[go: up one dir, main page]

JPH08136291A - Magnetic induction type underwater robot - Google Patents

Magnetic induction type underwater robot

Info

Publication number
JPH08136291A
JPH08136291A JP6298867A JP29886794A JPH08136291A JP H08136291 A JPH08136291 A JP H08136291A JP 6298867 A JP6298867 A JP 6298867A JP 29886794 A JP29886794 A JP 29886794A JP H08136291 A JPH08136291 A JP H08136291A
Authority
JP
Japan
Prior art keywords
underwater
underwater robot
outer plate
magnetic
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6298867A
Other languages
Japanese (ja)
Inventor
Katsunori Hatanaka
勝則 畠中
Yoshinori Kitajima
良則 北島
Yoshito Fukugi
善人 福木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6298867A priority Critical patent/JPH08136291A/en
Publication of JPH08136291A publication Critical patent/JPH08136291A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE: To accurately position an inspecting underwater robot of the underwater outer plate of an ocean structure at the predetermined position of the plate. CONSTITUTION: A pair of magnetic sensors 5A, 5B are mounted at a robot body 3 having steering wheels 6A to 6D which can be steered while being brought into contact with the underwater outer plate 1 of an ocean structure. The wheels 6A to 6D are so controlled that the deviations of the sensors 5A, 5B from the magnetic paint film 2 coating the plate 1 becomes zero, and hence the body 3 can be traveled along the film. Thus, the plate 1 of a turret lathe 7 loaded with the outer plate inspecting unit on the body 3 can be accurately positioned at a predetermined position of the plate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、海洋構造物等の検査用
に好適な水中ロボットに関し、特に精度よい位置決め手
段をそなえた磁気誘導型水中ロボットに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underwater robot suitable for inspecting marine structures and the like, and more particularly to a magnetic guidance type underwater robot provided with highly accurate positioning means.

【0002】[0002]

【従来の技術】海洋構造物等の水中部の検査は、従来ダ
イバーにより行なわれてきたが、構造物の大型化や稼働
の大水深化などにつれて、ダイバーによる検査は困難と
なり、水中ロボットによる検査方式の開発が急速に進展
中である。また、検査内容も、当初の水中テレビカメラ
による表面の状況調査から板厚の計測や塗膜の状況計測
等が加わり、高度化する傾向にある。
2. Description of the Related Art An underwater inspection of an underwater structure such as an offshore structure has been conventionally performed by a diver. However, as the structure becomes larger and the operation deepens, it becomes difficult to inspect by a diver and an inspection by an underwater robot. The development of the method is progressing rapidly. In addition, the inspection content tends to become more sophisticated with the addition of measurement of the plate thickness and the condition of the coating film from the initial surface condition survey using an underwater television camera.

【0003】[0003]

【発明が解決しようとする課題】ところで、水中ロボッ
トによる検査方式の場合、水中部外板の板厚計測を例に
とると、板厚の経時変化を知ることが重要なので、海洋
構造物のあらかじめ決められた位置の計測を行なうこと
が必要となる。このあらかじめ決められた位置の範囲は
広くないのが通常であり、例えば直径50mmの円の中とい
う実例がある。このような要求に対して、従来の水中ロ
ボットの位置検知は、図4に示すように、水中ロボット
本体3に搭載した超音波発振器13と海洋構造物周辺の海
底に互いに離れて配設された複数の超音波受信器14とを
利用することにより行なわれている。なお、図4中の符
号1は海洋構造物の水中部外板を示している。
By the way, in the case of the inspection method by the underwater robot, it is important to know the change of the plate thickness over time, for example, when measuring the plate thickness of the underwater outer plate. It is necessary to measure the determined position. This predetermined position range is usually not wide, for example in a circle with a diameter of 50 mm. In response to such a request, the conventional position detection of the underwater robot is provided, as shown in FIG. 4, with the ultrasonic oscillator 13 mounted on the underwater robot main body 3 and the seabed around the marine structure spaced apart from each other. This is performed by utilizing a plurality of ultrasonic receivers 14. In addition, the code | symbol 1 in FIG. 4 has shown the underwater outer skin of a marine structure.

【0004】しかしながら、このような従来技術では下
記のような欠点がある。 (1)海洋構造物の水中部外板1上の検査位置の確認
が、海洋構造物の水中部以外の物体を基準として利用す
る間接方式であるため精度が低い。 (2)超音波発振器13、超音波受信器14はそれぞれ高価
であり、経済性が低い。 (3)超音波受信器14の設置は困難であり、経済性が低
い。 また、上記欠点の一部を改善するため、海洋構造物の水
中部外板1に超音波受信器を設置する方式も提案されて
いるが、広大な外板面積を精度良く位置検知するには多
数の超音波受信器を必要とするという問題点がある。
However, such conventional techniques have the following drawbacks. (1) Since the confirmation of the inspection position on the underwater skin 1 of the marine structure is an indirect method in which an object other than the underwater part of the marine structure is used as a reference, accuracy is low. (2) The ultrasonic oscillator 13 and the ultrasonic receiver 14 are expensive and economical. (3) It is difficult to install the ultrasonic receiver 14 and the economical efficiency is low. In order to remedy some of the above drawbacks, a method of installing an ultrasonic wave receiver on the underwater outer plate 1 of the marine structure has been proposed, but in order to accurately detect the position of a vast outer plate area, There is a problem that a large number of ultrasonic receivers are required.

【0005】本発明は、このような欠点ないし問題点の
解決をはかろうとするもので、海洋構造物の水中部外板
にあらかじめ磁気誘導帯を設けておき、この磁気誘導帯
に沿って水中ロボットを移動させることにより、水中ロ
ボットを、目的位置に能率よく誘導できるようにした、
磁気誘導型水中ロボットを提供することを目的とする。
The present invention is intended to solve such drawbacks and problems. A magnetic induction zone is provided in advance on the underwater outer skin of a marine structure, and the underwater zone extends along the magnetic induction zone. By moving the robot, you can efficiently guide the underwater robot to the target position.
An object is to provide a magnetically guided underwater robot.

【0006】[0006]

【課題を解決するための手段】上述の目的を達成するた
め、請求項1に記載の磁気誘導型水中ロボットは、海洋
構造物等の水中部外板の検査用水中ロボットにおいて、
ロボット本体と、同ロボット本体に取付けられた前後進
用スラスター、左右移動用スラスターおよび上下移動用
スラスターと、上記ロボット本体に取付けられて上記水
中部外板に接触して移動可能な操縦駆動輪とをそなえ、
上記水中部外板に沿って設けられた磁気誘導帯からのず
れ量を検知可能な一対の磁気センサーが上記ロボット本
体の前後端部寄りに取付けられ、同一対の磁気センサー
で検出された上記ずれ量をなくすべく上記操縦駆動輪を
制御するコントローラが設けられていることを特徴とし
ている。
In order to achieve the above object, a magnetically guided underwater robot according to claim 1 is an underwater robot for inspecting an underwater outer plate of a marine structure or the like.
A robot main body, a forward-backward thruster, a left-right moving thruster, and a vertical moving thruster attached to the robot main body, and a steering drive wheel attached to the robot main body and movable in contact with the underwater outer plate. With
A pair of magnetic sensors that can detect the amount of deviation from the magnetic induction band provided along the underwater outer plate are attached near the front and rear ends of the robot body, and the deviation detected by the same pair of magnetic sensors. It is characterized in that a controller for controlling the steering drive wheels is provided in order to eliminate the amount.

【0007】また、請求項2に記載の磁気誘導型水中ロ
ボットは、上記水中ロボット本体に上記水中部外板の検
査用機器が搭載され、上記磁気誘導帯が上記水中部外板
に塗布された磁気塗膜あるいは上記水中部外板に貼着さ
れた磁気シートにより構成されていることを特徴として
いる。
According to a second aspect of the magnetically guided underwater robot of the present invention, the underwater robot body is equipped with an inspection device for the underwater outer plate, and the magnetic induction band is applied to the underwater outer plate. It is characterized by being constituted by a magnetic coating film or a magnetic sheet attached to the above-mentioned underwater outer plate.

【0008】[0008]

【作用】上述の本発明の磁気誘導型水中ロボットでは、
水中ロボット本体の前後に配置した一対の磁気センサー
が、磁気誘導帯からのずれ量を検知し、前方(後方)の
磁気センサーのずれ量が零になるように前方(後方)の
操縦駆動輪を制御駆動する。これにより水中ロボットは
磁気誘導帯に沿って精度良く移動可能となる。
In the magnetically guided underwater robot of the present invention described above,
A pair of magnetic sensors placed in front of and behind the underwater robot body detect the amount of deviation from the magnetic induction zone, and the front (rear) steering drive wheel is set so that the amount of deviation of the front (rear) magnetic sensor becomes zero. Control drive. This allows the underwater robot to move accurately along the magnetic induction zone.

【0009】[0009]

【実施例】以下、図面により本発明の一実施例としての
磁気誘導型水中ロボットについて説明すると、図1はそ
の斜視図、図2はその磁気センサーの特性例を示す表、
図3はその実験例の結果を示すグラフである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A magnetically guided underwater robot as an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view thereof, and FIG. 2 is a table showing characteristic examples of its magnetic sensor.
FIG. 3 is a graph showing the results of the experimental example.

【0010】この実施例の磁気誘導型水中ロボットは、
海洋構造物の水中部外板1(以下「外板1」と略称する
こともある)の検査用のもので、図1に示すように、水
中ロボット本体3には外観検査用の水中テレビカメラ11
および照明器具10A, 10Bが取付けられている。なお、照
明器具10A, 10Bは水中ロボット本体3の外周部を囲繞す
るように突設されて、水中ロボット本体3を保護するガ
ードパイプ4に固着されている。
The magnetically guided underwater robot of this embodiment is
This is for inspecting the underwater outer panel 1 of the marine structure (hereinafter also abbreviated as "outer panel 1"). As shown in FIG. 1, the underwater robot body 3 has an underwater television camera for visual inspection. 11
And the lighting fixtures 10A and 10B are installed. The luminaires 10A and 10B are projected so as to surround the outer peripheral portion of the underwater robot body 3 and fixed to a guard pipe 4 for protecting the underwater robot body 3.

【0011】さらに、水中ロボット本体3に、前後方向
への推力を発生する前後進用スラスター12A, 12B、左右
方向への推力を発生する左右移動用スラスター8A,8
B、上下方向への推力を発生する上下移動用スラスター
9A,9Bが、それぞれガードパイプ4の内側に位置す
るように取付けられている。なお、上下移動用スラスタ
ー9A,9Bは、海洋構造物の外板1に接触しながら水
中ロボット本体3が移動するとき(詳しくは後述す
る)、水中ロボット本体3を海洋構造物の外板1に押圧
する作用も行なう。
Further, in the underwater robot body 3, thrusters 12A, 12B for forward and backward movement which generate thrust in the forward and backward directions, and thrusters 8A, 8 for horizontal movement which generate thrust in the left and right directions.
B, vertical movement thrusters 9A and 9B that generate thrust in the vertical direction are mounted so as to be located inside the guard pipe 4, respectively. The vertical movement thrusters 9A and 9B move the underwater robot body 3 to the outer plate 1 of the marine structure when the underwater robot body 3 moves while contacting the outer plate 1 of the marine structure (details will be described later). It also acts to press.

【0012】さらに、前後一対の磁気センサー5A,5
Bが、ガードパイプ4に固着されて、水中ロボット本体
3の上面における横幅方向中心線上の前後端部に配置さ
れている。水中ロボット本体3の上面の前端部寄りおよ
び後端部寄りに位置するように、海洋構造物の外板1に
転接可能な左右一対の操縦駆動輪6A,6Bおよび6
C,6Dが、ガードパイプ4に取付けられている。な
お、操縦駆動輪6A〜6Dはいずれもガードパイプ4の
内側で水中ロボット本体3との間に配設されている。
Further, a pair of front and rear magnetic sensors 5A, 5
B is fixed to the guard pipe 4 and arranged at the front and rear ends on the center line in the lateral width direction on the upper surface of the underwater robot body 3. A pair of left and right steering drive wheels 6A, 6B and 6 capable of rolling contact with the outer plate 1 of the marine structure so as to be positioned near the front end and the rear end of the upper surface of the underwater robot body 3.
C and 6D are attached to the guard pipe 4. It should be noted that the steering drive wheels 6A to 6D are all arranged inside the guard pipe 4 and between the underwater robot body 3.

【0013】また、海洋構造物の外板1に磁気塗膜2が
塗布されている。図1の符号7は水中部外板1の検査機
器を搭載した回転式ターレット盤を示している。なお、
ターレット盤7は水中ロボット本体3の上面に取付けら
れている。また、符号15は上記の各スラスターや検査用
機具の動力源としての電力供給用および検査結果信号の
取出し用多芯ケーブルを示している。
A magnetic coating film 2 is applied to the outer plate 1 of the marine structure. Reference numeral 7 in FIG. 1 indicates a rotary turret board equipped with an inspection device for the underwater outer plate 1. In addition,
The turret board 7 is attached to the upper surface of the underwater robot body 3. Further, reference numeral 15 indicates a multi-core cable for supplying electric power as a power source of each of the above-mentioned thrusters and inspection equipment and for taking out inspection result signals.

【0014】海洋構造物の外板1に塗布された磁気塗膜
2までの移動は、前後進用スラスター12A, 12Bと左右移
動用スラスター8A,8Bによる水中ロボット本体3の
水平移動により行なわれる。また、水中ロボット本体3
の潜水は、上下移動用スラスター9A,9Bにより行な
われる。そして水中ロボット本体3が磁気塗膜2に到る
と、上下移動用スラスター9A,9Bにより、水中ロボ
ット本体3が海洋構造物の外板1に押付けられる。それ
により、操縦駆動輪6A,6B,6C,6Dの各駆動輪
は海洋構造物の外板1に接触・押付けられる。したがっ
て、操縦駆動輪6A〜6Dによる水中ロボット本体3の
移動が可能となる。
The movement to the magnetic coating film 2 applied to the outer plate 1 of the marine structure is performed by the horizontal movement of the underwater robot body 3 by the thrusters 12A and 12B for forward and backward movement and the thrusters 8A and 8B for horizontal movement. In addition, the underwater robot body 3
The diving is performed by the vertical movement thrusters 9A and 9B. When the underwater robot body 3 reaches the magnetic coating film 2, the underwater robot body 3 is pressed against the outer plate 1 of the marine structure by the vertical movement thrusters 9A and 9B. As a result, the drive wheels of the steering drive wheels 6A, 6B, 6C, 6D are brought into contact with and pressed against the outer plate 1 of the marine structure. Therefore, the underwater robot body 3 can be moved by the steering drive wheels 6A to 6D.

【0015】そして水中ロボット本体3の移動中、磁気
センサー5A,5Bが磁気塗膜2を検出する。磁気セン
サー5A,5Bにより、図2に示すような磁気の左右方
向のずれ量が検出される。したがって、磁気センサー5
A(5B)のずれ量(磁気塗膜2からの左右変位量)を
検知して操縦駆動輪6A,6B(6C,6D)を操縦制
御することにより、検査機器を搭載したターレット盤7
等を装備した水中ロボット本体3を磁気塗膜2に沿って
進行させることができる。
While the underwater robot body 3 is moving, the magnetic sensors 5A and 5B detect the magnetic coating film 2. The magnetic sensors 5A and 5B detect the amount of deviation of magnetism in the left-right direction as shown in FIG. Therefore, the magnetic sensor 5
A turret board 7 equipped with inspection equipment by detecting the amount of deviation of A (5B) (the amount of lateral displacement from the magnetic coating film 2) and controlling the driving wheels 6A, 6B (6C, 6D).
The underwater robot body 3 equipped with the above can be advanced along the magnetic coating film 2.

【0016】すなわち、前方(後方)の磁気センサーの
検出したずれ量が零となるように、コントローラ(図示
せず)により前方(後方)の操縦駆動輪の操向および速
度を制御することにより、水中ロボット本体3を磁気塗
膜2に沿って進行させることができる。なお、操縦駆動
輪6A〜6Dは、自動車の4WDSと同様に、それぞれ
の駆動車輪が単独に回転、方向転換が可能な構造となっ
ている。磁気塗膜2の周辺に配置された小さな(面積
の)検査位置は、このように水中ロボットを磁気誘導す
ることにより容易に検知可能となる。磁気塗膜に代え
て、水中部外板1に貼着された磁気シートとした場合に
も同様の結果が得られる。
That is, the controller (not shown) controls the steering and speed of the front (rear) steering drive wheels so that the amount of deviation detected by the front (rear) magnetic sensor becomes zero. The underwater robot body 3 can be advanced along the magnetic coating film 2. The driving wheels 6A to 6D have a structure in which each of the driving wheels can independently rotate and change direction, as in the case of the 4WDS of an automobile. A small (area) inspection position arranged around the magnetic coating film 2 can be easily detected by magnetically guiding the underwater robot in this way. Similar results are obtained when a magnetic sheet attached to the underwater outer plate 1 is used instead of the magnetic coating film.

【0017】上記の実施例の水中ロボットを、磁気シー
トに沿って移動させた場合の実験例の結果を、図3に示
す。図3において、1段目と2段目は磁気センサーのず
れ量を、3〜4段目は操縦駆動輪の操縦角度を、5段目
は操縦駆動輪の車輪速度を、6段目は上下スラスターの
作動量を示している。
FIG. 3 shows the result of an experimental example in which the underwater robot of the above-mentioned embodiment is moved along the magnetic sheet. In FIG. 3, the first and second stages are the displacement amount of the magnetic sensor, the third to fourth stages are the steering angles of the steering drive wheels, the fifth stage is the wheel speed of the steering drive wheels, and the sixth stage is the vertical direction. It shows the operating amount of the thruster.

【0018】図3のデータから、磁気センサーがずれ量
を検知すると、それに対応する操縦駆動輪の角度が変わ
り、結果として磁気センサーのずれ量が小さくなってい
ることが分かる。すなわち、磁気シートに沿って水中ロ
ボットを移動させることができ、その結果、磁気シート
の周辺に配置された小さな検査位置を水中ロボットに検
知させることが可能となり、上記実施例の水中ロボット
が海洋構造物の外板検査用ロボットとして有効であるこ
とを図3のデータは示している。
From the data shown in FIG. 3, it can be seen that when the magnetic sensor detects the amount of deviation, the angle of the steering wheel corresponding thereto changes, resulting in a smaller amount of deviation of the magnetic sensor. That is, the underwater robot can be moved along the magnetic sheet, and as a result, the underwater robot can detect a small inspection position arranged around the magnetic sheet. The data in FIG. 3 shows that it is effective as a robot for inspecting outer panels of objects.

【0019】[0019]

【発明の効果】以上詳述したように、本発明の磁気誘導
型水中ロボットによれば次のような効果ないし利点が得
られる。 (1)水中ロボット本体に配設された一対の磁気センサ
ーで検知された各磁気センサーと磁気誘導帯とのずれ量
を零とするように、操縦駆動輪の制御が行なわれること
により、水中ロボットを磁気誘導帯に沿って精度よく移
動させることができる。 (2)上記(1)により、水中ロボット本体に搭載され
た検査用機器を、水中部外板の所定位置に能率よくかつ
正確に位置決めすることができる。
As described above in detail, according to the magnetically guided underwater robot of the present invention, the following effects and advantages can be obtained. (1) The underwater robot is controlled by controlling the driving wheels so that the amount of deviation between each magnetic sensor detected by the pair of magnetic sensors disposed in the underwater robot body and the magnetic induction zone is zero. Can be accurately moved along the magnetic induction zone. (2) According to the above (1), the inspection device mounted on the underwater robot body can be efficiently and accurately positioned at a predetermined position of the underwater outer plate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例としての磁気誘導型水中ロボ
ットの斜視図。
FIG. 1 is a perspective view of a magnetic induction type underwater robot as an embodiment of the present invention.

【図2】同磁気センサーの特性例を示す表。FIG. 2 is a table showing a characteristic example of the magnetic sensor.

【図3】同実験例の結果を示すグラフ。FIG. 3 is a graph showing the results of the same experimental example.

【図4】従来の水中ロボットの位置検知技術を示す概念
図。
FIG. 4 is a conceptual diagram showing a conventional position detection technology for an underwater robot.

【符号の説明】[Explanation of symbols]

1 海洋構造物の水中部外板 2 磁気塗膜(または磁気シート) 3 水中ロボット本体 4 ガードパイプ 5A,5B 磁気センサー 6A,6B,6C,6D 操縦駆動輪 7 検査用機器搭載用ターレット盤 8A,8B 左右移動用スラスター 9A,9B 上下移動用スラスター 10A,10B 水中ライト 11 水中ビデオカメラ 12A, 12B 前後移動用スラスター 13 超音波発振器 14 超音波受信器 1 Underwater outer plate of marine structure 2 Magnetic coating film (or magnetic sheet) 3 Underwater robot body 4 Guard pipe 5A, 5B Magnetic sensor 6A, 6B, 6C, 6D Steering drive wheel 7 Turret board for mounting inspection equipment 8A, 8B Horizontal movement thruster 9A, 9B Vertical movement thruster 10A, 10B Underwater light 11 Underwater video camera 12A, 12B Forward movement thruster 13 Ultrasonic oscillator 14 Ultrasonic receiver

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B63B 35/44 A 8408−3D ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // B63B 35/44 A 8408-3D

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 海洋構造物等の水中部外板の検査用水中
ロボットにおいて、ロボット本体と、同ロボット本体に
取付けられた前後進用スラスター、左右移動用スラスタ
ーおよび上下移動用スラスターと、上記ロボット本体に
取付けられて上記水中部外板に接触して移動可能な操縦
駆動輪とをそなえ、上記水中部外板に沿って設けられた
磁気誘導帯からのずれ量を検知可能な一対の磁気センサ
ーが上記ロボット本体の前後端部寄りに取付けられ、同
一対の磁気センサーで検出された上記ずれ量をなくすべ
く上記操縦駆動輪を制御するコントローラが設けられて
いることを特徴とする、磁気誘導型水中ロボット。
1. An underwater robot for inspecting an underwater skin of a marine structure or the like, and a robot body, a forward-backward thruster, a left-right moving thruster, and a vertical moving thruster attached to the robot main body, and the robot. A pair of magnetic sensors that are attached to the main body and have a steering drive wheel that is movable in contact with the underwater outer plate and that can detect the amount of deviation from a magnetic induction band provided along the underwater outer plate. Is attached to the front and rear ends of the robot body, and a controller for controlling the steering drive wheels is provided in order to eliminate the amount of deviation detected by the same pair of magnetic sensors. Underwater robot.
【請求項2】 請求項1に記載の磁気誘導型水中ロボッ
トにおいて、上記水中ロボット本体に上記水中部外板の
検査用機器が搭載され、上記磁気誘導帯が上記水中部外
板に塗布された磁気塗膜あるいは上記水中部外板に貼着
された磁気シートにより構成されていることを特徴とす
る、磁気誘導型水中ロボット。
2. The magnetically guided underwater robot according to claim 1, wherein the underwater robot body is equipped with an inspection device for the underwater outer plate, and the magnetic induction band is applied to the underwater outer plate. A magnetic induction type underwater robot comprising a magnetic coating film or a magnetic sheet attached to the underwater outer plate.
JP6298867A 1994-11-08 1994-11-08 Magnetic induction type underwater robot Pending JPH08136291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6298867A JPH08136291A (en) 1994-11-08 1994-11-08 Magnetic induction type underwater robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6298867A JPH08136291A (en) 1994-11-08 1994-11-08 Magnetic induction type underwater robot

Publications (1)

Publication Number Publication Date
JPH08136291A true JPH08136291A (en) 1996-05-31

Family

ID=17865219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6298867A Pending JPH08136291A (en) 1994-11-08 1994-11-08 Magnetic induction type underwater robot

Country Status (1)

Country Link
JP (1) JPH08136291A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005059663A (en) * 2003-08-08 2005-03-10 Toshiba Corp Under water swimming device
JP2008513730A (en) * 2003-09-23 2008-05-01 ハイドロ−ケベック Method and apparatus for determining the position of an object in water in real time
KR101138859B1 (en) * 2011-06-30 2012-05-15 엘아이지넥스원 주식회사 System for underwater docking underwater vehicle using magnetic induced line and method thereof
KR101371145B1 (en) * 2012-05-22 2014-03-06 삼성중공업 주식회사 Robot system for underwater working
WO2016075864A1 (en) * 2014-11-10 2016-05-19 パナソニックIpマネジメント株式会社 Underwater robot
WO2017181984A1 (en) * 2016-04-20 2017-10-26 欧志洪 Robot capable of collecting water-related data from lakes and sea
JP2019033348A (en) * 2017-08-07 2019-02-28 首都高速道路株式会社 Underwater photography device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325697U (en) * 1986-08-04 1988-02-19
JPS63302985A (en) * 1987-05-30 1988-12-09 三菱重工業株式会社 Remote control type foreign-matter removing cleaner
JPH0287208A (en) * 1988-09-24 1990-03-28 Toshiba Corp Magnetic induction tape for unmanned carrier
JPH02216389A (en) * 1989-02-17 1990-08-29 Toshiba Corp Underwater inspecting device
JPH04612A (en) * 1990-04-18 1992-01-06 Shinko Electric Co Ltd Speed controller for unmanned carrier
JPH04297905A (en) * 1991-03-26 1992-10-21 Masami Murata Running control method for unmanned carrier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325697U (en) * 1986-08-04 1988-02-19
JPS63302985A (en) * 1987-05-30 1988-12-09 三菱重工業株式会社 Remote control type foreign-matter removing cleaner
JPH0287208A (en) * 1988-09-24 1990-03-28 Toshiba Corp Magnetic induction tape for unmanned carrier
JPH02216389A (en) * 1989-02-17 1990-08-29 Toshiba Corp Underwater inspecting device
JPH04612A (en) * 1990-04-18 1992-01-06 Shinko Electric Co Ltd Speed controller for unmanned carrier
JPH04297905A (en) * 1991-03-26 1992-10-21 Masami Murata Running control method for unmanned carrier

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005059663A (en) * 2003-08-08 2005-03-10 Toshiba Corp Under water swimming device
JP2008513730A (en) * 2003-09-23 2008-05-01 ハイドロ−ケベック Method and apparatus for determining the position of an object in water in real time
KR101138859B1 (en) * 2011-06-30 2012-05-15 엘아이지넥스원 주식회사 System for underwater docking underwater vehicle using magnetic induced line and method thereof
KR101371145B1 (en) * 2012-05-22 2014-03-06 삼성중공업 주식회사 Robot system for underwater working
WO2016075864A1 (en) * 2014-11-10 2016-05-19 パナソニックIpマネジメント株式会社 Underwater robot
WO2017181984A1 (en) * 2016-04-20 2017-10-26 欧志洪 Robot capable of collecting water-related data from lakes and sea
JP2019033348A (en) * 2017-08-07 2019-02-28 首都高速道路株式会社 Underwater photography device

Similar Documents

Publication Publication Date Title
WO2020171090A1 (en) Self-propelled inspection device and inspection method for metal sheet, and manufacturing method for metal sheet
JPH08136291A (en) Magnetic induction type underwater robot
US4617504A (en) Positioning device
GB2130721A (en) Measurement of pipeline deflection
WO2019198761A1 (en) Autonomous underwater vehicle
JP2008020319A (en) Trackless pipe inspection system
US5745232A (en) Apparatus for inspecting deformation of pipe
JP2904247B2 (en) Welding robot for corrugated lap joints
JP5525577B2 (en) Underwater cleaning device and position sensor device
CA2308360A1 (en) Material advance tracking system
JP3198242B2 (en) Cutting line marking method for hull outer plate that has been automatically heated and bent
CN116683346A (en) Obstacle-avoiding cable inspection robot in pipeline
JPH09211178A (en) Underwater mobile robot positioning method
JPH01282615A (en) Position correcting system for self-travelling unmanned vehicle
JP4542973B2 (en) Moving distance measuring device and moving distance measuring method
CN220291519U (en) Obstacle-avoiding cable inspection robot in pipeline
JPH0396568A (en) Execution robot
JPS60122409A (en) Automatic operation control system of car
JPH0821723A (en) Method and equipment for detecting phase of hub bolt
KR102575683B1 (en) Method for track position of robot
JP2905801B2 (en) Arc welding equipment
JPH1082771A (en) Inspection device for container body
JPH03104787A (en) Travel control device
JPH02300806A (en) Controller for wall plane travel robot
SU730539A1 (en) Apparatus for machining heat-insulating coatings

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020605