JPH08130837A - Solar power supply - Google Patents
Solar power supplyInfo
- Publication number
- JPH08130837A JPH08130837A JP6267824A JP26782494A JPH08130837A JP H08130837 A JPH08130837 A JP H08130837A JP 6267824 A JP6267824 A JP 6267824A JP 26782494 A JP26782494 A JP 26782494A JP H08130837 A JPH08130837 A JP H08130837A
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- solar
- voltage
- power supply
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000126 substance Substances 0.000 claims abstract description 26
- 239000004065 semiconductor Substances 0.000 claims abstract description 3
- 238000009434 installation Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 230000005855 radiation Effects 0.000 description 8
- 238000001514 detection method Methods 0.000 description 4
- 238000010248 power generation Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Photovoltaic Devices (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
(57)【要約】 (修正有)
【目的】 高い負荷電圧にも柔軟に対応できる太陽電池
電源装置を提供する。
【構成】 太陽電池1,2と化学電池5とを直列接続し
て成るとともに、一方の出力端子が太陽電池に接続さ
れ、かつ他方の出力端子が化学電池に接続されて成る太
陽電池電源装置であって、出力端子間に負荷を接続した
場合に化学電池の電圧が太陽電池の半導体接合を逆方向
にバイアスするように、太陽電池と化学電池とを直列接
続する。
(57) [Summary] (Modified) [Purpose] To provide a solar cell power supply device that can flexibly cope with high load voltage. [Solution] A solar cell power supply device comprising solar cells 1 and 2 and a chemical cell 5 connected in series, one output terminal connected to the solar cell, and the other output terminal connected to the chemical cell. Therefore, the solar cell and the chemical cell are connected in series so that the voltage of the chemical cell biases the semiconductor junction of the solar cell in the reverse direction when a load is connected between the output terminals.
Description
【0001】[0001]
【産業上の利用分野】本発明は所要直流出力電圧を簡便
に設定でき、太陽光発電電力を最大限に取り出し易いよ
うにした太陽電池電源装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar battery power supply device in which a required DC output voltage can be easily set and solar power can be taken out to the maximum.
【0002】[0002]
【従来技術とその課題】従来より、図10に示すように
セル(太陽電池素子)の複数を直列接続させた太陽電池
群51,52のそれぞれに逆流防止ダイオード53,5
4を直列に接続し、太陽電池群51,52を並列接続さ
せて、出力端子55,56から出力を取り出せるように
成した太陽電池電源装置S10や、図11に示すよう
に、太陽電池群51,52,及び2次電池57を並列接
続して成るものがある。2. Description of the Related Art Conventionally, as shown in FIG. 10, a backflow prevention diode 53, 5 is provided in each of a solar cell group 51, 52 in which a plurality of cells (solar cell elements) are connected in series.
4 is connected in series, and the solar cell groups 51 and 52 are connected in parallel so that the output can be taken out from the output terminals 55 and 56, or the solar cell group 51 as shown in FIG. , 52, and a secondary battery 57 are connected in parallel.
【0003】ここで、出力端子55,56間に負荷が接
続されるが、この負荷に必要な電圧は様々であって、変
化することも少なくない。このため、単に出力端子5
5,56間に負荷を直接接続した場合、太陽電池の動作
電圧はその最大出力点Pm を与える動作電圧Vm からず
れることがあり、本来得られるべき太陽光発電電力を有
効に取り出せないことが多い。Here, a load is connected between the output terminals 55 and 56, but the voltage required for this load varies and often changes. Therefore, simply output terminal 5
When a load is directly connected between 5 and 56, the operating voltage of the solar cell may deviate from the operating voltage Vm that gives the maximum output point Pm, and it is often impossible to effectively take out the photovoltaic power generated originally. .
【0004】そこで、通常は出力端子55,56間に、
DC−DCコンバータやDC−ACインバータなどを接
続して、負荷電圧と太陽電池動作電圧とを切り離し、太
陽電池動作電圧を常にVm 付近に保つことによって、太
陽光発電電力を最大限に取り出す努力がなされる。Therefore, normally, between the output terminals 55 and 56,
By connecting a DC-DC converter, a DC-AC inverter, etc. to separate the load voltage from the solar cell operating voltage and keeping the solar cell operating voltage always near Vm, efforts are made to maximize the photovoltaic power generation. Done.
【0005】ところが、DC−DCコンバータやDC−
ACインバータを動作させるためには、それ自身が電力
を消費し、その電力消費量は、一般に出力電圧と入力電
圧の変換比が大になるにつれ増加する傾向を示す。この
ため、負荷に必要な電圧が高くなり、DC−DCコンバ
ータやDC−ACインバータの出力電圧が高まると、こ
れらへの入力電圧、すなわち太陽電池の動作電圧も高く
なるように、セルの直列数を増やす必要が生じる。However, DC-DC converters and DC-
In order to operate an AC inverter, it consumes power itself, and its power consumption generally tends to increase as the conversion ratio between the output voltage and the input voltage increases. Therefore, when the voltage required for the load increases and the output voltage of the DC-DC converter or DC-AC inverter increases, the input voltage to them, that is, the operating voltage of the solar cell also increases, so that the number of cells in series is increased. Will need to be increased.
【0006】負荷に必要な電圧としては、例えば5〜1
2Vといった比較的小さなものもあるが、通常は100
〜200V程度が一般的であり、大電力を消費する負荷
はさらに高電圧を用いて、電流を小さくすることにより
エネルギー効率の向上を図る傾向にある。The voltage required for the load is, for example, 5 to 1
There are relatively small ones such as 2V, but usually 100
Generally, about 200 V is used, and a load that consumes a large amount of power tends to improve energy efficiency by using a higher voltage and reducing a current.
【0007】一方、セル1枚の出力電圧は小さく、例え
ばSi結晶太陽電池の場合、100m W/cm2 の太陽光
下でも最大出力を与える太陽電池セル1枚の出力電圧は
0.5V程度である。このため、通常は負荷に必要とさ
れる電圧100〜200Vを得るためには、Si結晶太
陽電池のセルを200〜400枚も直列接続しなければ
ならないことになる。これは、10cm角のセルを用いた
場合、太陽電池電源の最小単位を設置するのに、2〜4
m 2 の設置面積を必要とすることを意味する。On the other hand, the output voltage of one cell is small. For example, in the case of a Si crystal solar cell, the output voltage of one solar cell that gives the maximum output even under sunlight of 100 mW / cm 2 is about 0.5V. is there. Therefore, in order to obtain a voltage of 100 to 200 V that is usually required for a load, 200 to 400 cells of Si crystal solar cells must be connected in series. This is 2 to 4 to install the minimum unit of the solar battery power source when using a 10 cm square cell.
This means that it requires a footprint of m 2 .
【0008】最近は、太陽電池製造コストを引き下げる
ために、セルを10cm角から15cm角以上へと大面積化
しようとする傾向にある。セル1枚の面積が10cm角か
ら15cm角へと2.25倍になれば、太陽電池電源の最
小単位設置面積は、ほぼそれに比例して大きくなると思
われる。従来は、このような大きな設置面積をとれない
場合は、10cm角のセルを1/2,1/3,1/4とい
う具合に切断して小面積のセルを作製し、これを必要数
だけ直列接続して、小さな設置面積でも必要電圧が得ら
れるような対応をしてきた。Recently, in order to reduce the manufacturing cost of solar cells, there is a tendency to increase the area of cells from 10 cm square to 15 cm square or more. If the area of one cell increases 2.25 times from 10 cm square to 15 cm square, the minimum unit installation area of the solar cell power source will increase in proportion to it. Conventionally, if such a large installation area cannot be taken, a 10 cm square cell is cut into ½, ⅓, ¼, etc. to make a small area cell, By connecting them in series, we have made it possible to obtain the required voltage even with a small installation area.
【0009】しかしながら、このような対応は、モジュ
ール化の製造工程のコスト高を招く上、セル切断などは
自由度が小さく、対処法としては制約の多いものであっ
た。また、太陽電池が最大出力を与える動作電圧Vm
は、太陽電池の温度及び日射量によって変化するので、
太陽電池の動作電圧を常にVm 付近に保つためには、太
陽電池の温度測定や日射量測定及び/または電気的な制
御システムを必要とする。これらは、結局、太陽電池電
源装置の構造的な複雑化を招き、コスト高の一因となっ
ていた。However, such a measure causes a high cost of the manufacturing process for modularization, has a low degree of freedom in cell cutting, etc., and is a restrictive method for coping. Also, the operating voltage Vm at which the solar cell gives the maximum output
Changes depending on the temperature of the solar cell and the amount of solar radiation,
In order to always maintain the operating voltage of the solar cell near Vm, it is necessary to measure the temperature of the solar cell, measure the amount of solar radiation and / or an electrical control system. These eventually lead to structural complication of the solar cell power supply device, which is one of the causes of the high cost.
【0010】そこで、本発明は従来の諸問題を解消し、
高い負荷電圧にも柔軟に対応できる太陽電池電源装置を
提供することを目的とする。Therefore, the present invention solves the conventional problems,
It is an object of the present invention to provide a solar cell power supply device that can flexibly cope with a high load voltage.
【0011】[0011]
【課題を解決するための手段】上記課題を解決するため
に、本発明の太陽電池電源装置は、太陽電池と化学電池
とを、該化学電池の電圧が前記太陽電池の半導体接合を
逆方向にバイアスするように直列接続したことを特徴と
する。なお、ここで太陽電池とはセルが一つ又は複数接
続されたものを指す。In order to solve the above-mentioned problems, a solar cell power supply device of the present invention comprises a solar cell and a chemical cell, wherein the voltage of the chemical cell reverses the semiconductor junction of the solar cell. It is characterized in that they are connected in series so as to be biased. Here, the solar cell refers to one or more connected cells.
【0012】また、例えば化学電池を2次電池とし、太
陽電池に逆バイアス電圧又は順バイアス電圧が印加され
たことを検出するバイアス検出手段と、このバイアス検
出手段からの出力信号でもって太陽電池電源装置の出力
回路が開閉(逆バイアスで開放、順バイアスで閉成)す
るスイッチと、太陽電池を構成するセル毎に接続させた
バイパスダイオードとを備えるようにしてもよい。Further, for example, a chemical battery is used as a secondary battery, bias detecting means for detecting application of a reverse bias voltage or a forward bias voltage to the solar cell, and a solar cell power source by an output signal from the bias detecting means. The output circuit of the device may be provided with a switch that opens and closes (opens with a reverse bias and closes with a forward bias), and a bypass diode connected to each cell constituting the solar cell.
【0013】[0013]
【作用】太陽電池の最大出力を与える動作電流Im は、
ほぼ太陽電池への日射量に比例して決定され、動作電流
Im と動作電圧Vm との関係は正の傾きを持った特性を
示す。一方、化学電池の動作電流Im と動作電圧Eb と
の関係は、化学電池の内部抵抗のため、負の傾きを持っ
た特性を示す。The operating current Im that gives the maximum output of the solar cell is
It is determined almost in proportion to the amount of solar radiation on the solar cell, and the relationship between the operating current Im and the operating voltage Vm shows a characteristic having a positive slope. On the other hand, the relationship between the operating current Im and the operating voltage Eb of the chemical battery shows a characteristic having a negative slope because of the internal resistance of the chemical battery.
【0014】また、動作電圧Vm と動作温度との関係は
負の傾きを持った特性を示し、動作電圧Eb と動作温度
との関係は正の傾きを持った特性を示す。The relationship between the operating voltage Vm and the operating temperature shows a characteristic having a negative slope, and the relationship between the operating voltage Eb and the operating temperature shows a characteristic having a positive slope.
【0015】したがって、太陽電池電源装置の出力電圧
Es をEs =Eb +Vm に設定すれば、動作電流Im の
値(すなわち、日射量)の多寡及び動作温度の変動にか
かわらず、ほぼ一定のEs に保つことによって、太陽電
池の最大出力点近傍の動作が可能となる。Therefore, if the output voltage Es of the solar cell power supply device is set to Es = Eb + Vm, the Es becomes almost constant regardless of the value of the operating current Im (ie, the amount of solar radiation) and the fluctuation of the operating temperature. By keeping it, the operation near the maximum output point of the solar cell becomes possible.
【0016】これにより、従来、太陽電池の動作電圧を
太陽電池の最大出力を与える動作電圧Vm 付近に保つた
めに必要とされた、太陽電池の温度測定や日射量測定等
を不要とし、出力電圧Es (=Eb +Vm )をほぼ一定
に保つという簡単な制御を行うだけで、太陽電池電源装
置の太陽光発電電力を最大限に取り出すことが可能とな
る。As a result, it is not necessary to measure the temperature of the solar cell or measure the amount of solar radiation, which has been conventionally required to keep the operating voltage of the solar cell near the operating voltage Vm that gives the maximum output of the solar cell. By simply performing a simple control of keeping Es (= Eb + Vm) substantially constant, it is possible to maximize the solar power generated by the solar battery power supply device.
【0017】[0017]
【実施例】本発明に係る一実施例を詳細に説明する。ま
ず、図1に示すように、セルの複数を直列接続した太陽
電池群1,2のそれぞれを逆流防止ダイオード3,4を
介して並列接続し、さらに、化学電池(ここでは、鉛蓄
電池)5をこれら太陽電池PVに対して直列接続して、
出力端子6,7から所望の出力を取り出しうるようにし
た太陽電池電源装置S1について説明する。EXAMPLE An example according to the present invention will be described in detail. First, as shown in FIG. 1, solar cell groups 1 and 2 in which a plurality of cells are connected in series are connected in parallel via backflow prevention diodes 3 and 4, and a chemical battery (here, a lead storage battery) 5 is connected. Connected in series to these solar cells PV,
A description will be given of the solar cell power supply device S1 that can output a desired output from the output terminals 6 and 7.
【0018】出力端子6,7間に印加される電圧Es
は、太陽電池PVの動作電圧Vm に、化学電池5の動作
電圧Eb を加えたものとなる。すなわち、太陽電池PV
直列接続数が少なくて、負荷に必要な電圧に達しない場
合、化学電池5 を太陽電池PVのp/n接合を逆バイア
スし得る方向に必要数だけ直列接続することによって、
太陽電池電源装置の所要出力電圧を簡便に設定すること
ができる。Voltage Es applied between output terminals 6 and 7
Is the operating voltage Vm of the solar cell PV plus the operating voltage Eb of the chemical cell 5. That is, the solar cell PV
If the number of series connections is small and the voltage required for the load is not reached, by connecting the number of the chemical cells 5 in series in the direction in which the p / n junction of the solar cell PV can be reverse biased,
The required output voltage of the solar cell power supply device can be easily set.
【0019】また、このようにすると、化学電池5の動
作電流は太陽電池PVの動作電流と同一となる。太陽電
池PVの最大出力Pm を与える動作電流Im は、ほぼ太
陽電池PVへの日射量に比例して決定され、動作電流I
m と動作電圧Vm との関係は図2に模式的に示すように
正の傾きを持った特性を示す。Further, in this way, the operating current of the chemical cell 5 becomes the same as the operating current of the solar cell PV. The operating current Im that gives the maximum output Pm of the solar cell PV is determined almost in proportion to the amount of solar radiation to the solar cell PV, and the operating current I
The relationship between m and the operating voltage Vm shows a characteristic having a positive slope as schematically shown in FIG.
【0020】一方、化学電池5の動作電流Im と動作電
圧Eb との関係は、化学電池5の内部抵抗に因り、図3
に示すような負の傾きを持った特性を示す。したがっ
て、太陽電池電源装置S1の出力電圧をEs =Eb +V
m に設定すれば、図4に示すように動作電流Im の値
(すなわち、日射量)の多寡にかかわらず、ほぼ一定の
Es に保つことができ、太陽電池PVの最大出力点近傍
の動作が可能となる。On the other hand, the relationship between the operating current Im and the operating voltage Eb of the chemical battery 5 is shown in FIG.
The characteristic has a negative slope as shown in. Therefore, the output voltage of the solar battery power supply S1 is Es = Eb + V
When set to m, as shown in FIG. 4, regardless of the value of the operating current Im (that is, the amount of solar radiation), it can be maintained at a substantially constant Es, and the operation near the maximum output point of the solar cell PV can be performed. It will be possible.
【0021】同様にして、動作電圧Vm 及びEb の動作
温度(T)の依存性も図5に示すような特性を有するた
め、これらを直列に接続すれば、Es (=Eb +Vm )
をほぼ一定に保つことによって、動作温度の高低によら
ず太陽電池PVの最大出力点近傍の動作を可能にでき
る。Similarly, the dependence of the operating voltage (Vm) and the operating voltage (Eb) on the operating temperature (T) also has the characteristic shown in FIG. 5, so if these are connected in series, Es (= Eb + Vm).
By keeping the above substantially constant, it is possible to operate near the maximum output point of the solar cell PV regardless of the operating temperature.
【0022】すなわち、従来、太陽電池の動作電圧を太
陽電池の最大出力を与える動作電圧Vm 付近に保つため
に必要とされた、太陽電池の温度測定や日射量測定を省
き、出力電圧Es (=Eb +Vm )をほぼ一定に保つと
いう単純な制御を行うだけで、太陽電池電源装置の太陽
光発電電力を最大限に取り出すことが可能となるのであ
る。That is, the output voltage Es (=) is eliminated by omitting the solar cell temperature measurement and solar radiation amount measurement, which are conventionally required to keep the operating voltage of the solar cell near the operating voltage Vm that gives the maximum output of the solar cell. By simply performing a simple control of keeping Eb + Vm) almost constant, it is possible to maximize the solar power generated by the solar battery power supply device.
【0023】次に、本発明に係わる他の実施例である図
6の太陽電池電源装置S2について説明する。太陽電池
電源装置S2は図1における太陽電池PVと並列にバイ
アス検出手段9を設け、このバイアス検出手段9からの
逆バイアスの検出信号でもって出力回路が開となり、順
バイアスの検出信号でもって出力回路が閉となるスイッ
チ8を化学電池5と太陽電池PVとの間に設けたもので
ある。Next, another embodiment of the present invention, which is a solar cell power supply device S2 of FIG. 6, will be described. The solar cell power supply device S2 is provided with a bias detecting means 9 in parallel with the solar cell PV in FIG. 1, the output circuit is opened by the reverse bias detection signal from the bias detecting means 9, and is output by the forward bias detection signal. A switch 8 for closing the circuit is provided between the chemical cell 5 and the solar cell PV.
【0024】これは、夜間等、太陽電池PVの起電力が
なくなった時に、化学電池5の起電力のみで太陽電池電
源装置S2が作動することを防止するようにしたのであ
る。すなわち、もしスイッチ8やバイアス検出手段9が
なければ、太陽電池PVの起電力がなくなると、バイパ
スダイオード13は化学電池5の起電力によって順方向
にバイアスされるため、太陽電池電源装置S2には、バ
イパスダイオード13を通る電流が流れ続け、化学電池
5が放電し続けることになる。このため、バイパスダイ
オード13が設けられている場合は、2次電池の放電の
みで太陽電池電源装置S2が動作することがないように
スイッチ8やバイアス検出手段9を設けたのである。な
おバイパスダイオード13は、通常太陽電池には、一部
のセルに影がかかった場合に出力低下を少なくするた
め、及び影になったセルに大きな逆バイアスが印加され
るのを防止するために設けている。This is to prevent the solar cell power source device S2 from operating only by the electromotive force of the chemical battery 5 when the electromotive force of the solar cell PV is exhausted at night or the like. That is, if the switch 8 and the bias detection means 9 are not provided, when the electromotive force of the solar cell PV is exhausted, the bypass diode 13 is forward biased by the electromotive force of the chemical cell 5, so that the solar cell power source device S2 is not provided. The current passing through the bypass diode 13 continues to flow, and the chemical battery 5 continues to be discharged. Therefore, when the bypass diode 13 is provided, the switch 8 and the bias detection means 9 are provided so that the solar cell power supply device S2 does not operate only by discharging the secondary battery. It should be noted that the bypass diode 13 is usually used in the solar cell in order to reduce a decrease in output when some cells are shaded and to prevent a large reverse bias from being applied to the shaded cells. It is provided.
【0025】また、図7及び8に示すように、太陽電池
1,2のそれぞれに化学電池5a,5bを直列接続させ
るようにしてもよい。As shown in FIGS. 7 and 8, the chemical cells 5a and 5b may be connected in series to the solar cells 1 and 2, respectively.
【0026】また、図9は太陽電池電源装置S7を系統
連係させた住宅用太陽光発電システムに適用した例であ
る。ここで、10はタイマーであり、11はスイッチ、
12は2次電池充電器である。従来の太陽電池のみから
構成される平均的な日本の住宅の電力使用量を賄うため
には、3kWp(キロワットピーク)程度の太陽電池モ
ジュールを設置する必要があり、太陽電池モジュールの
光電変換効率を12%とすると、3kWpの太陽電池モ
ジュール設置には25m 2 の屋根等の設置面積を必要と
する。Further, FIG. 9 shows an example in which the solar cell power supply device S7 is applied to a residential solar power generation system in which the system is linked. Here, 10 is a timer, 11 is a switch,
Reference numeral 12 is a secondary battery charger. In order to cover the power consumption of an average Japanese house consisting only of conventional solar cells, it is necessary to install a solar cell module of about 3 kWp (kilowatt peak). Assuming 12%, installation of a solar cell module of 3 kWp requires a 25 m 2 installation area such as a roof.
【0027】ところが、従来の日本の住宅の屋根では、
単一屋根面で25m 2 の太陽電池モジュールの設置面積
をとれない場合が多く、太陽光発電に好都合な南向き傾
斜面はもちろん、東向き・西向き屋根面やベランダな
ど、日照条件の大幅に異なる設置場所も合わせてようや
く必要な設置面積を確保できるというのが現状である。However, in the conventional Japanese house roof,
In many cases, a single roof surface cannot occupy a 25m 2 solar cell module installation area, and the sunshine conditions are significantly different, such as the south-facing inclined surface, which is convenient for solar power generation, and the east- and west-facing roof surfaces and balconies The current situation is that the installation area can be finally secured together with the required installation area.
【0028】このように、日照条件が大幅に異なる場所
に設置された太陽電池モジュールの出力を合わせて、一
つのDC−ACインバータ入力とすると、各太陽電池モ
ジュールは、各々の照度における最大出力点からずれた
動作点で動作することになり、本来得られるべき太陽光
発電電力の相当部分を失う結果となる。As described above, assuming that the outputs of the solar cell modules installed in places where the sunshine conditions are significantly different are combined into one DC-AC inverter input, each solar cell module outputs the maximum output point at each illuminance. It will operate at a deviated operating point, resulting in a loss of a substantial portion of the photovoltaic power that would otherwise be obtained.
【0029】このような従来の日本の家屋に、本発明の
太陽電池電源装置を適用すると、平均的な日本の住宅の
電力使用量を賄うのに必要な太陽電池モジュール設置量
は、使用する2次電池量に応じて、1〜2kWp程度に
減らすことができる。よって、太陽電池モジュール設置
屋根面は、図9に示すように2面または南向き屋根面の
みで賄えるようになる。When the solar battery power supply device of the present invention is applied to such a conventional Japanese house, the installed amount of solar battery modules required to cover the average amount of power used in a Japanese house is 2 It can be reduced to about 1 to 2 kWp depending on the amount of secondary battery. Therefore, as shown in FIG. 9, the solar cell module installation roof surface can be covered by only two or south facing roof surfaces.
【0030】こうすることによって、前述の作用効果が
充分に得られるだけでなく、日照条件の異なる太陽電池
設置場所の使用が最小限に抑えられる。また、2次電池
の深夜電力時間帯のみを閉成、その他の時間帯は開放す
るようにした2次電池充電回路スイッチを介して2次電
池充電器に接続されており、昼間に放電した電力を深夜
電力時間帯に自動的に充電するようになっている。By doing so, not only the above-described effects can be sufficiently obtained, but also the use of the solar cell installation place where the sunshine conditions are different can be minimized. In addition, it is connected to the secondary battery charger through the secondary battery charging circuit switch that closes only the late-night power hours of the secondary battery and opens it at other times. Is automatically charged during the midnight power hours.
【0031】[0031]
【発明の効果】以上のように、本発明によれば、化学電
池の動作電圧を調整することによって所要の太陽電池電
源装置の動作電圧を得ることができるので、太陽電池の
直列接続を行うセル数の設定自由度が大幅に増す。ま
た、小設置面積でも一定規格品の太陽電池モジュールを
用いて、太陽電池電源装置を設置できる。ここで、同一
設置面積ならば、より大出力の太陽電池電源装置が設置
できる。また、化学電池に2次電池を用い、深夜電力に
よってこの2次電池を充電することによって、電力需要
の平準化(ピークカット)に貢献度の高い太陽電池電源
装置を提供できる。さらに、出力端子電圧をほぼ一定に
保つという簡単な制御で太陽光発電電力を最大限に取り
出すことが可能となるだけでなく、従来のような動作温
度、照度の変動に対する細かな出力端子電圧の制御が不
要となる。As described above, according to the present invention, the required operating voltage of the solar battery power supply device can be obtained by adjusting the operating voltage of the chemical battery. The degree of freedom in setting the number is greatly increased. Further, the solar battery power supply device can be installed by using a solar battery module of a fixed standard even in a small installation area. Here, if the installation area is the same, a solar cell power supply device having a larger output can be installed. Further, by using a secondary battery as the chemical battery and charging the secondary battery with midnight power, it is possible to provide a solar battery power supply device that contributes highly to leveling (peak cut) of power demand. Furthermore, not only is it possible to maximize the amount of photovoltaic power generated by a simple control that keeps the output terminal voltage almost constant, but it is also possible to control the output terminal voltage in detail even with changes in operating temperature and illuminance as in the past. No need for control.
【図1】本発明に係る一実施例を示す回路構成図であ
る。FIG. 1 is a circuit configuration diagram showing an embodiment according to the present invention.
【図2】太陽電池の動作電流と動作電圧との関係図であ
る。FIG. 2 is a relationship diagram between operating current and operating voltage of a solar cell.
【図3】化学電池の動作電流と動作電圧との関係図であ
る。FIG. 3 is a relationship diagram between an operating current and an operating voltage of a chemical battery.
【図4】動作電流と太陽電池電源装置の出力電圧との関
係図である。FIG. 4 is a relationship diagram between an operating current and an output voltage of a solar cell power supply device.
【図5】動作温度と、太陽電池の動作電圧,化学電池の
動作電圧,太陽電池電源装置の出力電圧との関係図であ
る。FIG. 5 is a relational diagram of operating temperature, operating voltage of solar cell, operating voltage of chemical cell, and output voltage of solar cell power supply device.
【図6】本発明に係る他の実施例を示す概略構成図であ
る。FIG. 6 is a schematic configuration diagram showing another embodiment according to the present invention.
【図7】本発明に係る他の実施例を示す概略構成図であ
る。FIG. 7 is a schematic configuration diagram showing another embodiment according to the present invention.
【図8】本発明に係る他の実施例を示す概略構成図であ
る。FIG. 8 is a schematic configuration diagram showing another embodiment according to the present invention.
【図9】本発明に係る他の実施例を示す概略構成図であ
る。FIG. 9 is a schematic configuration diagram showing another embodiment according to the present invention.
【図10】従来の太陽電池電源装置を示す概略構成図で
ある。FIG. 10 is a schematic configuration diagram showing a conventional solar cell power supply device.
【図11】従来の太陽電池電源装置を示す概略構成図で
ある。FIG. 11 is a schematic configuration diagram showing a conventional solar cell power supply device.
PV(1,2) ・・・ 太陽電池 5 ・・・ 化学電池 9 ・・・ バイアス検出手段 S1,S2,S7〜S11 ・・・ 太陽電池電源装置 PV (1, 2) ... Solar cell 5 ... Chemical cell 9 ... Bias detecting means S1, S2, S7 to S11 ... Solar cell power supply device
Claims (1)
圧が前記太陽電池の半導体接合を逆方向にバイアスする
ように直列接続したことを特徴とする太陽電池電源装
置。1. A solar cell power supply device comprising a solar cell and a chemical cell connected in series so that the voltage of the chemical cell biases the semiconductor junction of the solar cell in the reverse direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6267824A JPH08130837A (en) | 1994-10-31 | 1994-10-31 | Solar power supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6267824A JPH08130837A (en) | 1994-10-31 | 1994-10-31 | Solar power supply |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08130837A true JPH08130837A (en) | 1996-05-21 |
Family
ID=17450125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6267824A Pending JPH08130837A (en) | 1994-10-31 | 1994-10-31 | Solar power supply |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08130837A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009232661A (en) * | 2008-03-25 | 2009-10-08 | Kawamura Electric Inc | Small-sized wind-power generation system linkage device |
WO2010084835A1 (en) * | 2009-01-23 | 2010-07-29 | ソニー株式会社 | Power supply system and electronic apparatus |
-
1994
- 1994-10-31 JP JP6267824A patent/JPH08130837A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009232661A (en) * | 2008-03-25 | 2009-10-08 | Kawamura Electric Inc | Small-sized wind-power generation system linkage device |
WO2010084835A1 (en) * | 2009-01-23 | 2010-07-29 | ソニー株式会社 | Power supply system and electronic apparatus |
JP2010172143A (en) * | 2009-01-23 | 2010-08-05 | Sony Corp | Power supply system and electronic apparatus |
US9006932B2 (en) | 2009-01-23 | 2015-04-14 | Sony Corporation | Power supply system and electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101375482B (en) | Power supply system | |
JP5028049B2 (en) | Solar power system | |
JP3571860B2 (en) | Motor driving device using an unstable power supply | |
US9722435B2 (en) | Battery charge balancing device and battery charge balancing system | |
JP5175451B2 (en) | Power supply system | |
US20060174939A1 (en) | Efficiency booster circuit and technique for maximizing power point tracking | |
US20060185727A1 (en) | Converter circuit and technique for increasing the output efficiency of a variable power source | |
US20120223584A1 (en) | Novel Solar Panel String Converter Topology | |
EP2380070B1 (en) | Power control of serially connected cells | |
WO2006071436A2 (en) | A converter circuit and technique for increasing the output efficiency of a variable power source | |
US20110031926A1 (en) | Battery charger for a phtovoltaic system, a controller therefor and a method of controlling the same | |
CN102097978A (en) | Photovoltaic system and boost converter thereof | |
WO2007086472A1 (en) | Power supply system | |
WO2013129683A1 (en) | Power supply device, electricity storage device, and electricity storage system | |
JP2000089841A (en) | Solar generator | |
JPH0946924A (en) | Uninterruptible power supply with solar battery | |
JPH08130837A (en) | Solar power supply | |
CN110198073B (en) | Energy supply system and energy management method | |
CN109672213B (en) | Power optimization system containing secondary optimization and optimization method thereof | |
JP2003116224A (en) | Photovoltaic generation system, power converter thereof, and control method therefor | |
KR100454896B1 (en) | Control system for charging and discharging solar photovoltaic module for solar streetlight and stand-alone system | |
JP2000166124A (en) | Auxiliary power unit | |
JP3741434B2 (en) | Electric motor operating device | |
Wills | Maximum power point tracking charge controllers for telecom applications-analysis and economics | |
JP2002136112A (en) | Power conditioner for photovoltaic power generation |