[go: up one dir, main page]

JPH08135485A - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JPH08135485A
JPH08135485A JP27869594A JP27869594A JPH08135485A JP H08135485 A JPH08135485 A JP H08135485A JP 27869594 A JP27869594 A JP 27869594A JP 27869594 A JP27869594 A JP 27869594A JP H08135485 A JPH08135485 A JP H08135485A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
lean
switching
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27869594A
Other languages
Japanese (ja)
Inventor
Giichi Shioyama
議市 塩山
Hiroyasu Yoshino
太容 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP27869594A priority Critical patent/JPH08135485A/en
Publication of JPH08135485A publication Critical patent/JPH08135485A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE: To avoid the temporary change of the air-fuel ratio to the lean and the rich so as to prevent the lowering of transformation efficiency with three way catalyst by correcting the increase quantity in response to a difference between the air-fuel ratio just before the switching and the stoichiometric air-fuel ratio at the time of switching the target air-fuel ratio from the lean to the theoretical value with a change of the engine operation condition. CONSTITUTION: Operation condition whether an engine 1 is operated at the lean air-fuel ratio or the stoichiometric air-fuel ratio is decided on the basis of the detecting signal such as the engine speed detected by a crank angle sensor 8, the cooling water temperature detected by a water temperature sensor 6, the intake air quantity detected by an air flowmeter and a load or the like. A control unit 16 performs the computing on the basis of the program in response to the detecting signal from these sensors. Consequently, at the time of the lean air-fuel ratio, the fuel injection quantity is computed on the basis of the allocation coefficient, and drive is controlled. In the condition except for the lean, a difference between the value detected by the air-fuel ratio sensor 14 and the theoretical value is computed, and the air-fuel ratio is switched from the lean, and increase quantity is corrected, and as a result thereof, after switching an A/F specifying flag, the real air-fuel ratio is quickly condensed, and comes close to the stoichiometric air-fuel ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自動車用ガソリン機
関等の内燃機関の空燃比制御装置、特に所定の運転条件
下でリーン空燃比による運転を行う空燃比制御装置の改
良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control device for an internal combustion engine such as a gasoline engine for an automobile, and more particularly to an improvement of an air-fuel ratio control device which operates at a lean air-fuel ratio under predetermined operating conditions.

【0002】[0002]

【従来の技術】主に燃費の低減を図るために、従来か
ら、所定の運転条件下でリーン空燃比による運転を行う
ようにした空燃比制御装置が、特開昭62−16274
6号公報等において提示されている。この種の空燃比制
御装置では、一般に、自動車の定常運転ならびに緩加速
運転等においてリーンとなるように、機関回転数および
機関負荷をパラメータとして、リーン運転領域が設定さ
れており、実際の機関回転数や負荷に応じて、理論空燃
比を目標空燃比とした空燃比制御と、リーン空燃比を目
標空燃比とした空燃比制御とが切り換えられるようにな
っている。そして、リーン空燃比から理論空燃比へ制御
を切り換える際には、リッチ化の応答性を高めるため
に、切換後、所定の時間の間、燃料噴射量に一定の増量
補正係数を乗算し、燃料噴射量を一時的に増量してい
る。
2. Description of the Related Art An air-fuel ratio control device which has been designed to operate at a lean air-fuel ratio under predetermined operating conditions has been disclosed in Japanese Patent Laid-Open No. 62-16274.
No. 6, for example. In this type of air-fuel ratio control device, generally, the lean operating region is set with the engine speed and the engine load as parameters so that the vehicle becomes lean in steady operation and slow acceleration operation, etc. The air-fuel ratio control with the stoichiometric air-fuel ratio as the target air-fuel ratio and the air-fuel ratio control with the lean air-fuel ratio as the target air-fuel ratio can be switched according to the number and load. When the control is switched from the lean air-fuel ratio to the stoichiometric air-fuel ratio, the fuel injection amount is multiplied by a constant increase correction coefficient for a predetermined time after the switching in order to enhance the response of the enrichment. The injection amount is temporarily increased.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の装置においては、リーン空燃比から理論空燃比へ切
り換える際に、機関の運転状態に拘わらず、一定の補正
量を加えるようにしていたので、補正に過不足が生じて
しまう。特に、リーン空燃比の値が固定されたものでは
なく、運転条件によって種々異なるリーン空燃比となる
ので、固定的な補正では、適切なものとはなり得ない。
例えば、図4は、機関の負荷に相当する基本燃料噴射パ
ルスTpと機関回転数とをパラメータとして、目標空燃
比(詳しくは、理論空燃比を1とした場合の空燃比補正
係数で示してある)を割り付けたマップの一例を示して
いるが、この図に明らかなように、同一の負荷であって
も、例えば回転数aの場合には、空燃比が17.5であ
り、回転数bの場合には、空燃比が20.7であって、
空燃比の差が3以上も存在する。これらの運転条件から
加速して理論空燃比での制御に移行しようとする際に、
従来は、この差が全く考慮されていない。従って、例え
ばb点から理論空燃比への移行に適したように一定の補
正量を与えたとすると、a点から理論空燃比へ移行する
際には、一時的に過濃となり、三元触媒におけるHCや
COの転換効率が低下してしまう。逆に、a点から理論
空燃比への移行に適したように一定の補正量を与えたと
すると、b点から理論空燃比へ移行する際には、補正量
が不十分となり、λ=1(λは空気過剰率である)に速
やかに到達することができず、一時的にリーンとなっ
て、NOxの転換効率が低下する。
However, in the above-mentioned conventional apparatus, when the lean air-fuel ratio is switched to the stoichiometric air-fuel ratio, a constant correction amount is added regardless of the operating state of the engine. There is an excess or deficiency in the correction. In particular, the value of the lean air-fuel ratio is not fixed, but various lean air-fuel ratios are obtained depending on the operating conditions. Therefore, fixed correction cannot be appropriate.
For example, FIG. 4 shows a target air-fuel ratio (specifically, an air-fuel ratio correction coefficient when the theoretical air-fuel ratio is 1 with the basic fuel injection pulse Tp corresponding to the load of the engine and the engine speed as parameters. ) Is shown, but as is clear from this figure, even with the same load, the air-fuel ratio is 17.5 and the rotation speed b In the case of, the air-fuel ratio is 20.7,
There are three or more air-fuel ratio differences. When accelerating from these operating conditions and shifting to control at the theoretical air-fuel ratio,
Conventionally, this difference is not considered at all. Therefore, for example, if a constant correction amount is given so as to be suitable for the transition from the point b to the stoichiometric air-fuel ratio, the transition from the point a to the stoichiometric air-fuel ratio will become temporarily rich and the three-way catalyst The conversion efficiency of HC and CO will decrease. On the contrary, if a constant correction amount is given so as to be suitable for shifting from the point a to the stoichiometric air-fuel ratio, the correction amount becomes insufficient when shifting from the point b to the stoichiometric air-fuel ratio, and λ = 1 ( (λ is an excess air ratio) cannot be reached promptly and becomes lean temporarily, and the conversion efficiency of NOx decreases.

【0004】また上記従来の構成では、上述した補正を
切換後一定の時間だけ行い、一定時間経過時点で急に補
正を0にしているが、このような構成では、実空燃比を
検出して燃料噴射量をフィードバック制御する空燃比フ
ィードバック制御の応答遅れとの相乗により、目標とす
るλ=1の点に対するオーバシュートおよびアンダシュ
ートが大きく発生し、その後、λ=1の点に収束するま
でに時間がかかるという欠点がある。
Further, in the above-mentioned conventional structure, the above-mentioned correction is carried out only for a fixed time after switching, and the correction is suddenly set to 0 when the fixed time elapses. However, in such a structure, the actual air-fuel ratio is detected. Due to the synergistic effect with the response delay of the air-fuel ratio feedback control that feedback-controls the fuel injection amount, a large amount of overshoot and undershoot occur at the target point of λ = 1, and then until it converges to the point of λ = 1. The drawback is that it takes time.

【0005】[0005]

【課題を解決するための手段】この発明に係る内燃機関
の空燃比制御装置は、内燃機関の理論空燃比を目標空燃
比として燃料供給量を制御する第1の制御手段と、リー
ン空燃比を目標空燃比として燃料供給量を制御する第2
の制御手段と、機関運転条件に応じて上記の第1制御手
段と第2制御手段の切換を行う切換手段と、第2制御手
段から第1制御手段への切換時に、切換直前の目標空燃
比もしくは実空燃比と理論空燃比との差を検出する空燃
比差検出手段と、この空燃比差に応じた増量補正を上記
切換時に行う増量補正手段と、を備えて構成されてい
る。
An air-fuel ratio control system for an internal combustion engine according to the present invention includes a first control means for controlling a fuel supply amount with a theoretical air-fuel ratio of the internal combustion engine as a target air-fuel ratio, and a lean air-fuel ratio. The second for controlling the fuel supply amount as the target air-fuel ratio
Control means, switching means for switching between the first control means and the second control means in accordance with the engine operating conditions, and the target air-fuel ratio immediately before switching when switching from the second control means to the first control means. Alternatively, it is provided with an air-fuel ratio difference detecting means for detecting a difference between the actual air-fuel ratio and the stoichiometric air-fuel ratio, and an increase correction means for performing an increase correction according to this air-fuel ratio difference at the time of the switching.

【0006】また請求項2の発明では、増量補正後に、
該増量相当分を徐々に減じる減量補正手段を有するとと
もに、その減量速度を、増量補正の大小に応じて設定す
る減量速度設定手段を備えている。
According to the invention of claim 2, after the increase correction,
In addition to having a decrease correction means for gradually decreasing the amount corresponding to the increase, a decrease speed setting means for setting the decrease speed according to the magnitude of the increase correction is provided.

【0007】また請求項3の発明では、増量補正後に、
該増量相当分を徐々に減じる減量補正手段を有するとと
もに、その減量速度を、上記の切換後に最初に空燃比が
リーンからリッチへ反転したときの三元触媒上流に配設
された酸素濃度センサの最高電圧レベルに応じて設定す
る減量速度設定手段を備えている。
According to the invention of claim 3, after the increase correction,
The oxygen concentration sensor provided with upstream of the three-way catalyst when the air-fuel ratio is first inverted from lean to rich after the switching is performed while having a reduction correction means for gradually reducing the amount corresponding to the increase. It is provided with a deceleration speed setting means for setting according to the maximum voltage level.

【0008】[0008]

【作用】機関運転条件の変化に伴い、リーン空燃比を目
標空燃比とする第2制御手段から理論空燃比を目標空燃
比とする第1制御手段へ切り換えられると、切換直前の
空燃比と理論空燃比との差が検出され、これに応じた補
正量でもって切換時に増量補正が行われる。つまり、空
燃比差が大きければ、増量補正は大きくなり、空燃比差
が小さければ、増量補正は少なくなる。
When the second control means for making the lean air-fuel ratio the target air-fuel ratio is switched to the first control means for making the theoretical air-fuel ratio the target air-fuel ratio as the engine operating conditions change, the air-fuel ratio and the theory just before the switching are changed. A difference from the air-fuel ratio is detected, and an increase correction is performed at the time of switching with a correction amount corresponding to this. That is, if the air-fuel ratio difference is large, the increase correction is large, and if the air-fuel ratio difference is small, the increase correction is small.

【0009】また請求項2の構成では、増量補正後に、
該増量相当分が徐々に減じられる。特に、その減量速度
が、増量補正の大小に応じたものとなり、増量補正が大
きいほど、オーバシュートを防止するように、減量速度
が大となる。
According to the structure of claim 2, after the increase correction,
The amount corresponding to the increase is gradually reduced. In particular, the deceleration speed corresponds to the magnitude of the increase correction, and the larger the increase correction, the higher the deceleration speed so as to prevent overshoot.

【0010】また請求項3の構成では、減量速度が、三
元触媒上流の酸素濃度センサ位置での空燃比の濃淡によ
って決定される。つまり、最初にリーンからリッチに反
転したときに、センサ近傍の空燃比が濃ければ、該セン
サの最高電圧レベルが高くなるので、オーバシュートを
抑制するように、減量速度が大となる。
According to the third aspect of the invention, the deceleration rate is determined by the density of the air-fuel ratio at the oxygen concentration sensor position upstream of the three-way catalyst. In other words, when the air-fuel ratio near the sensor is high when the lean-to-rich reverse is first performed, the maximum voltage level of the sensor becomes high, so that the deceleration speed becomes large so as to suppress the overshoot.

【0011】[0011]

【実施例】以下、この発明の一実施例を図面に基づいて
詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings.

【0012】図1は、この発明に係る空燃比制御装置の
一実施例の機械的構成を示す構成説明図である。
FIG. 1 is a structural explanatory view showing a mechanical structure of an embodiment of an air-fuel ratio control device according to the present invention.

【0013】同図において、1は内燃機関を示してお
り、この内燃機関1の吸気ポートに向けて各気筒毎に燃
料噴射弁2が配設されている。そして、吸気通路3にス
ロットル弁4が介装されているとともに、このスロット
ル弁4よりも上流側に、吸入空気量を検出する熱線式エ
アフロメータ5が配設されている。上記スロットル弁4
には、その開度を検出するスロットル開度センサ6が設
けられている。また、内燃機関1には、冷却水温を検出
する水温センサ7と、機関回転数を検出するクランク角
センサ8とが取り付けられている。
In FIG. 1, reference numeral 1 denotes an internal combustion engine, and a fuel injection valve 2 is arranged for each cylinder toward an intake port of the internal combustion engine 1. A throttle valve 4 is provided in the intake passage 3, and a hot-wire air flow meter 5 for detecting the intake air amount is arranged upstream of the throttle valve 4. Above throttle valve 4
Is provided with a throttle opening sensor 6 for detecting the opening thereof. Further, a water temperature sensor 7 for detecting the cooling water temperature and a crank angle sensor 8 for detecting the engine speed are attached to the internal combustion engine 1.

【0014】また内燃機関1の排気通路11には、リー
ン空燃比の下でNOxの浄化が可能なリーンNOx触媒
12と、三元触媒13とが直列に配置されている。そし
て、リーンNOx触媒12の上流側に、空燃比を広く検
出し得るいわゆる広域型の空燃比センサ14が配置され
ている。さらに、リーンNOx触媒12と三元触媒13
との間に、理論空燃比を境にステップ的な応答を示す酸
素濃度センサ(いわゆるO2センサ)15が配置されて
いる。
In the exhaust passage 11 of the internal combustion engine 1, a lean NOx catalyst 12 capable of purifying NOx under a lean air-fuel ratio and a three-way catalyst 13 are arranged in series. Further, a so-called wide area type air-fuel ratio sensor 14 capable of widely detecting the air-fuel ratio is arranged on the upstream side of the lean NOx catalyst 12. Furthermore, the lean NOx catalyst 12 and the three-way catalyst 13
And an oxygen concentration sensor (so-called O 2 sensor) 15 that shows a stepwise response at the stoichiometric air-fuel ratio.

【0015】16は、各センサ類の検出信号が入力さ
れ、これらに基づいて燃料噴射量制御等を行うコントロ
ールユニットを示している。このコントロールユニット
16は、CPUやROM、RAMならびにI/Oポート
等にて構成されたマイクロコンピュータシステムからな
り、所定のプログラムに従って種々の演算処理を行うよ
うになっている。
Reference numeral 16 denotes a control unit to which the detection signals of the respective sensors are input and which controls the fuel injection amount and the like based on these signals. The control unit 16 is composed of a microcomputer system including a CPU, a ROM, a RAM, an I / O port, and the like, and performs various arithmetic processes according to a predetermined program.

【0016】次に、上記構成における空燃比制御につい
て説明する。
Next, the air-fuel ratio control in the above configuration will be described.

【0017】上記構成において、1サイクル毎の噴射量
つまり各燃料噴射弁2に印加される駆動パルス信号のパ
ルス幅Tiは、次式により与えられる。
In the above structure, the injection amount for each cycle, that is, the pulse width Ti of the drive pulse signal applied to each fuel injection valve 2 is given by the following equation.

【0018】[0018]

【数1】 Ti=Tp×COEF×KRICH×α+TS ここで、Tpは、基本燃料噴射量であり、エアフロメー
タ5が検出した吸入空気量Qと機関回転数Nと定数Kと
を用いて、K・Q/Nとして求められる。またCOEF
は、次式に示すように種々の補正係数からなる。
## EQU1 ## Ti = Tp × COEF × KRICH × α + TS where Tp is the basic fuel injection amount, and K is calculated by using the intake air amount Q detected by the air flow meter 5, the engine speed N and the constant K. -Required as Q / N. Also COEF
Is composed of various correction coefficients as shown in the following equation.

【0019】[0019]

【数2】 COEF=KABYF+KTW+KAS+KHOT ここで、KTWは水温補正係数、KASは始動時増量補
正係数、KHOTは高温時補正係数である。また、KA
BYFは、燃空比割付係数であり、理論空燃比とすべき
運転条件下では、KABYF=KSTOICH、リーン
空燃比とすべき運転条件下では、KABYF=KLEA
Nとなり、それぞれ所定のマップを参照して運転条件に
応じて設定される。
COEF = KABYF + KTW + KAS + KHOT where KTW is a water temperature correction coefficient, KAS is a startup increase correction coefficient, and KHOT is a high temperature correction coefficient. Also, KA
BYF is a fuel-air ratio allocation coefficient, KABYF = KSTOICH under operating conditions that should be the theoretical air-fuel ratio, and KABYF = KLEA under operating conditions that should be a lean air-fuel ratio.
N, which is set according to the operating conditions by referring to the respective predetermined maps.

【0020】またKRICHは、空燃比リッチ化係数で
あり、本発明が課題とするリーン空燃比から理論空燃比
への切換時の噴射量補正を実現するための係数である。
この空燃比リッチ化係数KRICHについては後述する
が、KRICH≧1であり、かつリーン時には、常にK
RICH=1である。
KRICH is an air-fuel ratio enrichment coefficient, and is a coefficient for realizing the injection amount correction at the time of switching from the lean air-fuel ratio to the stoichiometric air-fuel ratio, which is the subject of the present invention.
The air-fuel ratio enrichment coefficient KRICH will be described later, but KRICH ≧ 1, and when lean, always K
RICH = 1.

【0021】またαは、酸素濃度センサ15の検出信号
に基づいて、例えば比例積分制御により演算されるフィ
ードバック補正係数である。またTSは、電圧補正係数
である。
Further, α is a feedback correction coefficient calculated based on the detection signal of the oxygen concentration sensor 15, for example, by proportional-plus-integral control. TS is a voltage correction coefficient.

【0022】内燃機関1をリーン空燃比でもって運転す
るか、理論空燃比でもって運転するかは、機関回転数、
負荷、冷却水温等の機関運転条件によって決定される。
図2は、一般的な走行モード(10.15モード)にお
けるそれぞれの空燃比の使用パターンを例示したもので
あり、一般的に、略定速走行および緩加速走行の条件下
ではリーン空燃比とし、安定度が要求されるアイドリン
グ時や一般加速モードでは、理論空燃比としている。
Whether the internal combustion engine 1 is operated at a lean air-fuel ratio or at a stoichiometric air-fuel ratio depends on the engine speed,
It is determined by engine operating conditions such as load and cooling water temperature.
FIG. 2 exemplifies usage patterns of respective air-fuel ratios in a general traveling mode (10.15 mode). Generally, the air-fuel ratio is set to a lean air-fuel ratio under conditions of substantially constant speed traveling and slow acceleration traveling. The theoretical air-fuel ratio is used when idling, which requires stability, and in general acceleration mode.

【0023】次に、図3は、燃料噴射量Tiの演算処理
の流れを示すフローチャートであり、以下、これを説明
する。なお、この噴射量Tiの演算は、噴射周期よりも
十分に早い一定の周期で行われる。まず、ステップ1で
は、機関回転数、吸入空気量、冷却水温、車速等の種々
の運転条件信号を読み込む。そして、ステップ2で、リ
ーン空燃比とするかリーン以外の空燃比(理論空燃比お
よびリッチ空燃比)とするかを示すA/F規定フラグの
状態を判定する。なお、このA/F規定フラグは、図示
せぬ他のルーチンにより、機関運転条件に基づいて設定
されるものであり、このフラグに従って、後述する燃料
噴射量のほか、点火時期等も切り換えられるようになっ
ている。
Next, FIG. 3 is a flowchart showing the flow of the calculation process of the fuel injection amount Ti, which will be described below. The calculation of the injection amount Ti is performed in a fixed cycle that is sufficiently earlier than the injection cycle. First, in step 1, various operating condition signals such as engine speed, intake air amount, cooling water temperature, vehicle speed, etc. are read. Then, in step 2, the state of the A / F regulation flag indicating whether the lean air-fuel ratio or the non-lean air-fuel ratio (theoretical air-fuel ratio and the rich air-fuel ratio) is set is determined. The A / F regulation flag is set based on the engine operating condition by another routine (not shown), and the ignition timing and the like can be switched according to the flag in addition to the fuel injection amount described later. It has become.

【0024】このフラグの判定により、リーン空燃比と
すべき場合には、ステップ3へ進み、リーン時の燃空比
割付係数KABYFつまりKLEANの値を、図4に示
すマップを参照して決定する。そして、ステップ8へ進
み、前述した演算式に基づいて、燃料噴射量Tiを算出
する。燃料噴射弁2は、図示せぬ他のルーチンによって
駆動制御されており、所定の噴射時期に達すると、この
噴射量Tiに従って燃料噴射を実行する。
If the lean air-fuel ratio is to be determined by this flag determination, the routine proceeds to step 3, where the lean air-fuel ratio allocation coefficient KABYF, that is, the value of KLEAN is determined with reference to the map shown in FIG. . Then, the process proceeds to step 8, and the fuel injection amount Ti is calculated based on the above-mentioned arithmetic expression. The fuel injection valve 2 is drive-controlled by another routine (not shown), and when the predetermined injection timing is reached, the fuel injection valve 2 executes the fuel injection according to the injection amount Ti.

【0025】ステップ2でフラグがリーン以外の空燃比
とする状態にある場合には、ステップ4へ進み、空燃比
センサ14により実際に検出された空燃比と理論空燃比
(14.7)との差つまり空燃比差を算出する。A/F
規定フラグがリーンからリーン以外へと切り換わった後
の初回は、実空燃比が切換直前のリーン空燃比のままで
あり、この差が、切換直前の空燃比と理論空燃比との段
差を示す。そして、ステップ5で、この空燃比差を、所
定の判定基準値と比較する。空燃比差が判定基準値より
大きい場合には、ステップ6へ進み、増量補正を開始も
しくは継続するが、空燃比差が判定基準値より小さい場
合もしくはマイナスの値となった場合には、ステップ9
へ進み、後述する減量補正を行う。なお、空燃比センサ
14により実際の空燃比を検出するのに代えて、図4の
マップの燃空比割付係数KLEANの値から切換直前の
リーン空燃比を推定し、理論空燃比との空燃比差を求め
ることもできる。
When the flag is in the state of the air-fuel ratio other than lean in step 2, the routine proceeds to step 4, where the air-fuel ratio actually detected by the air-fuel ratio sensor 14 and the theoretical air-fuel ratio (14.7) are set. The difference, that is, the air-fuel ratio difference is calculated. A / F
For the first time after the specified flag switches from lean to other than lean, the actual air-fuel ratio remains the lean air-fuel ratio immediately before switching, and this difference indicates the step between the air-fuel ratio immediately before switching and the stoichiometric air-fuel ratio. . Then, in step 5, this air-fuel ratio difference is compared with a predetermined determination reference value. If the air-fuel ratio difference is larger than the judgment reference value, the routine proceeds to step 6, and the increase correction is started or continued, but if the air-fuel ratio difference is smaller than the judgment reference value or has a negative value, step 9 is executed.
Then, the process proceeds to and the weight reduction correction described later is performed. Instead of detecting the actual air-fuel ratio by the air-fuel ratio sensor 14, the lean air-fuel ratio immediately before switching is estimated from the value of the fuel-air ratio allocation coefficient KLEAN in the map of FIG. 4, and the air-fuel ratio with the theoretical air-fuel ratio is estimated. You can also find the difference.

【0026】ステップ6では、上述した空燃比リッチ化
係数KRICHを図5に示す特性に沿って、上記空燃比
差に応じて設定する。従って、リーンから理論空燃比に
切り換わる際に、その空燃比の段差が大きければ、それ
だけ補正量が大きく与えられることになり、λ=1の点
に速やかに到達する。逆に空燃比の段差が小さい場合に
は、補正量が小さくなり、過度の補正によるリッチ化が
回避できる。なお、このステップ6では、空燃比差とし
て、A/F規定フラグがリーンからリーン以外へと切り
換わった直後の値が常に保持される。
In step 6, the above-mentioned air-fuel ratio enrichment coefficient KRICH is set in accordance with the above-mentioned air-fuel ratio difference along the characteristics shown in FIG. Therefore, when the lean air-fuel ratio is switched to the stoichiometric air-fuel ratio, the larger the step of the air-fuel ratio, the larger the correction amount is, and the point of λ = 1 is reached quickly. On the contrary, when the step of the air-fuel ratio is small, the correction amount becomes small, and the enrichment due to excessive correction can be avoided. In this step 6, the value immediately after the A / F regulation flag is switched from lean to other than lean is always held as the air-fuel ratio difference.

【0027】次に、ステップ7では、理論空燃比もしく
はリッチ時の燃空比割付係数KABYFつまりKSTO
ICHの値を、図示せぬマップを参照して決定する。な
お、このKSTOICHの値は、1以上の値、例えば1
〜1.5の値となる。そして、ステップ8へ進み、前述
した演算式に基づいて、燃料噴射量Tiを算出する。燃
料噴射弁2は、所定の噴射時期に達すると、この噴射量
Tiに従って燃料噴射を実行する。従って、図6に示す
ように、A/F規定フラグがリーンから理論空燃比へと
切り換わると、理論空燃比に相当するレベルまで燃料噴
射量Tiが増大するとともに、これに上乗せするよう
に、空燃比リッチ化係数KRICHによる補正が加えら
れる。
Next, at step 7, the stoichiometric air-fuel ratio or the fuel-air ratio allocation coefficient KABYF at the time of rich, that is, KSTO.
The value of ICH is determined with reference to a map (not shown). The value of KSTOICH is 1 or more, for example, 1
It is a value of ~ 1.5. Then, the process proceeds to step 8, and the fuel injection amount Ti is calculated based on the above-mentioned arithmetic expression. When the fuel injection valve 2 reaches a predetermined injection timing, the fuel injection valve 2 executes fuel injection according to the injection amount Ti. Therefore, as shown in FIG. 6, when the A / F regulation flag is switched from lean to the stoichiometric air-fuel ratio, the fuel injection amount Ti increases to a level corresponding to the stoichiometric air-fuel ratio, and in addition to this, Correction by the air-fuel ratio enrichment coefficient KRICH is added.

【0028】一方、このように増量補正の結果、A/F
規定フラグがリーンからリーン以外へと切り換わった
後、比較的速やかに、実際の空燃比が濃くなり、理論空
燃比に接近する。従って、ステップ4で求められる空燃
比差がステップ5の判定基準値以下となり、ステップ5
からステップ9へ進むようになる。これにより、以後
は、空燃比リッチ化係数KRICHを徐々に減少させ
る。具体的には、ステップ9で、減量補正係数KDEC
Rを決定し、この減量補正係数KDECRを空燃比リッ
チ化係数KRICHに乗じることによって、該係数KR
ICHを減少させる。つまり、前回の空燃比リッチ化係
数をKRICH(OLD)とすれば、新たな係数KRICH
は、KRICH=KRICH(OLD)×KDECRとして
求められる。従って、燃料噴射量Tiは、図6に示すよ
うに、徐々に減少する。ここで、この減量の速度を決定
する減量補正係数KDECRの値は、図7に示すマップ
を参照して、初期のつまり切換直後の空燃比リッチ化係
数KRICHの値に応じた形で決定される。具体的に
は、初期の空燃比リッチ化係数KRICHが大であれ
ば、それだけ減量速度が大きくなる。これにより、空燃
比フィードバック制御との相乗によるオーバシュートひ
いてはその反動によるアンダシュートをも抑制でき、λ
=1の点近傍に実際の空燃比を速やかに収束させること
ができる。空燃比リッチ化係数KRICHは、KRIC
H≧1であり、従って、1に達するまで、徐々に減量補
正がなされる。図9は、この減量補正係数KDECRの
大小による減量速度の例を示している。
On the other hand, as a result of this increase correction, the A / F
After the specified flag switches from lean to non-lean, the actual air-fuel ratio becomes relatively thick and approaches the stoichiometric air-fuel ratio relatively quickly. Therefore, the air-fuel ratio difference obtained in step 4 becomes equal to or smaller than the determination reference value in step 5, and step 5
To go to step 9. Thereby, thereafter, the air-fuel ratio enrichment coefficient KRICH is gradually reduced. Specifically, in step 9, the weight reduction correction coefficient KDEC
By determining R and multiplying this reduction correction coefficient KDECR by the air-fuel ratio enrichment coefficient KRICH, the coefficient KR
Decrease ICH. That is, if the previous air-fuel ratio enrichment coefficient is KRICH (OLD) , the new coefficient KRICH
Is calculated as KRICH = KRICH (OLD) × KDECR. Therefore, the fuel injection amount Ti gradually decreases as shown in FIG. Here, the value of the reduction correction coefficient KDECR that determines the speed of this reduction is determined in a form corresponding to the value of the air-fuel ratio enrichment coefficient KRICH in the initial stage, that is, immediately after switching, with reference to the map shown in FIG. . Specifically, if the initial air-fuel ratio enrichment coefficient KRICH is large, the deceleration rate increases accordingly. As a result, overshoot due to the synergistic effect with the air-fuel ratio feedback control, and hence undershoot due to its reaction, can be suppressed,
The actual air-fuel ratio can be quickly converged near the point of = 1. The air-fuel ratio enrichment coefficient KRICH is KRIC
Since H ≧ 1, the weight reduction correction is gradually performed until the value reaches 1. FIG. 9 shows an example of the reduction rate depending on the magnitude of the reduction correction coefficient KDECR.

【0029】なお、上記のように空燃比リッチ化係数K
RICHの値に応じて減量速度を決定する方法のほか
に、三元触媒13の直前に位置する酸素濃度センサ15
の、空燃比切換後、リーンからリッチへ最初に反転した
ときの出力電圧の大きさによって減量速度を決定する方
法もある。図8は、この場合の減量補正係数KDECR
の上記出力電圧に対する特性を示したものであり、最初
の反転時の出力電圧が高いほど、減量速度が大きく与え
られる。この方法では、三元触媒13の直前位置におけ
る空燃比の実際の濃淡を検出し、これに応じて減量速度
が規定されることになるので、三元触媒13におけるN
Oxの転換効率の点で最も優れたものとなる。
As mentioned above, the air-fuel ratio enrichment coefficient K
In addition to the method of determining the deceleration rate according to the value of RICH, the oxygen concentration sensor 15 located immediately before the three-way catalyst 13
There is also a method of determining the deceleration speed according to the magnitude of the output voltage when the lean-to-rich first inversion is performed after the air-fuel ratio is switched. FIG. 8 shows the weight reduction correction coefficient KDECR in this case.
Of the above output voltage, the higher the output voltage at the first inversion, the greater the deceleration rate. In this method, the actual shading of the air-fuel ratio at the position immediately before the three-way catalyst 13 is detected, and the deceleration rate is defined accordingly, so that the N
It is the best in terms of Ox conversion efficiency.

【0030】図10は、上述した本発明の補正による空
燃比切換時のλ=1の点への収束状態の一例を図示した
ものであり、併せてNOx排出量(三元触媒13出口側
の値)を示してある。また、従来例は、前述したように
一定の補正を一定期間だけ加える方式によるものであ
り、特に、その補正量が若干不足気味である場合の特性
を示している。この図10に示すように、本発明によれ
ば、適切な補正によりNOxを低減できるとともに、λ
=1の点に速やかに収束するようになる。
FIG. 10 shows an example of the state of convergence to the point of λ = 1 when the air-fuel ratio is switched by the above-described correction of the present invention. In addition, the NOx emission amount (at the three-way catalyst 13 outlet side) Value) is shown. Further, the conventional example is based on a system in which a fixed correction is added only for a fixed period as described above, and particularly shows characteristics when the correction amount is slightly insufficient. As shown in FIG. 10, according to the present invention, NOx can be reduced by appropriate correction, and λ
It will quickly converge to the point of = 1.

【0031】[0031]

【発明の効果】以上の説明で明らかなように、この発明
に係る内燃機関の空燃比制御装置によれば、目標空燃比
がリーン空燃比から理論空燃比へ切り換わる際に、切換
直前の空燃比と理論空燃比との空燃比差に応じた増量補
正を行うことにより、切換直後の一時的なリーン化やリ
ッチ化を回避でき、λ=1の点に速やかに到達する。従
って、切換直後のHCやCOあるいはNOxの悪化を防
止できる。
As is apparent from the above description, according to the air-fuel ratio control system for an internal combustion engine of the present invention, when the target air-fuel ratio is switched from the lean air-fuel ratio to the stoichiometric air-fuel ratio, the air-fuel ratio immediately before the switching is changed. By performing the increase correction according to the air-fuel ratio difference between the fuel ratio and the stoichiometric air-fuel ratio, it is possible to avoid the temporary leaning or richening immediately after the switching, and the point of λ = 1 is quickly reached. Therefore, it is possible to prevent deterioration of HC, CO, or NOx immediately after switching.

【0032】また請求項2および請求項3の構成によれ
ば、空燃比フィードバック制御との相乗によるλ=1の
点に対するオーバシュートおよびアンダシュートを小さ
くでき、切換後に一層速やかにλ=1の点に収束させる
ことができる。
Further, according to the second and third aspects, the overshoot and the undershoot with respect to the point of λ = 1 due to the synergistic effect with the air-fuel ratio feedback control can be reduced, and the point of λ = 1 can be promptly changed after the switching. Can be converged to.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る空燃比制御装置の一実施例を示
す構成説明図。
FIG. 1 is a structural explanatory view showing an embodiment of an air-fuel ratio control device according to the present invention.

【図2】リーン空燃比領域と理論空燃比領域の一例を示
す説明図。
FIG. 2 is an explanatory diagram showing an example of a lean air-fuel ratio region and a stoichiometric air-fuel ratio region.

【図3】この実施例における噴射量制御の流れを示すフ
ローチャート。
FIG. 3 is a flowchart showing a flow of injection amount control in this embodiment.

【図4】リーン時の燃空比割付係数KLEANのマップ
を示す特性図。
FIG. 4 is a characteristic diagram showing a map of a fuel-air ratio allocation coefficient KLEAN when lean.

【図5】切換時の空燃比差と空燃比リッチ化係数KRI
CHとの関係を示す特性図。
FIG. 5: Air-fuel ratio difference and air-fuel ratio enrichment coefficient KRI during switching
The characteristic view which shows the relationship with CH.

【図6】車速と空燃比と燃料噴射パルス幅Tiの変化の
一例を示すタイムチャート。
FIG. 6 is a time chart showing an example of changes in vehicle speed, air-fuel ratio, and fuel injection pulse width Ti.

【図7】切換時の空燃比リッチ化係数KRICHと減量
補正係数KDECRとの関係を示す特性図。
FIG. 7 is a characteristic diagram showing a relationship between an air-fuel ratio enrichment coefficient KRICH and a reduction correction coefficient KDECR at the time of switching.

【図8】酸素濃度センサの出力電圧と減量補正係数KD
ECRとの関係を示す特性図。
FIG. 8: Output voltage of oxygen concentration sensor and reduction correction coefficient KD
The characteristic view which shows the relationship with ECR.

【図9】減量速度の例を示す特性図。FIG. 9 is a characteristic diagram showing an example of a deceleration rate.

【図10】切換時の実空燃比の変化とNOx排出量の変
化を示すタイムチャート。
FIG. 10 is a time chart showing changes in the actual air-fuel ratio and changes in the NOx emission amount at the time of switching.

【符号の説明】[Explanation of symbols]

2…燃料噴射弁 12…リーンNOx触媒 13…三元触媒 14…空燃比センサ 15…酸素濃度センサ 2 ... Fuel injection valve 12 ... Lean NOx catalyst 13 ... Three-way catalyst 14 ... Air-fuel ratio sensor 15 ... Oxygen concentration sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の理論空燃比を目標空燃比とし
て燃料供給量を制御する第1の制御手段と、リーン空燃
比を目標空燃比として燃料供給量を制御する第2の制御
手段と、機関運転条件に応じて上記の第1制御手段と第
2制御手段の切換を行う切換手段と、第2制御手段から
第1制御手段への切換時に、切換直前の目標空燃比もし
くは実空燃比と理論空燃比との差を検出する空燃比差検
出手段と、この空燃比差に応じた増量補正を上記切換時
に行う増量補正手段と、を備えてなる内燃機関の空燃比
制御装置。
1. A first control means for controlling a fuel supply amount with a theoretical air-fuel ratio of an internal combustion engine as a target air-fuel ratio, and a second control means for controlling a fuel supply amount with a lean air-fuel ratio as a target air-fuel ratio. Switching means for switching between the first control means and the second control means according to the engine operating conditions, and a target air-fuel ratio or an actual air-fuel ratio immediately before switching when switching from the second control means to the first control means. An air-fuel ratio control device for an internal combustion engine, comprising: an air-fuel ratio difference detection means for detecting a difference from a stoichiometric air-fuel ratio; and an increase correction means for performing an increase correction according to the air-fuel ratio difference at the time of switching.
【請求項2】 増量補正後に、該増量相当分を徐々に減
じる減量補正手段を有するとともに、その減量速度を、
増量補正の大小に応じて設定する減量速度設定手段を備
えていることを特徴とする請求項1記載の内燃機関の空
燃比制御装置。
2. After the increase correction, there is provided a decrease correction means for gradually decreasing the amount corresponding to the increase, and the decrease speed is
The air-fuel ratio control apparatus for an internal combustion engine according to claim 1, further comprising a deceleration speed setting means that is set according to the magnitude of the increase correction.
【請求項3】 増量補正後に、該増量相当分を徐々に減
じる減量補正手段を有するとともに、その減量速度を、
上記の切換後に最初に空燃比がリーンからリッチへ反転
したときの三元触媒上流に配設された酸素濃度センサの
最高電圧レベルに応じて設定する減量速度設定手段を備
えていることを特徴とする請求項1記載の内燃機関の空
燃比制御装置。
3. A decrease correction means for gradually reducing the amount corresponding to the increase after the increase correction, and the decrease speed thereof
After the above switching, it is characterized by including a deceleration speed setting means for setting according to the maximum voltage level of the oxygen concentration sensor arranged upstream of the three-way catalyst when the air-fuel ratio first reverses from lean to rich. The air-fuel ratio control device for an internal combustion engine according to claim 1.
JP27869594A 1994-11-14 1994-11-14 Air-fuel ratio control device for internal combustion engine Pending JPH08135485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27869594A JPH08135485A (en) 1994-11-14 1994-11-14 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27869594A JPH08135485A (en) 1994-11-14 1994-11-14 Air-fuel ratio control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH08135485A true JPH08135485A (en) 1996-05-28

Family

ID=17600898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27869594A Pending JPH08135485A (en) 1994-11-14 1994-11-14 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH08135485A (en)

Similar Documents

Publication Publication Date Title
JPH109022A (en) Air-fuel ratio control device for internal combustion engine
JPH086624B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0639932B2 (en) Air-fuel ratio controller for internal combustion engine
JPH066913B2 (en) Air-fuel ratio controller for internal combustion engine
JP2518247B2 (en) Air-fuel ratio control device for internal combustion engine
JPH04339147A (en) Air-fuel ratio control device for internal combustion engines
JP3490475B2 (en) Air-fuel ratio control device for internal combustion engine
JP2676987B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0639930B2 (en) Air-fuel ratio controller for internal combustion engine
US4753208A (en) Method for controlling air/fuel ratio of fuel supply system for an internal combustion engine
JP2690482B2 (en) Air-fuel ratio control device for internal combustion engine
JPH07113336B2 (en) Air-fuel ratio controller for internal combustion engine
JP3826997B2 (en) Air-fuel ratio control device for internal combustion engine
JPH08135485A (en) Air-fuel ratio control device for internal combustion engine
JP2518254B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0617660B2 (en) Air-fuel ratio controller for internal combustion engine
JPH0763096A (en) Air-fuel ratio controller of internal combustion engine
JP2518260B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0419377B2 (en)
JPH0646013B2 (en) Air-fuel ratio control method for fuel supply device for internal combustion engine
JPS63134835A (en) Air-fuel ratio control device for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JP2807528B2 (en) Air-fuel ratio control method for internal combustion engine
JP2560303B2 (en) Air-fuel ratio control device for internal combustion engine
JP2692309B2 (en) Air-fuel ratio control device for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040803