JPH08134625A - Method for forming titanium sheet - Google Patents
Method for forming titanium sheetInfo
- Publication number
- JPH08134625A JPH08134625A JP6302857A JP30285794A JPH08134625A JP H08134625 A JPH08134625 A JP H08134625A JP 6302857 A JP6302857 A JP 6302857A JP 30285794 A JP30285794 A JP 30285794A JP H08134625 A JPH08134625 A JP H08134625A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- thin plate
- forming
- pressure
- titanium thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 71
- 239000010936 titanium Substances 0.000 title claims abstract description 71
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000007789 gas Substances 0.000 claims abstract description 119
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910001873 dinitrogen Inorganic materials 0.000 claims abstract description 7
- 239000011261 inert gas Substances 0.000 claims abstract description 5
- 239000008246 gaseous mixture Substances 0.000 abstract 1
- 238000000465 moulding Methods 0.000 description 34
- 230000000052 comparative effect Effects 0.000 description 18
- 239000010410 layer Substances 0.000 description 14
- 238000001723 curing Methods 0.000 description 9
- 230000003746 surface roughness Effects 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910001069 Ti alloy Inorganic materials 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、チタンまたはチタン
合金薄板(以下、チタン薄板と総称する)の成形および
表面硬化方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a titanium or titanium alloy thin plate (hereinafter referred to as a titanium thin plate) and a surface hardening method.
【0002】[0002]
【従来の技術】チタン薄板は、軽量でしかも強度が高
く、耐食性に優れている特性を有しているが、これを摺
動部材等に使用した場合には、摩耗および焼付きが生じ
やすい問題を有している。2. Description of the Related Art Titanium sheet is lightweight and has high strength and excellent corrosion resistance. However, when it is used as a sliding member, abrasion and seizure are likely to occur. have.
【0003】上述した問題を解決するために、従来か
ら、チタン薄板に対し表面硬化処理を施して、その表面
に硬化層を形成することにより、表面硬度を高め、耐摩
耗性および耐焼付き性を向上させることが行われてい
る。このような、チタン薄板に対する表面硬化処理手段
として、次のような方法が知られている。 (1) PVD(Physical Vapor Deposition) 法やCVD
(Chemical Vapor Deposition)法のような乾式メッキ法
(例えば特公平2-9104号に開示されているTiN コーティ
ング法)。 (2) 湿式メッキ法。 (3) 例えば特開昭61-69956号に開示されている、窒素ガ
スによる窒化処理法。 (4) 例えば特開平5-9703号に開示されている、C02 ガス
を使用した硬化処理法(以下、先行技術という) 。In order to solve the above-mentioned problems, conventionally, a titanium thin plate is subjected to a surface hardening treatment to form a hardened layer on the surface thereof, whereby surface hardness is increased and abrasion resistance and seizure resistance are improved. Improvements are being made. The following method is known as a surface hardening treatment means for such a titanium thin plate. (1) PVD (Physical Vapor Deposition) method and CVD
Dry plating method such as (Chemical Vapor Deposition) method (for example, TiN coating method disclosed in Japanese Patent Publication No. 2-9104). (2) Wet plating method. (3) A nitriding method using nitrogen gas, which is disclosed in, for example, JP-A-61-69956. (4) for example, disclosed in JP-A-5-9703, C0 curing method using 2 gas (hereinafter, referred to as prior art).
【0004】一方、チタン薄板に対する成形加工は、一
般の金属薄板の成形加工と同じように、プレス成形、冷
間または熱間での鍛造成形、または、主として超塑性成
形で用いられるアルゴンガス等によるガス圧成形等によ
って行われている。On the other hand, the forming process for a titanium thin plate is performed by press forming, cold or hot forging, or argon gas mainly used for superplastic forming, as in the case of forming a general metal thin plate. It is performed by gas pressure molding or the like.
【0005】[0005]
【発明が解決しようとする課題】優れた耐摩耗性および
耐焼付き性が要求されている機械部品等の材料としてチ
タン薄板を使用する場合には、上述した観点から、先
ず、チタン薄板に対し成形加工を施し、次いで、表面硬
化処理を施さなければならない。In the case of using a titanium thin plate as a material for a machine part or the like which is required to have excellent wear resistance and seizure resistance, from the above-mentioned viewpoint, first, the titanium thin plate is formed by molding. It must be processed and then hardened.
【0006】しかしながら、上述したように、チタン薄
板に対し成形加工を施し、しかる後に表面硬化処理を施
すことは、処理が2工程になるために、製品価格の上昇
が避けられない。更に、成形された製品表面の硬化層を
均一に形成するためには、成形加工されたチタン薄板の
成形体に対し、その表面硬化処理前の表面肌を均一にす
るための酸洗やショットブラスト等の前処理を施すこと
が不可欠であるが、成形体の形状が複雑な場合には、上
記前処理が困難であるために、表面硬化処理後の硬化層
が不均一になる問題が生ずる。However, as described above, when the titanium thin plate is subjected to the forming process and then the surface hardening treatment is performed, since the treatment involves two steps, an increase in the product price cannot be avoided. Furthermore, in order to uniformly form a hardened layer on the surface of the molded product, the molded titanium thin plate molded body is subjected to pickling or shot blasting to make the surface texture before the surface hardening treatment uniform. It is indispensable to perform pretreatment such as the above, but when the shape of the molded body is complicated, the above-mentioned pretreatment is difficult, so that there is a problem that the cured layer after the surface curing treatment becomes nonuniform.
【0007】従って、この発明の目的は、上述した問題
を解決し、チタン薄板に対する成形加工処理および表面
硬化処理を1工程によって行うことができ、しかも、チ
タン薄板成形体の表面に均一な硬化層を形成することが
できるチタン薄板の成形方法を提供することにある。Therefore, an object of the present invention is to solve the above-mentioned problems and to perform a forming process and a surface hardening treatment on a titanium thin plate in one step, and moreover, to form a uniform hardened layer on the surface of the titanium thin plate molded body. It is an object of the present invention to provide a method for forming a titanium thin plate capable of forming a sheet.
【0008】[0008]
【課題を解決するための手段】本発明者等は、上述した
目的を達成する手段について鋭意研究を重ねた結果、チ
タン薄板に対し、C02 ガスを含有する成形ガスを使用し
てガス圧成形を施せば、チタン薄板を所定形状に成形す
ることができると同時に、チタン薄板表面でのC02 ガス
の還元作用により生ずる酸素および炭素の固溶硬化能に
よって、チタン薄板の表面に硬化層が形成され、しか
も、形成された硬化層は、先行技術のように、単に C02
ガスを使用して硬化処理を施した場合よりも、優れてい
ることを知見した。Means for Solving the Problems As a result of intensive studies on the means for achieving the above-mentioned object, the present inventors have found that a titanium thin plate is subjected to gas pressure forming using a forming gas containing C0 2 gas. If the titanium thin plate can be formed into a predetermined shape, the solid solution hardening ability of oxygen and carbon generated by the reducing action of C0 2 gas on the titanium thin plate surface forms a hardened layer on the surface of the titanium thin plate. Moreover, the hardened layer formed is simply C0 2 as in the prior art.
It was found to be superior to the case where the hardening treatment was performed using gas.
【0009】この発明は、上記知見に基づきなされたも
のであって、請求項1に記載の発明は、1/20 以上の濃
度の C02ガスと、残部が不活性ガスおよび窒素ガスのう
ちの何れか1つのガスまたは両者の混合ガスからなる成
形ガスを使用し、チタン薄板を、真空または減圧状態と
した一方の側即ち背圧側と、前記成形ガスにより所定の
圧力状態とした他方の側即ち加圧側との圧力差によっ
て、所定形状に成形すると同時に、前記チタン薄板の前
記加圧側表面に硬化層を形成することに特徴を有するも
のである。また、請求項2に記載の発明は、チタン薄板
の前記加圧側および前記背圧側の両側に所定の圧力差が
生ずるように前記成形ガスを満たし、前記成形ガスの前
記圧力差によって、前記チタン薄板を所定形状に成形す
ると同時に、前記チタン薄板の加圧側および背圧側両表
面に硬化層を形成することに特徴を有するものである。The present invention has been made on the basis of the above-mentioned findings, and the invention according to claim 1 is one in which a C0 2 gas having a concentration of 1/20 or more and the balance of an inert gas and a nitrogen gas are used. A forming gas composed of any one gas or a mixed gas of both is used, and one side of the titanium thin plate is in a vacuum or reduced pressure state, that is, a back pressure side, and the other side is in a predetermined pressure state by the forming gas, that is, a back side. It is characterized in that a hardened layer is formed on the surface of the titanium thin plate on the pressure side at the same time as it is formed into a predetermined shape by the pressure difference from the pressure side. In the invention according to claim 2, the forming gas is filled so that a predetermined pressure difference is generated on both the pressure side and the back pressure side of the titanium thin plate, and the titanium thin plate is caused by the pressure difference of the forming gas. Is formed into a predetermined shape, and at the same time, a hardened layer is formed on both the pressure side and the back pressure side surface of the titanium thin plate.
【0010】[0010]
【作用】この発明の方法においては、成形ガスとしてC0
2 ガスを含有するガスを使用し、チタン薄板に対してガ
ス圧成形が施される。その結果、成形ガス中の C02ガス
は、ガス圧成形時にチタン薄板の表面において還元され
て、酸素源および炭素源として作用する。還元された酸
素および炭素の固溶度は、チタン薄板のα相およびβ相
の何れに対しても十分に高く、従って、顕著な固溶硬化
能を示す。In the method of the present invention, C0 is used as the forming gas.
Gas pressure forming is performed on a titanium thin plate using a gas containing 2 gases. As a result, the C0 2 gas in the forming gas is reduced on the surface of the titanium thin plate during gas pressure forming and acts as an oxygen source and a carbon source. The solid solubility of the reduced oxygen and carbon is sufficiently high for both the α phase and β phase of the titanium thin plate, and therefore, the solid solution hardening ability is remarkable.
【0011】更に、チタン薄板にガス圧成形による歪み
エネルギーが加わって、酸素および炭素の拡散が活性化
する結果、表面硬化処理手段として、先行技術のよう
に、チタン薄板に対し、単に C02ガスにより処理を施し
た場合に比べて、チタン薄板に対し、酸素および炭素
を、より深く拡散させることができる。従って、先行技
術のような、C02 ガスを使用した表面硬化処理法に比べ
て、チタン薄板の表面に一段と優れた深い硬化層を形成
することができる。Further, as strain energy due to gas pressure forming is applied to the titanium thin plate to activate the diffusion of oxygen and carbon, as the surface hardening treatment means, as in the prior art, the C0 2 gas is simply added to the titanium thin plate. Oxygen and carbon can be diffused deeper into the titanium thin plate than in the case where the treatment is performed by. Therefore, it is possible to form a far superior deep hardened layer on the surface of the titanium thin plate as compared with the surface hardening treatment method using C0 2 gas as in the prior art.
【0012】ガス圧成形に使用する成形ガスは、1/20
以上の濃度の C02ガスと、残部が不活性ガスおよび窒素
ガスのうちの何れか1つのガスまたは両者の混合ガスか
らなるガスであることが必要である。成形ガス中の C02
ガス濃度が1/20未満では、上述した酸素および炭素の固
溶硬化能が十分に発揮されず、チタン薄板の表面に所望
の硬化層を形成することができない。なお、成形ガス中
の C02ガス濃度は、1/2 以下であることが好ましい。成
形ガス中の C02ガス濃度が1/2 を超えて大になると、チ
タン薄板の表面が過剰に酸化される結果、成形体の表面
粗さが増大し、疲労強度の低下が生ずるおそれがある。The molding gas used for gas pressure molding is 1/20.
It is necessary that the C0 2 gas having the above concentration and the balance be a gas composed of any one of inert gas and nitrogen gas or a mixed gas of both. C0 2 in forming gas
When the gas concentration is less than 1/20, the above solid solution hardening ability of oxygen and carbon is not sufficiently exhibited, and a desired hardened layer cannot be formed on the surface of the titanium thin plate. The C0 2 gas concentration in the molding gas is preferably 1/2 or less. If the concentration of C0 2 gas in the forming gas exceeds 1/2 and becomes large, the surface of the titanium thin plate may be excessively oxidized, resulting in an increase in the surface roughness of the formed body and a decrease in fatigue strength. .
【0013】ガス圧成形時に、C02 ガスによる反応を活
発に行わせるために、被成形体であるチタン薄板は、70
0 ℃以上の温度に加熱されていることが望ましい。チタ
ン薄板の温度が 700℃未満では、ガス圧成形および C02
ガスによる還元反応を十分に行わせることが困難にな
る。なお、チタン薄板の加熱温度は、1100℃以下である
ことが好ましい。チタン薄板の加熱温度が1100℃を超え
ると、成形時にチタン薄板が過剰に酸化し、且つ、結晶
粒が成長し過ぎて、製品の表面粗さが増大するおそれが
ある。超塑性を利用した成形の場合には、チタン薄板の
β変態点(Tβ)未満の温度で成形することが好まし
い。[0013] when the gas molding, in order to actively perform the reaction with C0 2 gas, titanium sheet as an object to be molded article, 70
It is desirable to be heated to a temperature of 0 ° C. or higher. When the temperature of titanium sheet is less than 700 ℃, gas pressure forming and C0 2
It becomes difficult to sufficiently carry out the reduction reaction by the gas. The heating temperature of the titanium thin plate is preferably 1100 ° C. or lower. When the heating temperature of the titanium thin plate exceeds 1100 ° C., the titanium thin plate is excessively oxidized during molding, and the crystal grains grow too much, which may increase the surface roughness of the product. In the case of forming using superplasticity, it is preferable to form at a temperature lower than the β transformation point (Tβ) of the titanium thin plate.
【0014】図2は、この発明方法によりチタン薄板を
成形するための装置の一例を示す概略説明図である。図
2に示すように、成形室1内は、その中に水平方向に配
置された、例えば半球状の金型4によって、上部室2お
よび下部室3の2室に区画されており、上部室2にはガ
ス供給管2aおよびガス排出管2bが取り付けられ、下部室
3にはガス供給管3aおよびガス排出管3bが取り付けられ
ていて、上部室2内および下部室3内にそれぞれ別個に
成形ガスを供給しまた排出し得るようになっている。FIG. 2 is a schematic explanatory view showing an example of an apparatus for forming a titanium thin plate by the method of the present invention. As shown in FIG. 2, the inside of the molding chamber 1 is divided into two chambers, an upper chamber 2 and a lower chamber 3, by, for example, a hemispherical mold 4 horizontally arranged therein. 2 has a gas supply pipe 2a and a gas discharge pipe 2b attached thereto, and a lower chamber 3 has a gas supply pipe 3a and a gas discharge pipe 3b attached thereto, which are molded separately in the upper chamber 2 and the lower chamber 3 respectively. The gas can be supplied and discharged.
【0015】上述した半球状の金型4上に成形すべきチ
タン薄板5を載置し、上部室2および下部室3内に、ガ
ス供給管2a,3aを通して、1/20 以上の濃度の C02ガス
と、残部が不活性ガスおよび窒素ガスのうちの何れか1
つのガスまたは両者の混合ガスからなる成形ガスを供給
する。成形ガスは、上部室2内のガス圧力が下部室3内
のガス圧力よりも大になるように供給し、これによっ
て、チタン薄板5の加圧側5aと背圧側5bとの間に圧力差
を生ぜさせる。その結果、金型4上のチタン薄板5は、
上記ガスの圧力差によって、金型4の形状に成形される
と同時に、成形ガス中の C02ガスによって、その加圧側
5aおよび背圧側5bの両表面に硬化層が形成される。The titanium thin plate 5 to be molded is placed on the above-mentioned hemispherical mold 4, and the gas supply pipes 2a and 3a are passed through the upper chamber 2 and the lower chamber 3 to obtain C0 having a concentration of 1/20 or more. 2 gases and the balance one of inert gas and nitrogen gas 1
Forming gas consisting of one gas or a mixed gas of both gases is supplied. The forming gas is supplied so that the gas pressure in the upper chamber 2 becomes higher than the gas pressure in the lower chamber 3, whereby a pressure difference is exerted between the pressurizing side 5a and the back pressure side 5b of the titanium thin plate 5. Let it occur. As a result, the titanium thin plate 5 on the mold 4 is
Due to the pressure difference of the above gas, it is molded into the shape of the mold 4, and at the same time, due to the C0 2 gas in the molding gas, the pressure side
Hardened layers are formed on both surfaces of 5a and back pressure side 5b.
【0016】また、金型4によって区画された下部室3
内を真空または減圧状態に保ち、上部室2内のみに上記
成形ガスを供給してもよい。この方法によれば、チタン
薄板5の、成形ガスにより所定圧力状態に保たれた加圧
側5aと、真空または減圧状態に保たれた背圧側5bとの間
の圧力差によって、チタン薄板5は、金型4の形状に成
形されると同時に、成形ガス中の C02ガスによって、そ
の加圧側5aの表面に硬化層が形成される。Further, the lower chamber 3 partitioned by the mold 4
The inside of the chamber may be kept in a vacuum or a reduced pressure and the forming gas may be supplied only into the upper chamber 2. According to this method, due to the pressure difference between the pressurizing side 5a of the titanium thin plate 5 which is kept in a predetermined pressure state by the forming gas and the back pressure side 5b which is kept in a vacuum or reduced pressure state, the titanium thin plate 5 is At the same time as being molded into the shape of the mold 4, a C0 2 gas in the molding gas forms a hardened layer on the surface of the pressure side 5a.
【0017】[0017]
【実施例】次に、この発明を、実施例により比較例と共
に説明する。 〔実施例1〕図2に示した装置を使用し、この発明の方
法に従ってチタン薄板を成形した。成形室1内を、上部
室2と下部室3とに区画する金型4として、直径75mm、
深さ25mmの半球状の金型を使用し、上部室2および下部
室3内に供給する成形ガスとして、C02 ガスとArガスと
が所定割合で混合されたガスを使用した。Next, the present invention will be described together with comparative examples by examples. Example 1 Using the apparatus shown in FIG. 2, a titanium thin plate was formed according to the method of the present invention. As a mold 4 for partitioning the inside of the molding chamber 1 into an upper chamber 2 and a lower chamber 3, a diameter of 75 mm,
A hemispherical mold having a depth of 25 mm was used, and as the forming gas supplied into the upper chamber 2 and the lower chamber 3, a gas in which C0 2 gas and Ar gas were mixed at a predetermined ratio was used.
【0018】成形すべきチタン薄板として、板厚1mm、
表面粗さ(Ra) 0.2μm であって、代表組成がTi-4.5wt.%
Al-3wt.%V-2wt.%Fe-2wt.%Mo-0.08wt.%O である、表1に
示す化学成分組成のα+β型チタン合金薄板を使用し
た。As a titanium thin plate to be molded, a plate thickness of 1 mm,
The surface roughness (Ra) is 0.2 μm, and the typical composition is Ti-4.5 wt.%.
The α + β type titanium alloy thin plate having the chemical composition shown in Table 1, which is Al-3wt.% V-2wt.% Fe-2wt.% Mo-0.08wt.% O, was used.
【0019】[0019]
【表1】 [Table 1]
【0020】成形室1内の金型4上に、675 〜925 ℃の
温度に加熱された上記成分組成のチタン合金薄板5を載
置し、この発明の範囲内の C02ガス濃度を有する成形ガ
スを上部室2および下部室3内に供給し、上部室2内の
圧力を9気圧にそして下部室3内の圧力を1気圧に調整
して、チタン合金薄板5をガス圧成形し、その表面に硬
化層が形成された図3に示す形状の本発明の供試体5’
(以下、本発明供試体という)No. 1〜12を調製した。
なお、各本発明供試体のガス圧成形時間は、少なくとも
30分とした。本発明供試体No. 1〜12の化学成分組成、
ガス圧成形時のC02ガス濃度および加熱温度を表2に示
す。A titanium alloy thin plate 5 having the above component composition heated to a temperature of 675 to 925 ° C. is placed on the mold 4 in the molding chamber 1, and molding having a C0 2 gas concentration within the range of the present invention is carried out. Gas is supplied into the upper chamber 2 and the lower chamber 3, the pressure in the upper chamber 2 is adjusted to 9 atm and the pressure in the lower chamber 3 is adjusted to 1 atm, and the titanium alloy thin plate 5 is gas-pressure formed. A specimen 5'of the present invention having a shape shown in FIG. 3 and having a hardened layer formed on the surface thereof
Nos. 1 to 12 (hereinafter referred to as test samples of the present invention) were prepared.
In addition, the gas pressure molding time of each inventive sample is at least
30 minutes. The chemical composition of the present invention specimens No. 1 to 12,
Table 2 shows the C0 2 gas concentration and heating temperature during gas pressure molding.
【0021】[0021]
【表2】 [Table 2]
【0022】比較のために、 C02ガス濃度が本発明の範
囲を外れて少ない成形ガスを使用してガス圧成形を行っ
た比較用の供試体(以下、比較用供試体という)No.
1、および、ガス圧成形を行わず単に C02ガスを含有す
るガスによって表面硬化処理のみを施した比較用供試体
No. 2を調製した結果を表2に併せて示す。なお、比較
用供試体No. 1のガス圧成形時間は少なくとも30分とし
た。For comparison, a comparative specimen (hereinafter referred to as a comparative specimen) No. No. which was subjected to gas pressure molding using a molding gas having a small C0 2 gas concentration outside the range of the present invention.
1, and comparative specimens which were not subjected to gas pressure molding but were only surface-hardened with a gas containing C0 2 gas
The results of preparing No. 2 are also shown in Table 2. The gas pressure molding time for the comparative sample No. 1 was at least 30 minutes.
【0023】本発明供試体および比較用供試体の各々に
対して、図3に示した供試体5’におけるA,B,C3
点の表面硬度および硬化深さ、ならびに、平均表面粗さ
を下記により測定した。 表面硬度 :背圧側表層下10μm でのビッカース硬
度。 硬化深さ :ビッカース硬度400 以上が得られる背圧
側表面からの深さ。 平均表面粗さ:加圧側表面のRa値。For each of the sample of the present invention and the sample for comparison, A, B, C3 in sample 5'shown in FIG.
The surface hardness and the curing depth of the spot, and the average surface roughness were measured by the following. Surface hardness: Vickers hardness 10 μm below the surface layer on the back pressure side. Hardening depth: Depth from the back pressure side surface where Vickers hardness of 400 or more is obtained. Average surface roughness: Ra value of the pressure side surface.
【0024】上記により測定された結果に基づき、下記
基準によって合否を判定した。 ◎印:硬化深さが40μm 以上であって、且つ、表面硬度
が700 以上の場合、 ○印:硬化深さが40μm 以上の場合、 ×印:硬化深さが40μm 未満の場合。On the basis of the results measured as described above, the acceptance was judged according to the following criteria. ◎: When the curing depth is 40 μm or more and the surface hardness is 700 or more, ○: When the curing depth is 40 μm or more, ×: When the curing depth is less than 40 μm.
【0025】表2から明らかなように、 C02ガス濃度が
本発明の範囲を外れて少ない成形ガスを使用してガス圧
成形を行った比較用供試体No. 1の表面硬度は低く、そ
の硬化深さも浅かった。ガス圧成形を行わず単に C02ガ
スを含有するガスによって表面硬化処理のみを施した比
較用供試体No. 2の硬化深さは極めて浅かった。これに
対して、本発明供試体No. 1〜12の表面硬度は高く、そ
して、その硬化深さも深かった。As is clear from Table 2, the surface hardness of the comparative test piece No. 1 which was gas pressure molded using a molding gas having a C0 2 gas concentration outside the range of the present invention was low, and The curing depth was also shallow. The comparative sample No. 2, which was subjected to only the surface hardening treatment with the gas containing the C0 2 gas without performing the gas pressure molding, had an extremely shallow hardening depth. On the other hand, the sample Nos. 1 to 12 of the present invention had a high surface hardness and a deep hardening depth.
【0026】図1は、本発明供試体No. 4と、ガス圧成
形を行わず単に C02ガスを含有するガスによって表面硬
化処理のみを施した比較用供試体No. 2との、背圧側表
面からの深さとビッカース硬度との関係即ち表層硬度分
布を示すグラフであって、白丸印は本発明供試体No. 4
を、そして、黒丸印比較用供試体No. 2を示す。図1か
ら、本発明供試体No. 4の表層硬度分布は、比較用供試
体No. 2に比べて優れていることが明らかである。FIG. 1 shows the back pressure side of the sample No. 4 of the present invention and the sample No. 2 for comparison, which was not subjected to gas pressure molding and was only surface-hardened with a gas containing C0 2 gas. It is a graph showing the relationship between the depth from the surface and the Vickers hardness, that is, the surface layer hardness distribution, and the white circles indicate the specimen No. 4 of the present invention.
And the black circle marked comparative sample No. 2. From FIG. 1, it is clear that the surface hardness distribution of Sample No. 4 of the present invention is superior to that of Comparative Sample No. 2.
【0027】〔実施例2〕成形すべきチタン薄板とし
て、板厚1mm、表面粗さ(Ra) 0.2μm であって、代表組
成がTi-6wt.%Al-4wt.%V からなるα+β型チタン合金を
使用したほかは、実施例1と同じ条件により、表3に示
す本発明供試体No.13 〜25、および、比較用供試体No.
3,4を調製した。Example 2 As a titanium thin plate to be formed, α + β type titanium having a plate thickness of 1 mm, a surface roughness (Ra) of 0.2 μm and a typical composition of Ti-6 wt.% Al-4 wt.% V Under the same conditions as in Example 1 except that the alloy was used, the present invention sample Nos. 13 to 25 shown in Table 3 and the comparative sample No.
3,4 were prepared.
【0028】[0028]
【表3】 [Table 3]
【0029】本発明供試体No.13 〜25、および、比較用
供試体No. 3,4の各々に対し、実施例1と同様の方法
により、その表面硬度および硬化深さ、ならびに、平均
表面粗さを測定し、その結果を表3に併せて示した。In the same manner as in Example 1, the surface hardness and the curing depth and the average surface of each of the inventive samples No. 13 to 25 and the comparative samples No. 3 and 4 were measured. The roughness was measured, and the results are also shown in Table 3.
【0030】表3から明らかなように、 C02ガス濃度が
本発明の範囲を外れて少ない成形ガスを使用してガス圧
成形を行った比較用供試体No. 3、ガス圧成形を行わず
単にC02ガスを含有するガスによって表面硬化処理のみ
を施した比較用供試体No. 4の表面硬化深さは、何れも
浅かった。これに対して、本発明供試体No.13 〜25の表
面硬度は高く、そして、その硬化深さも深かった。As is apparent from Table 3, the comparative sample No. 3 in which gas pressure molding was carried out using a molding gas having a C0 2 gas concentration outside the range of the present invention and a small amount, was not subjected to gas pressure molding. simply C0 surface hardening depth of 2 test for comparison gas was subjected to only the surface hardening treatment by a gas containing specimens No. 4 are both were shallow. On the other hand, the sample Nos. 13 to 25 of the present invention had a high surface hardness and a deep hardening depth.
【0031】〔実施例3〕成形すべきチタン薄板とし
て、板厚1mm、表面粗さ(Ra) 0.1μm である純チタン
(JIS 2 種) を使用し、硬化深さの評価を、ビッカース
硬度250 以上が得られる背圧側表面からの深さとしたほ
かは、実施例1と同じ条件により、表4に示す本発明供
試体No.26 〜37、および、比較用供試体No. 5, 6を調
製した。Example 3 As a titanium thin plate to be molded, pure titanium (JIS type 2) having a plate thickness of 1 mm and a surface roughness (Ra) of 0.1 μm was used, and the hardening depth was evaluated by Vickers hardness 250. The test specimens Nos. 26 to 37 of the present invention and the comparative test specimens Nos. 5 and 6 shown in Table 4 were prepared under the same conditions as in Example 1 except that the depth from the back-pressure side surface was obtained. did.
【0032】[0032]
【表4】 [Table 4]
【0033】本発明供試体No.26 〜37、および、比較用
供試体No. 5, 6の各々に対し、実施例1と同様の方法
により、その表面硬度および硬化深さを測定し、その結
果を表4に併せて示した。The surface hardness and the hardening depth of each of the inventive samples No. 26 to 37 and the comparative samples No. 5 and 6 were measured by the same method as in Example 1. The results are also shown in Table 4.
【0034】表4から明らかなように、 C02ガス濃度が
本発明の範囲を外れて少ない成形ガスを使用してガス圧
成形を行った比較用供試体No. 5は硬化深さが浅く、そ
して、ガス圧成形を行わず単に C02ガスを含有するガス
によって表面硬化処理のみを施した比較用供試体No. 6
の表面硬化深さは浅かった。これに対して、本発明供試
体No.26 〜37の表面硬度は高く、そして、その硬化深さ
も深かった。As is clear from Table 4, the comparative specimen No. 5, which was subjected to gas pressure molding using a molding gas having a C0 2 gas concentration outside the range of the present invention and having a small amount, had a shallow hardening depth. Then, a comparative test piece No. 6 was obtained, in which gas pressure molding was not performed and only the surface hardening treatment was performed with a gas containing C0 2 gas.
The surface hardening depth was shallow. On the other hand, the surface hardness of Samples Nos. 26 to 37 of the present invention was high, and the hardening depth was also deep.
【0035】〔実施例4〕C02 ガスと残部がアルゴンガ
スおよび窒素ガスとが1:1の割合の混合ガスからなる
成形ガスを、上部室2内に供給して、上部室2内の圧力
を8気圧に加圧し、一方、下部室3内を排気して、1×
10-6気圧に減圧することにより、表1に示す化学成分組
成のチタン合金薄板5をガス圧成形したほかは、実施例
1と同じ条件によって、表5に示す本発明供試体No.38
〜49および比較用供試体No. 7〜8を調製した。Example 4 A molding gas composed of a mixed gas of C0 2 gas and the balance of argon gas and nitrogen gas at a ratio of 1: 1 was supplied into the upper chamber 2, and the pressure in the upper chamber 2 was increased. Is pressurized to 8 atm, while the lower chamber 3 is evacuated to 1 ×
The specimen No. 38 of the present invention shown in Table 5 was prepared under the same conditions as in Example 1 except that the titanium alloy thin plate 5 having the chemical composition shown in Table 1 was gas-pressure formed by reducing the pressure to 10 -6 atmospheres.
.About.49 and comparative sample Nos. 7 to 8 were prepared.
【0036】[0036]
【表5】 [Table 5]
【0037】本発明供試体および比較用供試体の各々に
対して、図3に示した供試体5’におけるA,B,C3
点の表面硬度および硬化深さ、ならびに、平均表面粗さ
を下記により測定し、その測定結果に基づき、実施例1
について述べたと同様の方法により合否を判定した。そ
の結果を表5に併せて示す。 表面硬度 :加圧側表層下10μm でのビッカース硬
度。 硬化深さ :ビッカース硬度400 以上が得られる加圧
側表面からの深さ。 平均表面粗さ:加圧側表面のRa値。For each of the sample of the present invention and the sample for comparison, A, B, C3 in the sample 5'shown in FIG.
The surface hardness and the curing depth of the spot, and the average surface roughness were measured by the following, and based on the measurement result, Example 1
Pass / Fail was determined by the same method as described above. The results are also shown in Table 5. Surface hardness: Vickers hardness at 10 μm below the surface layer on the pressure side. Hardening depth: Depth from the pressure side surface where Vickers hardness of 400 or more is obtained. Average surface roughness: Ra value of the pressure side surface.
【0038】表5から明らかなように、C02 ガス濃度が
本発明の範囲を外れて少ない成形ガスを使用してガス圧
成形を行った比較用供試体No. 7、ガス圧成形を行わず
単にC02 ガスを含有するガスによって表面硬化処理のみ
を施した比較用供試体No. 8の表面硬化深さは、何れも
浅かった。これに対して、本発明供試体No.38 〜49の表
面硬度は高く、そして、その硬化深さも深かった。As is apparent from Table 5, the comparative sample No. 7 in which gas pressure molding was performed using a molding gas having a C0 2 gas concentration outside the range of the present invention and a small amount, was not subjected to gas pressure molding. simply surface hardening depth of C0 2 for the reference gas was subjected to only the surface hardening treatment by a gas containing specimen No. 8 are all were shallow. On the other hand, the sample Nos. 38 to 49 of the present invention had a high surface hardness and a deep hardening depth.
【0039】[0039]
【発明の効果】以上述べたように、この発明によれば、
チタン薄板に対する成形加工処理および表面硬化処理を
1工程によって行うことができ、しかも、チタン薄板成
形体の表面に深い硬化層を形成することができる工業上
有用な効果がもたらされる。As described above, according to the present invention,
Molding processing and surface hardening treatment can be performed on the titanium thin plate in one step, and a deep hardened layer can be formed on the surface of the titanium thin plate molded body, which is an industrially useful effect.
【図1】本発明供試体と比較用供試体との表層硬度分布
の一例を示すグラフである。FIG. 1 is a graph showing an example of surface hardness distributions of a test sample of the present invention and a test sample for comparison.
【図2】この発明方法によりチタン薄板を成形するため
の装置の一例を示す概略説明図である。FIG. 2 is a schematic explanatory view showing an example of an apparatus for forming a titanium thin plate by the method of the present invention.
【図3】成形されたチタン薄板の一例を示す縦断面図で
ある。FIG. 3 is a vertical sectional view showing an example of a formed titanium thin plate.
1 成形室、 2 上部室、 3 下部室、 4 金型、 5 チタン薄板、 5’チタン薄板成形体。 1 molding chamber, 2 upper chamber, 3 lower chamber, 4 mold, 5 titanium thin plate, 5'titanium thin plate molded body.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 皆川 邦典 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kuninori Minagawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.
Claims (2)
不活性ガスおよび窒素ガスのうちの何れか1つのガスま
たは両者の混合ガスからなる成形ガスを使用し、チタン
薄板を、真空または減圧状態とした一方の側即ち背圧側
と、前記成形ガスにより所定の圧力状態とした他方の側
即ち加圧側との圧力差によって、所定形状に成形すると
同時に、前記チタン薄板の前記加圧側表面に硬化層を形
成することを特徴とする、チタン薄板の成形方法。1. A titanium thin plate is formed by using a forming gas composed of a C0 2 gas having a concentration of 1/20 or more and the balance being one gas of an inert gas and a nitrogen gas or a mixed gas of both. The pressure side of the titanium thin plate is simultaneously formed into a predetermined shape by the pressure difference between one side that is in a vacuum or reduced pressure state, that is, the back pressure side, and the other side that is in a predetermined pressure state by the forming gas, that is, the pressure side. A method for forming a titanium thin plate, which comprises forming a hardened layer on the surface.
背圧側の両側に所定の圧力差が生ずるように前記成形ガ
スを満たし、前記成形ガスの前記圧力差によって、前記
チタン薄板を所定形状に成形すると同時に、前記チタン
薄板の前記加圧側および前記背圧側両表面に硬化層を形
成する、請求項1記載のチタン薄板の成形方法。2. The titanium gas is filled with the forming gas so that a predetermined pressure difference is generated on both sides of the pressure side and the back pressure side of the titanium thin plate, and the titanium thin plate is formed into a predetermined shape by the pressure difference of the forming gas. At the same time, the method for forming a titanium thin plate according to claim 1, wherein a hardened layer is formed on both the pressure side and the back pressure side surface of the titanium thin plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6302857A JP2947099B2 (en) | 1994-11-11 | 1994-11-11 | Forming titanium sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6302857A JP2947099B2 (en) | 1994-11-11 | 1994-11-11 | Forming titanium sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08134625A true JPH08134625A (en) | 1996-05-28 |
JP2947099B2 JP2947099B2 (en) | 1999-09-13 |
Family
ID=17913936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6302857A Expired - Fee Related JP2947099B2 (en) | 1994-11-11 | 1994-11-11 | Forming titanium sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2947099B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008030124A (en) * | 2001-10-31 | 2008-02-14 | Boeing Co:The | Compact hot press |
WO2010084942A1 (en) * | 2009-01-22 | 2010-07-29 | 株式会社Ihi | Method of manufacturing member for reinforcing front edge of fan blade |
WO2010084941A1 (en) * | 2009-01-22 | 2010-07-29 | 株式会社Ihi | Method of manufacturing member for reinforcing front edge of fan blade |
JP2017119902A (en) * | 2015-12-28 | 2017-07-06 | 株式会社Nbcメッシュテック | Powder adhesion suppression titanium member |
-
1994
- 1994-11-11 JP JP6302857A patent/JP2947099B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008030124A (en) * | 2001-10-31 | 2008-02-14 | Boeing Co:The | Compact hot press |
WO2010084942A1 (en) * | 2009-01-22 | 2010-07-29 | 株式会社Ihi | Method of manufacturing member for reinforcing front edge of fan blade |
WO2010084941A1 (en) * | 2009-01-22 | 2010-07-29 | 株式会社Ihi | Method of manufacturing member for reinforcing front edge of fan blade |
JP5163756B2 (en) * | 2009-01-22 | 2013-03-13 | 株式会社Ihi | Manufacturing method of fan blade leading edge reinforcing member |
JP5429193B2 (en) * | 2009-01-22 | 2014-02-26 | 株式会社Ihi | Manufacturing method of fan blade leading edge reinforcing member |
US8814528B2 (en) | 2009-01-22 | 2014-08-26 | Ihi Corporation | Production method of leading edge reinforcement of fan blade |
US9289816B2 (en) | 2009-01-22 | 2016-03-22 | Ihi Corporation | Production method of leading edge reinforcement of fan blade |
JP2017119902A (en) * | 2015-12-28 | 2017-07-06 | 株式会社Nbcメッシュテック | Powder adhesion suppression titanium member |
Also Published As
Publication number | Publication date |
---|---|
JP2947099B2 (en) | 1999-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0242089B1 (en) | Method of improving surface wear resistance of a metal component | |
CA2412520C (en) | Method of production of surface densified powder metal components | |
US6153023A (en) | Hardened metal product produced by shot peening with shot having high hardness | |
EP3299487A1 (en) | Method for surface hardening a cold deformed article comprising low temperature annealing | |
JP2947099B2 (en) | Forming titanium sheet | |
JP5457000B2 (en) | Surface treatment method of steel material, steel material and mold obtained thereby | |
US5240514A (en) | Method of ion nitriding steel workpieces | |
US20100139812A1 (en) | Case hardening titanium and its alloys | |
EP3464660B1 (en) | Method of treating a workpiece comprising a titanium metal and object | |
JP2008138235A (en) | Method for reforming rolling die, and rolling die | |
Denisova et al. | Influence of nitrogen content in the working gas mixture on the structure and properties of the nitrided surface of die steel | |
JP4947932B2 (en) | Metal gas nitriding method | |
JPS581187B2 (en) | Kikaibuhinno Shiyorihouhou | |
JP2943626B2 (en) | Surface hardening method for titanium material | |
CN1020476C (en) | Process for applying nitride layers to titanium | |
JP3677460B2 (en) | Steel manufacturing method | |
US3151001A (en) | Method of treating boron coated steel to eliminate luders' bands | |
JPH076053B2 (en) | Nitriding of steel workpieces under pressure | |
JP2010222649A (en) | Carbon steel material manufacturing method and carbon steel material | |
JP2918765B2 (en) | Nickel alloy products whose surface is nitrided and hardened | |
JPH0270074A (en) | Production of wear-resistant article having tungsten carbide layer | |
JP3995178B2 (en) | Gas nitriding treatment method for maraging steel | |
CN119753290A (en) | Heat treatment method of die steel | |
JPH08193261A (en) | Metal processing jig and its surface film forming method | |
JPH04263061A (en) | Manufacture of simple metallic mold for molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080702 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |