time axis, FIG. 6B is a humidity change on the time axis, and FIG.
6C shows an applied current waveform, and FIG. 6D shows a detected output voltage waveform by the applied current corresponding to the temperature change and the humidity change.

【0021】印加電流は所定休止時間をもち2mAの小
電流パルスに続いて印加する8mAの大電流パルスから
なる連続したパルス電流で、このパルス電流は時間t0
〜t1,t1〜t2,t2〜t3の間に1回出力される。一
方、温度変化は図6(a)に示すように一定温度30℃
から時間t1〜t2の期間に20℃,30℃,40
℃に変化し、その他の期間では30℃に保たれているも
のとする。また、湿度変化は図6(b)に示すように一
定湿度20g/m3から時間t2〜t3の期間に10
g/m3又は30g/m3に変化するものである。
The applied current is a continuous pulse current consisting of a large current pulse of 8 mA which is applied subsequently to a small current pulse of 2 mA with a predetermined rest time, and this pulse current is time t 0.
It is outputted once during ~ t 1 , t 1 ~ t 2 and t 2 ~ t 3 . On the other hand, the temperature change is a constant temperature of 30 ° C as shown in Fig. 6 (a).
From the time t 1 to t 2 at 20 ° C., 30 ° C., 40
It is assumed that the temperature changes to 30 ° C and is kept at 30 ° C during other periods. In addition, as shown in FIG. 6B, the change in humidity is 10 from the constant humidity of 20 g / m 3 to the period of time t 2 to t 3.
It changes to g / m 3 or 30 g / m 3 .

【0022】従って、時間t0〜t1の期間では温度、湿
度共に一定、時間t1〜t2の期間では温度のみ変化し時
間t2〜t3の期間では湿度のみ変化している。この結
果、検出出力電圧波形は、図6(d)に示すように時間
0〜t1の期間では温度、湿度一定に対応する出力電圧
となり、時間t1〜t2の期間では、湿度一定であり温度
のみに比例した出力電圧となり、大電流駆動時の出力電
圧から小電流駆動時の出力電圧を減算した減算値は一定
となり、この場合、湿度影響はない。これに対して、湿
度のみが変化する時間t2〜t3の期間では、小電流駆動
時の出力電圧は湿度,,の場合でも一定で、大電
流駆動時のみ湿度影響を受け変化する。このときの出力
電圧は、湿度の大きいでは小さく、湿度の小さいで
大きい電圧となる。次に、このような演算を行う駆動回
路に基づいて説明する。
[0022] Thus, in a period of time t 0 ~t 1 temperature, constant humidity both are changing only humidity for a period of time changes only the temperature t 2 ~t 3 during a period of time t 1 ~t 2. As a result, the detected output voltage waveform becomes an output voltage corresponding to a constant temperature and humidity during the period from time t 0 to t 1 as shown in FIG. 6D, and a constant humidity during the period from time t 1 to t 2. Therefore, the output voltage is proportional to only the temperature, and the subtraction value obtained by subtracting the output voltage during the small current driving from the output voltage during the large current driving becomes constant. In this case, there is no humidity influence. In contrast, in a period of time t 2 ~t 3 only humidity changes, the output voltage at the time of a small current drive is constant even when the humidity ,, changes undergone humidity affects only the time of large current driving. The output voltage at this time is small when the humidity is high, and is large when the humidity is low. Next, a description will be given based on a drive circuit that performs such calculation.

【0023】図7は、図2(a1)に示した検出素子を
用いて湿度測定を行う場合の駆動回路の一例を示すブロ
ック図で、図中、11は一定の電流を検出素子(セン
サ)1に供給する回路(定電流回路)、12は係数設定
回路、13はホールド回路、14は減算回路、15は出
力端子で、定電流回路11には、検出素子1と一端が接
地された基準抵抗Rとの直列抵抗が負荷され、基準抵抗
Rの電圧は定電流回路11の反転入力端に帰還されてお
り、非反転入力端にはa,bおよびc接点を有するスイ
ッチSW1が接続される。スイッチSW1のa接点には、
基準電圧VREF1,b接点にはVREF2,c接点は接地さ
れ、基準電圧VREF1およびVREF2は、 VREF1=2R(mV) (1) VREF2=8R(mV) (2) が設定されている。
FIG. 7 is a block diagram showing an example of a drive circuit in the case of performing humidity measurement using the detecting element shown in FIG. 2 (a 1 ). In FIG. 7, 11 is a detecting element (sensor) for detecting a constant current. ) 1 supply circuit (constant current circuit), 12 is a coefficient setting circuit, 13 is a hold circuit, 14 is a subtraction circuit, 15 is an output terminal, and the constant current circuit 11 has the detection element 1 and one end grounded. A series resistance with the reference resistance R is loaded, the voltage of the reference resistance R is fed back to the inverting input end of the constant current circuit 11, and the switch SW 1 having a, b and c contacts is connected to the non-inverting input end. To be done. The a contact of switch SW 1 has
Reference voltage V REF 1, b contact V REF 2, c contact is grounded, reference voltage V REF 1 and V REF 2 are V REF 1 = 2R (mV) (1) V REF 2 = 8R (mV) (2) is set.

【0024】更に、定電流回路11の出力端にはa,b
接点を有するスイッチSW2が接続され、a接点には、
低温加熱時の温度を湿度を演算する時の周囲温度に換算
するための係数Kを設定する、例えば、Kに応じて増幅
度可変な係数設定回路12が接続され、b接点には、減
算回路14の一方の入力端に接続され、高温加熱時の大
電流を流したときの出力電圧V3を入力する。
Further, at the output end of the constant current circuit 11, a, b
A switch SW 2 having a contact is connected, and the a contact has
A coefficient K for setting the temperature at the time of low temperature heating to the ambient temperature at the time of calculating the humidity is connected, for example, a coefficient setting circuit 12 whose amplification degree is variable according to K is connected, and a subtraction circuit is provided at the b contact. It is connected to one input terminal of 14 and inputs the output voltage V 3 when a large current is applied during high temperature heating.

【0025】係数設定回路12と減算回路14との間に
は、a接点およびc接点を有するスイッチSW3および
ホールド回路13が接続されている。スイッチSW3
a接点はホールド回路13に接続されている。
A switch SW 3 having an a contact and a c contact and a hold circuit 13 are connected between the coefficient setting circuit 12 and the subtraction circuit 14. The a contact of the switch SW 3 is connected to the hold circuit 13.

【0026】以上の如く構成された駆動回路のスイッチ
SW1,SW2およびSW3は連動しており、切換により
スイッチSW1,SW2,SW3の各々のa,b,c接点
が同時に切換えられる。a接点に切換えたとき、定電流
回路11の反転入力端に接続された基準抵抗Rには基準
電圧VREF1に等しい電圧が印加され検出素子1には2
mAの定電流が流れる。同様にb接点に切換えたとき、
基準抵抗Rには基準電圧VREF2に等しい電圧が印加さ
れ検出素子1には8mAの定電流が流れる。
The switches SW 1 , SW 2 and SW 3 of the drive circuit configured as described above are interlocked, and the a, b and c contacts of the switches SW 1 , SW 2 and SW 3 are simultaneously switched by switching. To be When the contact is switched to the a-contact, a voltage equal to the reference voltage V REF 1 is applied to the reference resistor R connected to the inverting input terminal of the constant current circuit 11, and the detection element 1 receives 2
A constant current of mA flows. Similarly, when switching to b contact,
A voltage equal to the reference voltage V REF 2 is applied to the reference resistor R, and a constant current of 8 mA flows in the detection element 1.

【0027】図8は、図7に示した駆動回路の各部にお
ける波形図であり、以下、図7と図8とにより駆動回路
の動作を説明する。スイッチSW1(SW2,SW3も同
期駆動)は図8(a),(b)の電圧波形の駆動電圧パ
ルスにより時間t1〜t2および時間t2〜t3の期間で切
換えられ、切換に応じて検出素子1には、図8(c)に
isにて示す駆動電流2mAおよび8mAが流れる。a
接点に切換えられたときスイッチSW2のa接点には、
周囲温度に比例した図8(d)に示す電圧V1が出力さ
れる。電圧V1は係数設定回路12に入力し予め設定さ
れた係数Kが乗算され、図8(e)に示す電圧V2(=
KV1)が出力される。スイッチSW2がa接点に切換え
られたとき、出力される電圧V1は、周囲温度に正しく
比例した値でないために周囲温度と対応するように電圧
1を補正するための係数で K=(V3−湿度変化分)/V1 (3) で与えられる。
FIG. 8 is a waveform diagram in each part of the drive circuit shown in FIG. 7. The operation of the drive circuit will be described below with reference to FIGS. 7 and 8. The switch SW 1 (SW 2 and SW 3 are also driven synchronously) is switched in a period of time t 1 to t 2 and time t 2 to t 3 by the drive voltage pulse of the voltage waveforms of FIGS. 8A and 8B. In response to the switching, the drive currents 2 mA and 8 mA indicated by is in FIG. a
When switched to the contact, the a contact of switch SW 2
The voltage V 1 shown in FIG. 8D, which is proportional to the ambient temperature, is output. The voltage V 1 is input to the coefficient setting circuit 12 and multiplied by a preset coefficient K, and the voltage V 2 (=
KV 1 ) is output. When the switch SW 2 is switched to the a contact, the output voltage V 1 is not a value that is correctly proportional to the ambient temperature, and thus is a coefficient for correcting the voltage V 1 so as to correspond to the ambient temperature K = ( V 3 - given by a fraction of a variation of humidity) / V 1 (3).

【0028】ホールド回路13は、図8(f)に示すよ
うに、電圧V2と等しいV′2(=V2)を出力する。減
算回路18には電圧V3とV′2(=V2)が入力して図
8(h)に示す絶対湿度に比例した電圧Vが出力され
る。すなわち、 V=V3−V2 (4) が得られる。
The hold circuit 13, as shown in FIG. 8 (f), and outputs a voltage V 2 equal V '2 (= V 2) . The subtraction circuit 18 receives the voltages V 3 and V ′ 2 (= V 2 ) and outputs the voltage V proportional to the absolute humidity shown in FIG. 8 (h). That is, V = V 3 −V 2 (4) is obtained.

【0029】図9は、上述のごとくして使用するのに好
適な従来の雰囲気検出装置の一例を説明するための構成
図で、図9(a)は平面図、図9(b)は図9(a)の
B−B線断面図を示し、図中、21は例えばSi基板、
22は該Si基板21に設けられた空洞で、周知のよう
に、該空洞22の上部には、例えば、SiO2,Ta2
5等のような絶縁膜23からなる橋23aが架けられ、
該橋23aの上には、例えば、Pt,NiCr等からな
る抵抗体パターン24が配設され、更に、該抵抗体パタ
ーン(マイクロヒータ)24の上には、SiO1,Ta2
5等からなる保護膜25が設けられ、ボンデングワイ
ヤ26より抵抗体パターン24aを通して前記抵抗体パ
ターン24に電流が流され、該抵抗体パターン24は、
その発熱部もしくは感温(熱)部Aが加熱される。
9A and 9B are configuration diagrams for explaining an example of a conventional atmosphere detecting device suitable for use as described above. FIG. 9A is a plan view and FIG. 9B is a diagram. 9 (a) is a cross-sectional view taken along line BB, in which 21 is, for example, a Si substrate,
Reference numeral 22 is a cavity provided in the Si substrate 21, and as is well known, for example, SiO 2 or Ta 2 O is provided on the upper portion of the cavity 22.
A bridge 23a made of an insulating film 23 such as 5 is laid,
A resistor pattern 24 made of, for example, Pt, NiCr or the like is provided on the bridge 23a, and SiO 1 , Ta 2 is further provided on the resistor pattern (micro heater) 24.
A protective film 25 made of O 5 or the like is provided, and a current is passed from the bonding wire 26 through the resistor pattern 24a to the resistor pattern 24.
The heat generating portion or the temperature sensitive (heat) portion A is heated.

【0030】上述のごとき検出器を用いて、例えば、湿
度を測定する場合を例に説明すると、抵抗体パターン2
4の抵抗値が周囲の温度及び湿度に依存するため、例え
ば、最初に湿度感度が0になるような微少電流を流して
周囲温度に関する抵抗値を測定し、次いで、湿度感度を
有する電流を流して周囲温度及び湿度に関する抵抗値を
測定し、次いで、この温度及び湿度に関する測定値から
前記温度に関する測定値を差し引いて、周囲の湿度を測
定するようにしている。
For example, the case of measuring the humidity by using the detector as described above will be described as an example.
Since the resistance value of 4 depends on the ambient temperature and humidity, for example, first, a minute current such that the humidity sensitivity becomes 0 is measured to measure the resistance value related to the ambient temperature, and then a current having humidity sensitivity is applied. The resistance value related to the ambient temperature and humidity is measured, and then the measured value related to the temperature is subtracted from the measured value related to the temperature and humidity to measure the ambient humidity.

【0031】[0031]

【発明が解決しようとする課題】而して、上述のごとき
雰囲気センサは高速発熱立上り特性であるため、湿度や
ガスなどの雰囲気の濃度や流量の検出に利用する場合、
測定間隔は秒レベルの設定で実用上問題がない観点か
ら、パルス発熱の間欠駆動で充分である。このパルス発
熱におけるメリットとして、 a.消費電力がほぼパルスデュティ比の割合に低減す
る。 b.抵抗発熱体の寿命が、ほぼ休止時間分長くなる。 デメリットとして、 a.休止時間中に離脱しにくいガスや結露が発生する
と、なかなか元の状態に復帰できない。特に、発熱体熱
容量が小さいため、従来の大容量のセンサより深刻であ
る。 b.小電流駆動と大電流駆動を行うため、切り換え回路
を必要とし、その分コスト高となる。
Since the atmosphere sensor as described above has a high-speed heat rising characteristic, when it is used to detect the concentration or flow rate of the atmosphere such as humidity or gas,
Intermittent driving of pulse heat generation is sufficient from the viewpoint that the measurement interval is set to the second level and there is no practical problem. The merit in this pulse heating is as follows: a. The power consumption is reduced to almost the pulse duty ratio. b. The life of the resistance heating element is extended by the rest time. As a disadvantage, a. If gas or condensation that is difficult to separate occurs during the downtime, it will be difficult to return to the original state. In particular, since the heat capacity of the heating element is small, it is more serious than the conventional large capacity sensor. b. Since a small current drive and a large current drive are performed, a switching circuit is required, and the cost is increased accordingly.

【0032】本発明は、上述のごとき実情に鑑みてなさ
れたもので、特に、常時は、雰囲気センサが、例えば1
00℃位に加熱される程度の小電流を流しておいて、該
雰囲気センサにガスや水分が付着しないようにすること
を目的としてなされたものであり、更には、雰囲気検出
時のみ該雰囲気センサに、例えば400℃位に加熱され
る電流を流すようにし、もって、小電流時と大電流時で
の切り換え回路をなくすことを目的としてなされたもの
である。
The present invention has been made in view of the above-mentioned circumstances, and in particular, the atmosphere sensor is always set to, for example, 1
This is intended to prevent a gas or moisture from adhering to the atmosphere sensor by allowing a small current to flow to about 00 ° C. to flow, and further, the atmosphere sensor only when the atmosphere is detected. In addition, for example, a current that is heated to about 400 ° C. is made to flow, so that a switching circuit for a small current and a large current is eliminated.

【0033】[0033]

【課題を解決するための手段】本発明は、上記課題を解
決するために、(1)所定温度において周囲の雰囲気に
感度を有する雰囲気センサを有し、該雰囲気センサに該
雰囲気センサが周囲の雰囲気に感度を有しない小電流を
流して該雰囲気センサの出力電圧を測定するとともに、
該雰囲気センサに該雰囲気センサが周囲の雰囲気に感度
を有する大電流を流して該雰囲気センサの出力電圧を測
定し、両出力電圧の差より周囲雰囲気を検出するように
した雰囲気検出装置において、前記雰囲気センサに常時
小電流を流して該雰囲気センサを低温加熱するようにし
たことを特徴とするものであり、更には、(2)雰囲気
検出時、前記雰囲気センサの出力電圧を測定し、次い
で、前記雰囲気センサに前記大電流を流して前記雰囲気
センサの出力電圧を測定し、次いで、両出力電圧の差を
得るようにしたこと、或いは、(3)前記雰囲気センサ
に前記大電流を流す直前に前記雰囲気センサの出力電圧
を測定し、該雰囲気センサに前記大電流を流した直後に
該雰囲気センサの出力電圧を測定するようにしたことを
特徴としたものである。
In order to solve the above-mentioned problems, the present invention has (1) an atmosphere sensor having a sensitivity to the surrounding atmosphere at a predetermined temperature, and the atmosphere sensor is provided with a surrounding atmosphere sensor. While measuring the output voltage of the atmosphere sensor by passing a small current with no sensitivity to the atmosphere,
In the atmosphere detection device, wherein the atmosphere sensor applies a large current having sensitivity to the surrounding atmosphere to measure the output voltage of the atmosphere sensor, and detects the surrounding atmosphere from the difference between the two output voltages. The atmosphere sensor is characterized in that a small current is constantly supplied to heat the atmosphere sensor at a low temperature. Further, (2) when the atmosphere is detected, the output voltage of the atmosphere sensor is measured, and then, The large current is passed through the atmosphere sensor to measure the output voltage of the atmosphere sensor, and then the difference between the two output voltages is obtained, or (3) immediately before the large current is passed through the atmosphere sensor. The output voltage of the atmosphere sensor is measured, and the output voltage of the atmosphere sensor is measured immediately after the large current is passed through the atmosphere sensor. .

【0034】[0034]

【作用】雰囲気センサに、常時、該雰囲気センサを10
0℃位に加熱する小電流を流しておき、該雰囲気センサ
にガスや水分が付着しないようにし、或いは、雰囲気検
出時、該雰囲気センサに印加する電流を、切り換え回路
を用いることなく、該雰囲気センサが感度を有する温度
に発熱し得るように大きな電流を流す。
[Function] The atmosphere sensor is always provided with the atmosphere sensor 10
A small current for heating to about 0 ° C. is passed to prevent the gas and water from adhering to the atmosphere sensor, or the current applied to the atmosphere sensor at the time of detecting the atmosphere does not need to use a switching circuit. A large current is passed so that the sensor can generate heat at a temperature at which it has sensitivity.

【0035】[0035]

【実施例】図7に示したように、本出願人が先に提案し
た雰囲気センサにおいては、小電流源VREF1と大電流源
REF2を有し、これらをスイッチSW1で切り換えるよ
うにしている。また、雰囲気センサを駆動する駆動電源
電流が図4(b)に示すように、パルス波形であるた
め、休止期間が長く、その間に雰囲気センサにガスや水
分が付着し、これが検出誤差の原因となる。
EXAMPLE As shown in FIG. 7, the atmosphere sensor previously proposed by the applicant has a small current source V REF1 and a large current source V REF2 , and these are switched by a switch SW 1. There is. Further, since the drive power supply current for driving the atmosphere sensor has a pulse waveform as shown in FIG. 4 (b), the rest period is long, and gas or moisture adheres to the atmosphere sensor during that period, which causes a detection error. Become.

【0036】本発明は、上述のごとき実情に鑑みてなさ
れたもので、前述のごとき雰囲気センサに、図1(a)
に示すように、常時、該雰囲気センサが略100℃位に
発熱されるような電流I1を流しておき、これによっ
て、雰囲気センサにガスや水分が付着するのを防止し、
更には、雰囲気検出時のみ、該雰囲気センサに該雰囲気
センサが周囲の雰囲気(例えば湿度)に感度を有する電
流I2を流し、例えば、図1(a)において、小電流を
流しているt1〜t2の期間で周囲温度を検出し、大電流
を流しているt2〜t3の期間で周囲雰囲気(例えば、周
囲湿度+周囲温度)を検出する。
The present invention has been made in view of the actual situation as described above, and the atmosphere sensor as described above has the structure shown in FIG.
As shown in ( 1) , a current I 1 is constantly passed so that the atmosphere sensor generates heat at about 100 ° C., thereby preventing gas and moisture from adhering to the atmosphere sensor,
Furthermore, only when the atmosphere is detected, a current I 2 is applied to the atmosphere sensor so that the atmosphere sensor is sensitive to the surrounding atmosphere (eg, humidity). For example, in FIG. 1A, a small current t 1 is applied. detecting the ambient temperature for a period of ~t 2, the ambient atmosphere for a period of t 2 ~t 3 that a large current (e.g., ambient humidity + ambient temperature) is detected.

【0037】図1(b)は、測定タイミング用のクロッ
クパルス、図1(c)は、周囲温度検出のタイミングパ
ルス、図1(d)は、周囲温湿度検出のタイミングパル
ス、図1(e)は、検出出力電圧パルスで、図示のよう
に、周囲温度の検出は、好ましくは、雰囲気センサを高
温加熱する直前のタイミングT1で行い、雰囲気の検出
は、雰囲気センサを高温加熱している期間、好ましく
は、高温加熱を開始した直後のタイミングT2で行う。
FIG. 1B is a clock pulse for measurement timing, FIG. 1C is a timing pulse for ambient temperature detection, FIG. 1D is a timing pulse for ambient temperature and humidity detection, and FIG. ) Is a detection output voltage pulse, and as shown in the figure, the ambient temperature is preferably detected at a timing T 1 immediately before the atmosphere sensor is heated to a high temperature, and the atmosphere is heated to a high temperature. Period, preferably at timing T 2 immediately after starting high temperature heating.

【0038】上述のように、本発明においては、雰囲気
センサは、常時は、約100℃程度に低温発熱されてお
り、これにより、該雰囲気センサにガスや水分が付着す
るのを防止しており、周囲温度の検出は、この低温発熱
期間中に行い、雰囲気の検出は、該雰囲気センサを高温
加熱させている期間に行うようにしたものであり、この
ようにすれば、高温加熱時、単に雰囲気センサに印加す
る電流の大きさを増すだけであり(換言すれば、低温加
熱時2mA、高温加熱時8mAとすれば、6mAの定電
流源を準備しておき、この定電流源を雰囲気センサに接
続し、或いは、切り離せばよいので)、図7に示したよ
うな切り換え回路は不要となり、その分コストを安くで
きる。また、前述のように、周囲温度の検出タイミング
と周囲雰囲気の検出タイミングをできるだけ近づけるよ
うにすると、周囲雰囲気の状態が変化しても、その変化
分が小さく、従って、周囲雰囲気の状態変化の影響を受
けることなく、より正確に周囲雰囲気を検出することが
できる。
As described above, in the present invention, the atmosphere sensor is constantly heated at a low temperature of about 100 ° C., which prevents gas and moisture from adhering to the atmosphere sensor. The ambient temperature is detected during the low temperature heat generation period, and the atmosphere is detected during the high temperature heating period of the atmosphere sensor. It only increases the magnitude of the current applied to the atmosphere sensor (in other words, 2 mA for low temperature heating and 8 mA for high temperature heating, a 6 mA constant current source is prepared, and this constant current source is used as the atmosphere sensor. Since the switching circuit as shown in FIG. 7 is unnecessary, the cost can be reduced accordingly. Further, as described above, if the detection timing of the ambient temperature and the detection timing of the ambient atmosphere are made as close as possible, even if the state of the ambient atmosphere changes, the change is small, and therefore the influence of the change in the state of the ambient atmosphere is small. The ambient atmosphere can be detected more accurately without being affected.

【0039】[0039]

【発明の効果】以上の説明から明らかなように、本発明
によると、雰囲気センサを常時低温加熱しているので、
該雰囲気センサに周囲のガスや水分が付着するようなこ
とがなく、より正確に周囲雰囲気を検出することができ
る。また、雰囲気検出時は、定電流源をオン・オフさせ
て雰囲気センサに印加する電流を増大し、或いは、元の
低電流状態に戻せばよいので、従来技術のような切り換
え回路を必要とせず、その分コストを安くできる。ま
た、周囲温度の検出タイミングと周囲雰囲気の検出タイ
ミングを接近させることにより、雰囲気の状態変化の影
響を受けることなく、より正確に周囲雰囲気を検出する
ことができる。
As is apparent from the above description, according to the present invention, since the atmosphere sensor is constantly heated at a low temperature,
It is possible to detect the ambient atmosphere more accurately without the ambient gas or moisture from adhering to the ambient sensor. Further, at the time of atmosphere detection, the constant current source may be turned on / off to increase the current applied to the atmosphere sensor, or to return to the original low current state, so a switching circuit unlike the prior art is not required. The cost can be reduced accordingly. Further, by making the detection timing of the ambient temperature close to the detection timing of the ambient atmosphere, the ambient atmosphere can be detected more accurately without being affected by the change in the state of the atmosphere.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による雰囲気検出装置の動作タイミン
グを説明するためのタイミングチャートである。
FIG. 1 is a timing chart for explaining operation timing of an atmosphere detection device according to the present invention.

【図2】 本出願人が先に提案した雰囲気検出装置の一
例としての湿度計の原理を説明するための図である。
FIG. 2 is a diagram for explaining the principle of a hygrometer as an example of an atmosphere detection device previously proposed by the applicant.

【図3】 湿度検出素子の電圧電流特性図である。FIG. 3 is a voltage-current characteristic diagram of a humidity detecting element.

【図4】 図2(a1)に示した湿度検出素子の駆動方
式を説明するための図である。
FIG. 4 is a diagram for explaining a driving method of the humidity detecting element shown in FIG. 2 (a 1 ).

【図5】 本出願人が先に提案した湿度検出素子駆動す
る電流パルス波形および電圧パルス出力波形を示した図
である。
FIG. 5 is a diagram showing a current pulse waveform and a voltage pulse output waveform for driving the humidity detecting element proposed by the applicant earlier.

【図6】 図2(a1)に示した湿度検出素子の環境変
化と出力特性との関係を説明するための図である。
FIG. 6 is a diagram for explaining the relationship between environmental changes and output characteristics of the humidity detecting element shown in FIG. 2 (a 1 ).

【図7】 図2(a1)に示した検出素子を用いて湿度
測定を行う場合の駆動回路の一例を示すブロック図であ
る。
FIG. 7 is a block diagram showing an example of a drive circuit when performing humidity measurement using the detection element shown in FIG. 2 (a 1 ).

【図8】 図7に示した駆動回路の各部における波形図
である。
8 is a waveform chart in each part of the drive circuit shown in FIG.

【図9】 従来の雰囲気検出装置の一例を説明するため
の構成図である。
FIG. 9 is a configuration diagram for explaining an example of a conventional atmosphere detection device.

【符号の説明】[Explanation of symbols]

1…抵抗体(センサ)、2…封止キャップ、3…メッシ
ュ、4…均熱板、5…リードピン、6…定電流源、7…
定電圧源、11…定電流源、12…係数設定回路、13
…ホールド回路、14…減算回路、15…出力端子、2
1…基板、22…空洞、23…絶縁膜、24…抵抗体パ
ターン、25…保護膜、26…ボンデングワイヤ。
DESCRIPTION OF SYMBOLS 1 ... Resistor (sensor), 2 ... Sealing cap, 3 ... Mesh, 4 ... Soaking plate, 5 ... Lead pin, 6 ... Constant current source, 7 ...
Constant voltage source, 11 ... Constant current source, 12 ... Coefficient setting circuit, 13
... Hold circuit, 14 ... Subtraction circuit, 15 ... Output terminal, 2
1 ... Substrate, 22 ... Cavity, 23 ... Insulating film, 24 ... Resistor pattern, 25 ... Protective film, 26 ... Bonding wire.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所定温度において周囲の雰囲気に感度を
有する雰囲気センサを有し、該雰囲気センサに該雰囲気
センサが周囲の雰囲気に感度を有しない小電流を流して
該雰囲気センサの出力電圧を測定するとともに、該雰囲
気センサに該雰囲気センサが周囲の雰囲気に感度を有す
る大電流を流して該雰囲気センサの出力電圧を測定し、
両出力電圧の差より周囲雰囲気を検出するようにした雰
囲気検出装置において、前記雰囲気センサに常時小電流
を流して該雰囲気センサを低温加熱するようにしたこと
を特徴とする雰囲気検出装置。
1. An atmosphere sensor having a sensitivity to an ambient atmosphere at a predetermined temperature, and a small current which is not sensitive to the ambient atmosphere of the atmosphere sensor is applied to the atmosphere sensor to measure an output voltage of the atmosphere sensor. At the same time, a large current is sent to the atmosphere sensor so that the atmosphere sensor has a sensitivity to the surrounding atmosphere, and the output voltage of the atmosphere sensor is measured.
An atmosphere detecting device for detecting an ambient atmosphere based on a difference between both output voltages, wherein a small current is constantly applied to the atmosphere sensor to heat the atmosphere sensor at a low temperature.
【請求項2】 雰囲気検出時、前記雰囲気センサの出力
電圧を測定し、次いで、前記雰囲気センサに前記大電流
を流して前記雰囲気センサの出力電圧を測定し、次い
で、両出力電圧の差を得るようにしたことを特徴とする
請求項1に記載の雰囲気検出装置。
2. When detecting an atmosphere, the output voltage of the atmosphere sensor is measured, then the large current is passed through the atmosphere sensor to measure the output voltage of the atmosphere sensor, and then the difference between the two output voltages is obtained. The atmosphere detection device according to claim 1, wherein the atmosphere detection device is configured as described above.
【請求項3】 前記雰囲気センサに前記大電流を流す直
前に前記雰囲気センサの出力電圧を測定し、該雰囲気セ
ンサに前記大電流を流した直後に該雰囲気センサの出力
電圧を測定するようにしたことを特徴とする請求項2に
記載の雰囲気検出装置。
3. The output voltage of the atmosphere sensor is measured immediately before the large current is passed through the atmosphere sensor, and the output voltage of the atmosphere sensor is measured immediately after the large current is passed through the atmosphere sensor. The atmosphere detection device according to claim 2, wherein
JP27005994A 1994-11-02 1994-11-02 Atmosphere detector Expired - Fee Related JP3331070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27005994A JP3331070B2 (en) 1994-11-02 1994-11-02 Atmosphere detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27005994A JP3331070B2 (en) 1994-11-02 1994-11-02 Atmosphere detector

Publications (2)

Publication Number Publication Date
JPH08136491A true JPH08136491A (en) 1996-05-31
JP3331070B2 JP3331070B2 (en) 2002-10-07

Family

ID=17480954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27005994A Expired - Fee Related JP3331070B2 (en) 1994-11-02 1994-11-02 Atmosphere detector

Country Status (1)

Country Link
JP (1) JP3331070B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337896A (en) * 2004-05-27 2005-12-08 Ngk Spark Plug Co Ltd Humidity detection device
JP2007285848A (en) * 2006-04-17 2007-11-01 Yazaki Corp Gas concentration detector
JP2008039668A (en) * 2006-08-09 2008-02-21 Yazaki Corp Gas detector
WO2014069264A1 (en) * 2012-10-29 2014-05-08 日立オートモティブシステムズ株式会社 Thermal gas sensor
JP2015227822A (en) * 2014-06-02 2015-12-17 Tdk株式会社 Heat conduction type gas sensor
CN111948338A (en) * 2019-05-15 2020-11-17 许俊杰 Methods for improving the judgment of harmful gas detectors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012515B2 (en) * 2013-03-15 2016-10-25 日立オートモティブシステムズ株式会社 Gas sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337896A (en) * 2004-05-27 2005-12-08 Ngk Spark Plug Co Ltd Humidity detection device
JP2007285848A (en) * 2006-04-17 2007-11-01 Yazaki Corp Gas concentration detector
JP2008039668A (en) * 2006-08-09 2008-02-21 Yazaki Corp Gas detector
WO2014069264A1 (en) * 2012-10-29 2014-05-08 日立オートモティブシステムズ株式会社 Thermal gas sensor
JP2014089048A (en) * 2012-10-29 2014-05-15 Hitachi Automotive Systems Ltd Thermal gas sensor
JP2015227822A (en) * 2014-06-02 2015-12-17 Tdk株式会社 Heat conduction type gas sensor
CN111948338A (en) * 2019-05-15 2020-11-17 许俊杰 Methods for improving the judgment of harmful gas detectors
CN111948338B (en) * 2019-05-15 2022-06-24 许俊杰 Methods for improving the judgment of harmful gas detectors

Also Published As

Publication number Publication date
JP3331070B2 (en) 2002-10-07

Similar Documents

Publication Publication Date Title
JP2889909B2 (en) Atmosphere meter
US5792938A (en) Humidity sensor with differential thermal detection and method of sensing
US5551283A (en) Atmosphere measuring device and flow sensor
KR100230079B1 (en) Humidity sensor
JP3343801B2 (en) Humidity sensor
JP3370801B2 (en) Atmosphere detector with temperature compensation
US9244032B2 (en) Gas detecting apparatus and gas detecting method
EP0698786A1 (en) Atmosphere measuring device and flow sensor
CN113125028B (en) Airflow measuring circuit and airflow sensor
JPH04231857A (en) Operating method of measuring circuit device for detecting component of combustible gas
JP3331070B2 (en) Atmosphere detector
JP2889910B2 (en) Atmosphere detector
JP2000039413A (en) Sensor-driving device and method
Oliveira et al. Compensation of the fluid temperature variation in a hot-wire anemometer
Lee et al. Temperature compensation of hot-wire anemometer with photoconductive cell
GB2138573A (en) Catalytic Gas Detection Systems
JPH0697233B2 (en) Flow velocity sensor and flow velocity measuring device using the same
JP3363983B2 (en) Heat wire type acceleration detector
JP7456404B2 (en) Thermal sensors and measurement methods using thermal sensors
JP4151596B2 (en) Gas detector
JP3245687B2 (en) Adjustment method of heat dissipation constant
JP3570659B2 (en) Thermal flow sensor
JP2023074870A (en) Flow sensor and gas detector
JP2007155502A (en) Detector
JPS62156533A (en) Pressure detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080719

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080719

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090719

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110719

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees