JPH08127833A - Nickel-base heat resistant alloy excellent in weldability - Google Patents
Nickel-base heat resistant alloy excellent in weldabilityInfo
- Publication number
- JPH08127833A JPH08127833A JP26711194A JP26711194A JPH08127833A JP H08127833 A JPH08127833 A JP H08127833A JP 26711194 A JP26711194 A JP 26711194A JP 26711194 A JP26711194 A JP 26711194A JP H08127833 A JPH08127833 A JP H08127833A
- Authority
- JP
- Japan
- Prior art keywords
- point
- alloy
- weldability
- amount
- base heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 58
- 239000000956 alloy Substances 0.000 title claims abstract description 58
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 42
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 15
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 8
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 7
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 6
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 6
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims description 8
- -1 15-25% Co Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 5
- 238000003466 welding Methods 0.000 description 17
- 238000005728 strengthening Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 238000001556 precipitation Methods 0.000 description 9
- 239000006104 solid solution Substances 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910000856 hastalloy Inorganic materials 0.000 description 3
- 229910001080 W alloy Inorganic materials 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000005495 investment casting Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000905 alloy phase Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/056—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ガスタービンのタービ
ン静翼およびその他の高温部品の形成材料として使用さ
れるニッケル基耐熱合金に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-base heat-resistant alloy used as a material for forming turbine vanes and other high-temperature parts of gas turbines.
【0002】[0002]
【従来の技術】ガスタービンのタービン静翼等の高温部
品の材料として従来使用されている耐熱合金には、金属
間化合物Ni3(Al,Ti)すなわちγ’相による析
出強化とMo、W等による固溶強化を兼備えるNi基合
金および炭化物によって析出強化しているCo基合金が
ある。Ni基合金では、一般にγ’相の析出量を多くす
ると高温強度が向上するものの、溶接性は低下する傾向
にあり、例えばγ’相の析出量を多くして高温強度を改
良した合金(特公昭54−6968号)は溶接性が非常
に悪く、γ’相を少なくして溶接性を改良した合金(特
開平1−104738号)は高温強度が著しく低いこと
からも明らかである。一方、Co基合金は一般に溶接性
は良いが、高温強度が低く著しい改善は見込めない。以
上のことから、Co基合金の高温強度には限界があるの
で、Ni基合金の高温強度を損なうことなく、その溶接
性を改良しなければならない。2. Description of the Related Art Heat-resistant alloys that have hitherto been used as materials for high-temperature parts such as turbine vanes of gas turbines include intermetallic compounds Ni 3 (Al, Ti), that is, precipitation strengthening by the γ'phase and Mo, W, etc. There are Ni-based alloys which also have solid solution strengthening by Co and alloys which are precipitation strengthened by carbides. In Ni-based alloys, generally, when the precipitation amount of the γ'phase is increased, the high temperature strength is improved, but the weldability tends to decrease. For example, an alloy in which the precipitation amount of the γ'phase is increased to improve the high temperature strength (special characteristics It is also apparent from JP 54-6968) that the weldability is extremely poor, and the alloy (JP-A-1-104738) in which the weldability is improved by reducing the γ'phase has a remarkably low high temperature strength. On the other hand, Co-based alloys generally have good weldability, but their high-temperature strength is low and significant improvement cannot be expected. From the above, since the high temperature strength of the Co-based alloy is limited, its weldability must be improved without impairing the high-temperature strength of the Ni-based alloy.
【0003】[0003]
【発明が解決しようとする課題】Ni基合金における高
温強度を損なわず同時に溶接性を改良するために、A
l、Tiなどγ’相の生成元素の含有量を低下すること
なく、更にW、C、Zrなど他の元素を調整して、所期
の目的例えば溶接構造物であり、かつ高温で使用される
ガスタービンの静翼・溶接構造機器等に使用できる合金
を得る。かかる合金の性能は、900℃×20kgf/
mm2のクリープ破断時間が110時間以上かつ5×6
0×100mmの試験片を用いて溶接電流100A、溶
接電圧12V、溶接速度1.67mm/Sの溶接条件で
TIG溶接し、付加ひずみ量(全歪量)0.25%ある
いは0.77%でバレストレイン試験をしたときの最大
割れ長さが0.8mm以下であることを特徴とする。In order to improve the weldability without impairing the high temperature strength of the Ni-based alloy, A
L, Ti, and other elements such as W, C, and Zr are adjusted without lowering the content of the γ′-phase forming element, and the intended purpose, for example, a welded structure, is used at high temperature. To obtain an alloy that can be used for gas turbine vanes and welded structural equipment. The performance of such an alloy is 900 ° C. × 20 kgf /
mm 2 creep rupture time of 110 hours or more and 5 × 6
TIG welding was performed under the welding conditions of welding current 100A, welding voltage 12V, and welding speed 1.67 mm / S using a 0 × 100 mm test piece, and the additional strain amount (total strain amount) was 0.25% or 0.77%. It is characterized in that the maximum crack length in the Balestrain test is 0.8 mm or less.
【0004】[0004]
【課題を解決するための手段】本発明者らは鋭意研究の
結果、後述の合金組成のように、σ相,μ相等の有害相
が生成しない範囲で、Cr,Coを添加し、γ’相の生
成元素であるAl,Ti,Nb,Taなどの添加と固溶
強化元素のW,Moなどの添加によって高温強度を高く
し、一方、粒界に偏析し易いC,Zr,Bを適量添加し
て溶接性を改良することによって、高温強度と溶接性に
優れた合金とした。さらに、重油等の低級燃料下で使用
される高温部品の材料としても使用できる、すなわち、
耐酸化性、耐食性にも優れたNi基合金を調整できるこ
とを見出し、本発明に至った。Means for Solving the Problems As a result of earnest studies, the present inventors have added Cr and Co in a range such that alloy phases described later do not produce harmful phases such as σ phase and μ phase, and The high temperature strength is increased by the addition of Al, Ti, Nb, Ta, etc., which are phase forming elements, and the addition of W, Mo, etc., of solid solution strengthening elements, while C, Zr, B, which easily segregate at grain boundaries, are added in appropriate amounts. By adding it to improve the weldability, an alloy with excellent high-temperature strength and weldability was obtained. Furthermore, it can be used as a material for high temperature parts used under low-grade fuel such as heavy oil, that is,
The inventors have found that a Ni-based alloy having excellent oxidation resistance and corrosion resistance can be prepared, and have completed the present invention.
【0005】すなわち、本発明は、重量%で、0.0
5〜0.25%のC、18〜25%のCr、15〜25
%のCo、W+1/2Moの値が5〜10%である量の
3.5%までのMoおよび5〜10%までのWの一種又
は二種、1.0〜5.0%のTi、1.0〜4.0%の
Al、0.5〜4.5%のTa、0.2〜3.0%のN
b、0.005〜0.10%のZrと0.001〜0.
01%のBを含有し、残部がNiおよび不可避的不純物
元素からなり、(Al+Ti)量および(W+1/2M
o)量が図1において点A(Al+Ti:3%、W+1
/2Mo:10%)、点B(Al+Ti:5%、W+1
/2Mo:7.5%)、点C(Al+Ti:5%、W+
1/2Mo:5%)、点D(Al+Ti:7%、W+1
/2Mo:5%)、点E(Al+Ti:7%、W+1/
2Mo:10%)の各点を順次結ぶ線で囲まれた範囲内
の組成を有することを特徴とするニッケル基耐熱合金、
並びに、重量%で、0.05〜0.25%のC、10
〜20%のCr、15〜25%のCo、W+1/2Mo
の値が0.5〜10%である量の3.5%までのMoお
よび0.5〜10%までのWの一種又は二種、1.0〜
5.0%のTi、1.0〜4.0%のAl、0.5〜
4.5%のTa、0.2〜3.0%のNb、0.005
〜0.10%のZrと0.001〜0.01%のBを含
有し、残部がNiおよび不可避的不純物元素からなり、
(Al+Ti)量および(W+1/2Mo)量が、図1
において、点A(Al+Ti:3%、W+1/2Mo:
10%)、点B(Al+Ti:5%、W+1/2Mo:
7.5%)、点C(Al+Ti:5%、W+1/2M
o:5%)、点F(Al+Ti:4%、W+1/2M
o:5%)、点G(Al+Ti:4%、W+1/2M
o:0.5%)、点H(Al+Ti:7%、W+1/2
Mo:0.5%)点E(Al+Ti:7%、W+1/2
Mo:10%)の各点を順次結ぶ線で囲まれた範囲内の
組成を有することを特徴とするニッケル基耐熱合金であ
る。That is, the present invention, in% by weight, is 0.0
5 to 0.25% C, 18 to 25% Cr, 15 to 25
% Co, one or two of up to 3.5% Mo and 5-10% W in an amount such that the value of W + 1 / 2Mo is 5-10%, 1.0-5.0% Ti, 1.0-4.0% Al, 0.5-4.5% Ta, 0.2-3.0% N
b, 0.005 to 0.10% Zr and 0.001 to 0.
01% B is contained, the balance is Ni and unavoidable impurity elements, and (Al + Ti) amount and (W + 1 / 2M)
o) The amount is point A (Al + Ti: 3%, W + 1) in FIG.
/ 2Mo: 10%), point B (Al + Ti: 5%, W + 1)
/ 2Mo: 7.5%), point C (Al + Ti: 5%, W +
1 / 2Mo: 5%), point D (Al + Ti: 7%, W + 1
/ 2Mo: 5%), point E (Al + Ti: 7%, W + 1 /
2Mo: 10%), a nickel-base heat-resistant alloy having a composition within a range surrounded by a line sequentially connecting each point,
And 0.05 to 0.25% by weight of C, 10
~ 20% Cr, 15-25% Co, W + 1 / 2Mo
One or two of Mo up to 3.5% and W up to 0.5-10% in an amount whose value of 0.5-10%, 1.0-
5.0% Ti, 1.0-4.0% Al, 0.5-
4.5% Ta, 0.2-3.0% Nb, 0.005
.About.0.10% Zr and 0.001 to 0.01% B, with the balance being Ni and inevitable impurity elements,
The amounts of (Al + Ti) and (W + 1 / 2Mo) are shown in FIG.
At point A (Al + Ti: 3%, W + 1 / 2Mo:
10%), point B (Al + Ti: 5%, W + 1 / 2Mo:
7.5%), point C (Al + Ti: 5%, W + 1 / 2M
o: 5%), point F (Al + Ti: 4%, W + 1 / 2M)
o: 5%), point G (Al + Ti: 4%, W + 1 / 2M)
o: 0.5%), point H (Al + Ti: 7%, W + 1/2)
Mo: 0.5%) Point E (Al + Ti: 7%, W + 1/2)
Mo: 10%) is a nickel-base heat-resistant alloy having a composition within a range surrounded by a line sequentially connecting the respective points.
【0006】次に本発明のNi基耐熱合金の合金組成に
おける各元素の作用と添加量(重量基準)についての限
定理由を述べる。Cは炭化物を形成し、特に結晶粒界、
樹枝状晶境界に析出して、粒界や樹脂状晶境界を強化す
る。0.05%未満ではその強化効果がなく、0.25
%を超えると延性およびクリープ強さが低下する。特に
好ましい範囲は0.09〜0.23%である。Crは請
求項1では18〜25%、請求項2では10〜20%と
したが、Crは高温における耐酸化性および耐食性を付
与する元素であり、それぞれ下限未満ではその効果が少
なく、一方、それぞれ上限を超えると、長時間の高温に
おける供用に際してσ相生成の危険がある。尚、請求項
1の合金は耐食性及び耐酸化性を、請求項2は高温強度
をそれぞれ特に配慮したものである。Next, the reasons for limiting the action of each element and the addition amount (weight basis) in the alloy composition of the Ni-base heat resistant alloy of the present invention will be described. C forms carbides, especially grain boundaries,
Precipitates at dendrite boundaries and strengthens grain boundaries and resinous boundaries. If it is less than 0.05%, there is no strengthening effect, and it is 0.25.
If it exceeds%, the ductility and creep strength will decrease. A particularly preferable range is 0.09 to 0.23%. Although Cr was set to 18 to 25% in Claim 1 and 10 to 20% in Claim 2, Cr is an element that imparts oxidation resistance and corrosion resistance at high temperatures, and if each is less than the lower limit, its effect is small, while If the respective upper limits are exceeded, there is a risk of σ phase formation during long-term high temperature service. It should be noted that the alloy of claim 1 takes special consideration of corrosion resistance and oxidation resistance, and the alloy of claim 2 takes high temperature strength into consideration.
【0007】Coはγ’相を生成するTi,Al等を高
温で基質に固溶させる限度(固溶限)を大きくする作用
があり、本発明による合金のAl,Ti量では、Co量
は15.0%以上を採用することが必要である。一方、
σ相生成の危険を避けるため25.0%以下とした。T
iは高温強度を上げるためのγ’相の析出に必要な元素
であり、1.0%未満では要求強度を満足することがで
きず、又、あまり多量に添加し過ぎると延性および溶接
性を阻害するので、5.0%以下とした。AlはTiと
同様に、γ’相を生成し、高温強度を上げると共に、高
温での耐酸化性、耐食性の付与に寄与する。その量は
1.0%以上であることが必要であり、あまり多量に添
加し過ぎると延性および溶接性を阻害するため4.0%
以下とした。特にAl+Tiは3.0〜7.0%の範囲
が好ましい。WとMoは固溶強化と弱析出強化の作用が
あり、高温強度の付与に寄与する。その効果を得るため
には、W+1/2Moが0.5%以上必要であり、添加
し過ぎると延性を阻害するのでWを10%以下、Moを
3.5%以下、W+1/2Moを10%以下とした。Co has the effect of increasing the limit of solid solution of Ti, Al, etc., which form the γ'phase, to the substrate at high temperature (solid solution limit). It is necessary to adopt 15.0% or more. on the other hand,
In order to avoid the risk of σ phase formation, it was set to 25.0% or less. T
i is an element necessary for the precipitation of the γ'phase for increasing the high temperature strength. If it is less than 1.0%, the required strength cannot be satisfied, and if it is added in too large an amount, ductility and weldability are reduced. Since it inhibits, it was set to 5.0% or less. Al, like Ti, forms a γ ′ phase, increases high-temperature strength, and contributes to impart oxidation resistance and corrosion resistance at high temperatures. The amount is required to be 1.0% or more, and if added too much, the ductility and weldability are impaired, so 4.0%.
Below. Particularly, Al + Ti is preferably in the range of 3.0 to 7.0%. W and Mo have effects of solid solution strengthening and weak precipitation strengthening, and contribute to impart high temperature strength. To obtain this effect, W + 1 / 2Mo needs to be 0.5% or more, and if added too much, ductility is impaired, so W is 10% or less, Mo is 3.5% or less, and W + 1 / 2Mo is 10%. Below.
【0008】TaとNbは固溶強化およびγ’相析出強
化により高温強度の向上に寄与し、Taは0.5%以上
でNbは0.2%以上でその効果がある。一方、添加し
過ぎると延性を低下するので、Taは4.5%以下,N
bは3.0%以下とした。特にTaは1.0〜4.2%
の範囲が、Nbは0.5〜1.5%の範囲が好ましい。
Zrは結晶粒界における結合力を増して粒界を強化する
効果があるが、0.005%未満ではクリープ強さの向
上は見られなく、また、0.10%を超えると溶接性が
逆に低下するので、0.005〜0.10%の範囲内で
存在しなければならない。特に好ましい範囲は0.01
〜0.10%である。BはZrと同様に結晶粒界の結合
力を増して粒界を強化するが、0.001%未満ではク
リープ強さの向上が見られなく、また0.01%を超え
ると溶接性が逆に低下するので、B含有量は0.001
〜0.01%の範囲とした。Ta and Nb contribute to the improvement of high temperature strength by solid solution strengthening and γ'phase precipitation strengthening. Ta is 0.5% or more and Nb is 0.2% or more. On the other hand, if too much is added, the ductility decreases, so Ta is 4.5% or less
b was 3.0% or less. Especially Ta is 1.0 to 4.2%
The range of Nb is preferably 0.5 to 1.5%.
Zr has the effect of increasing the bond strength at the grain boundaries and strengthening the grain boundaries, but if it is less than 0.005%, no improvement in creep strength is seen, and if it exceeds 0.10%, the weldability is reversed. Must be present in the range of 0.005 to 0.10%. A particularly preferred range is 0.01
Is about 0.10%. B, like Zr, strengthens the grain boundaries by increasing the bond strength of the grain boundaries. However, if it is less than 0.001%, the creep strength is not improved, and if it exceeds 0.01%, the weldability is reversed. B content is 0.001
It was set to a range of 0.01%.
【0009】図1の線で囲んだ範囲内に限定した理由は
下記のとおりである。Al,TiはNi基合金の強化因
子であるγ’相すなわちNi3(Al,Ti)を析出さ
せて高温強度を高めるが、過剰に添加すると溶接性と延
性を低下させるのでAl+Tiは7%以下とした。添加
量が少ないと高温強度を高める効果が小さくなるので、
同図に示すように3%以上とした。なお、高温強度には
Cr量も影響するので、Cr量を考慮に入れてAl+T
iの下限は同図に示すように4%とした。W,Moは固
溶強化と炭化物による析出強化の作用があり、高温強度
を高める効果がある。その効果を得るためにはW+1/
2Moは0.5%以上が必要であり、添加し過ぎると、
σ相等の有害相の析出を助長し、延性と強度を低下させ
るのでW+1/2Moの上限は10%とした。The reason why the range is limited to the range surrounded by the line in FIG. 1 is as follows. Al and Ti increase the high temperature strength by precipitating the γ'phase, which is the strengthening factor of Ni-based alloys, that is, Ni 3 (Al, Ti), but if added excessively, the weldability and ductility deteriorate, so Al + Ti is 7% or less. And If the addition amount is small, the effect of increasing the high temperature strength will be small, so
As shown in the figure, it was set to 3% or more. Since the amount of Cr also affects the high temperature strength, Al + T
The lower limit of i was set to 4% as shown in the figure. W and Mo have the effects of solid solution strengthening and precipitation strengthening by carbide, and have the effect of increasing high temperature strength. To get that effect, W + 1 /
2Mo must be 0.5% or more, and if added too much,
The upper limit of W + 1 / 2Mo is set to 10% because it promotes precipitation of harmful phases such as σ phase and reduces ductility and strength.
【0010】[0010]
【実施例】次に具体的な実施例によって本発明をさらに
詳述する。 実施例1 表1と表2に代表的なガスタービン静翼に発明した合金
の化学組成(重量%)を示す。又、表3と表4には従来
合金である比較合金の化学組成を示す。各組成のものは
真空高周波溶解炉で各20kgの鋼塊を溶製した。試料
はそれらをマスターインゴットとしてロストワックス精
密鋳造し、1160℃×4hr+1000℃×6hr+
800℃×4hrの熱処理を施した。その後機械加工に
より、平行部6.25φ×25mmのクリープ破断試験
片、5×60×100mmのバレストレイン試験片など
を作製した。表1のNo.1〜18は本発明合金で、No.
X,Y,Z,19〜36は比較合金である。なお、X,
Yは前述の特公昭54−6968号の一例であり、Zは
特開平1−104738号の一例である。EXAMPLES The present invention will be described in more detail with reference to specific examples. Example 1 Tables 1 and 2 show chemical compositions (% by weight) of alloys invented for typical gas turbine vanes. In addition, Tables 3 and 4 show the chemical compositions of comparative alloys which are conventional alloys. For each composition, 20 kg of steel ingots were melted in a vacuum high frequency melting furnace. The samples were made by casting them as master ingots and lost wax precision casting, 1160 ℃ × 4hr + 1000 ℃ × 6hr +
Heat treatment was performed at 800 ° C. for 4 hours. Then, by mechanical processing, a creep rupture test piece having a parallel portion of 6.25φ × 25 mm, a 5 × 60 × 100 mm Balestrain test piece, and the like were produced. Nos. 1 to 18 in Table 1 are alloys of the present invention.
X, Y, Z, 19-36 are comparative alloys. Note that X,
Y is an example of the aforementioned Japanese Examined Patent Publication No. 54-6968, and Z is an example of JP-A-1-104738.
【0011】[0011]
【表1】 [Table 1]
【0012】[0012]
【表2】 [Table 2]
【0013】[0013]
【表3】 [Table 3]
【0014】[0014]
【表4】 [Table 4]
【0015】図1は、各試料についての(Al+Ti)
量と(W+1/2Mo)量との関係を示し、併せて、各
試料番号の( )内には、900℃、20kgf/mm
2のクリープ破断時間を示す。なお、図1において本発
明合金は白丸(○)で、比較合金は黒丸(●)で示し
た。点ABCDEを結ぶ線内にあるAl+TiおよびW
+1/2Moの高い本発明合金(1,4,11,12,
13,14,15,16)はいずれも高い強度を示し、
特にNo.11が高い強度を示す。又、Al+Ti,W+
1/2Moが点FGHDを結ぶ線内にあり、Cr量が低
い本発明合金(2,3,5,6,7,8,9,10,1
7,18)は特に高い強度を示す。図2は各代表的な試
料である表2の比較合金Y,Z,20および表1の本発
明合金9,11の900℃、20kgf/mm2と98
0℃、10kgf/mm2のクリープ破断強度の比較を
示す。横軸にはラーソンミラーパラメーターP=T
k(20+logt)×10-3、Tk:試験温度(°
K)、t:破断時間(Hr)を使っている。900℃と
980℃の試験結果は縦軸の応力がそれぞれ20kgf
/mm2,10kgf/mm2の点である。横軸のパラメ
ーターPが大きいほど強度が大きいことを示す。本発明
合金のNo.9,11は比較合金No.Y,ZやNo.20に
比べて同じ試験応力でラーソンミラーパラメータが大き
い値になる。これはAl+Ti量とW+1/2Mo量を
多くし、Cr量を低くした効果(No.11)である。一
方、Al+Ti量はNo.9よりやや多いがCr量も多い
比較合金No.Y、Al+Ti量は低いがW+1/2Mo
量が多い比較合金No.20、Al+Ti量、W+1/2
Mo量とも低い比較合金No.Zなどのラーソンミラーパ
ラメータは、同じ試験応力で本発明合金のそれより低い
側にある。FIG. 1 shows (Al + Ti) for each sample.
The relationship between the amount and the amount of (W + 1 / 2Mo) is shown. In addition, in () of each sample number, 900 ° C., 20 kgf / mm
2 shows the creep rupture time. In FIG. 1, the alloys of the present invention are indicated by white circles (◯), and the comparative alloys are indicated by black circles (●). Al + Ti and W within the line connecting the points ABCDE
The alloy of the present invention having a high + 1 / 2Mo (1, 4, 11, 12,
13, 14, 15, 16) show high strength,
Particularly, No. 11 shows high strength. Also, Al + Ti, W +
1/2 Mo is within the line connecting the points FGHD, and the alloy of the present invention having a low Cr content (2, 3, 5, 6, 7, 8, 9, 10, 1)
7, 18) shows particularly high strength. FIG. 2 shows the representative alloys Y, Z and 20 of Table 2 and the alloys 9 and 11 of the present invention of Table 1 at 900 ° C., 20 kgf / mm 2 and 98, respectively.
A comparison of creep rupture strength at 0 ° C and 10 kgf / mm 2 is shown. Larson Miller parameter P = T on the horizontal axis
k (20 + logt) × 10 −3 , T k : test temperature (°
K), t: breaking time (Hr) is used. The test results at 900 ° C and 980 ° C show that the stress on the vertical axis is 20 kgf each
/ Mm 2 and 10 kgf / mm 2 . The larger the parameter P on the horizontal axis, the higher the strength. The alloys of the present invention Nos. 9 and 11 have larger Larson-Miller parameters under the same test stress as those of the comparative alloys No. Y, Z and No. 20. This is an effect (No. 11) of increasing the amounts of Al + Ti and W + 1 / 2Mo and lowering the amount of Cr. On the other hand, the amount of Al + Ti is slightly higher than that of No. 9, but the comparative alloy No.Y, which also has a large amount of Cr, and the amount of Al + Ti is low, but W + 1 / 2Mo
Large amount of comparative alloy No.20, Al + Ti amount, W + 1/2
The Larson-Miller parameters such as the comparative alloy No. Z, which has a low Mo content, are on the lower side of the alloy of the present invention at the same test stress.
【0016】溶接性に関しては、バレストレイン試験
(図6)により評価した。すなわち、溶接電流100
A、溶接電圧12V、溶接速度1.67mm/sの溶接
条件でTIG溶接し、0.25%あるいは0.77%の
全ひずみを負荷し、そのときに発生する溶接時の脆化領
域の指標となる最大割れの長さを測定した。この最大割
れ長さとクリープ破断時間(900℃×20kgf/m
m2)の関係を図3に示す。同図の縦軸はこれが小さい
ほど溶接性が良いことを示す。したがって、同図の右下
にあるほど溶接性が良く、高温強度が高いことになる。
Zrを0.1%以下、Bを0.01%以下にした本発明
合金No.3,7,9,10,11,12,15のバレス
トレイン最大割れ長さはいずれも小さい。特にNo.9,
11,12のそれは目標の0.3mm以下で、クリープ
破断時間は185時間以上であり優れた特性を有してい
る。一方比較合金ではNo.X,Y,25,27,28,
33及び35が110時間以上のクリープ破断時間を示
したが、いずれもバレストレイン最大割れの長さが0.
8mm以上で目標を満足しなかった。以上の結果からZ
r量とB量を低くしても、Al+TiとW+1/2Mo
の関係をABCDEの範囲あるいはCr量を低くしてA
l+TiとW+1/2Moの関係をABCFGHEの範
囲にすれば、溶接性を良好にし、クリープ強度を高くす
ることが可能である。The weldability was evaluated by the Balestrain test (FIG. 6). That is, the welding current 100
A, welding voltage 12V, welding speed TIG welding under welding conditions of 1.67 mm / s, total strain of 0.25% or 0.77% is applied, and an index of the embrittlement region at the time of welding that occurs The length of the maximum crack which becomes is measured. This maximum crack length and creep rupture time (900 ° C × 20 kgf / m
The relationship of m 2 ) is shown in FIG. The vertical axis in the figure indicates that the smaller the value, the better the weldability. Therefore, the lower the right side of the figure, the better the weldability and the higher the high temperature strength.
Inventive alloys Nos. 3, 7, 9, 10, 11, 12, and 15 in which Zr is 0.1% or less and B is 0.01% or less, all have a small maximum crack length. Especially No.9,
Nos. 11 and 12 have a target of 0.3 mm or less and a creep rupture time of 185 hours or more, which are excellent properties. On the other hand, in the comparative alloy, No. X, Y, 25, 27, 28,
33 and 35 showed a creep rupture time of 110 hours or more, but the maximum crack length of the vale train was 0.
The target was not satisfied when it was 8 mm or more. From the above results, Z
Al + Ti and W + 1 / 2Mo even if the amount of r and B are lowered
The relationship between A and B in the range of ABCDE or Cr
By setting the relationship between l + Ti and W + 1 / 2Mo within the range of ABCFGHE, it is possible to improve the weldability and increase the creep strength.
【0017】実施例2 実施例1の表1に示すNo.11の合金を用い、図4に示
すガスタービン用静翼をロストワックス精密鋳造法によ
り製造し、1160℃×4hrの溶体化を行ったのち溶
接試験を行った。この静翼は翼部の幅が約200mm、
高さ約200mmであり、内部は冷却のための空気通路
を備えた中空構造の鋳物である。図4に示す翼部腹側の
1,2,3,4の各位置およびリーディングエッジの各
位置5,6とトレーリングエッジの位置7には肉盛溶
接、インナーシュラウド8には図5に示すようにシュラ
ウド部8(本発明合金No.11)と蓋板10(ハステロ
イX合金)をハステロイW合金11で角肉溶接をTIG
で行った。溶接後、各位置の外観検査、蛍光浸透深傷試
験、図5に示すような位置の断面のミクロ組織観察など
を行ったが、いずれの位置にも割れは認められなかっ
た。なお、比較合金Y(特公昭54−6968)を用い
上記と同一のガスタービン用静翼を製造し、溶接試験を
行った結果、蛍光浸透探傷試験では割れが多数認めら
れ、断面ミクロ組織観察では長さ約1mmの割れが認め
られた。Example 2 Using a No. 11 alloy shown in Table 1 of Example 1, a gas turbine stationary blade shown in FIG. 4 was manufactured by the lost wax precision casting method, and solution heat treatment was performed at 1160 ° C. for 4 hours. After that, a welding test was conducted. This vane has a width of about 200 mm,
The height is about 200 mm, and the inside is a casting having a hollow structure with an air passage for cooling. The positions 1, 2, 3, 4 on the ventral side of the wing shown in FIG. 4, the positions 5, 6 of the leading edge and the position 7 of the trailing edge are overlay welded, and the inner shroud 8 is shown in FIG. As described above, the shroud portion 8 (invention alloy No. 11) and the cover plate 10 (Hastelloy X alloy) are welded with Hastelloy W alloy 11 to fillet the weld with TIG.
I went in. After welding, visual inspection at each position, fluorescence penetration deep scratch test, and microstructure observation of the cross section at the position shown in FIG. 5 were performed, but no crack was observed at any position. A comparative turbine Y (Japanese Patent Publication No. Sho 54-6968) was used to manufacture the same vane for a gas turbine as described above, and a welding test was conducted. A crack having a length of about 1 mm was recognized.
【0018】[0018]
【発明の効果】以上説明したように本発明によれば、従
来のNi基耐熱合金よりも高温強度が高く、溶接性の優
れたNi基耐熱合金が得られる。このNi基耐熱合金
は、ガスタービンの高温化に伴い信頼性が要求されるガ
スタービン静翼材に特に好適である。As described above, according to the present invention, it is possible to obtain a Ni-base heat-resistant alloy having higher high-temperature strength and excellent weldability than conventional Ni-base heat-resistant alloys. This Ni-base heat-resistant alloy is particularly suitable for a gas turbine stationary blade material that requires reliability as the temperature of the gas turbine rises.
【図1】本発明の合金の範囲とクリープ破断時間の試験
結果を示す図である。FIG. 1 is a diagram showing the test results of the range of the alloy of the present invention and creep rupture time.
【図2】供試合金のクリープ破断強度の比較を示す図で
ある。FIG. 2 is a diagram showing a comparison of creep rupture strength of match money.
【図3】バレストレイン試験における最大割れ長さとク
リープ破断時間の関係を示す図である。FIG. 3 is a diagram showing the relationship between the maximum crack length and creep rupture time in the Balestrain test.
【図4】本発明合金を適用し、溶接試験を実施したガス
タービン静翼の斜視図である。FIG. 4 is a perspective view of a gas turbine stationary blade on which a welding test is performed by applying the alloy of the present invention.
【図5】溶接試験における溶接部の説明図である。FIG. 5 is an explanatory diagram of a welded portion in a welding test.
【図6】本発明合金及び比較合金の溶接性評価のために
実施したバレストレイン試験の要領の説明図である。FIG. 6 is an explanatory view of the procedure of a Varestraint test carried out to evaluate the weldability of the alloy of the present invention and the comparative alloy.
1〜7 溶接ビード 8 インナーシュラウド 9 アウターシュラウド 10 蓋板 11 ハステロイW合金 12 バレストレイン試験片(曲げ歪付加前) 13 ヨーク 14 ビード 15 溶接トーチ 16 バレストレイン試験片(曲げ歪付加後) 17 ベンディングブロック 1 to 7 Weld beads 8 Inner shroud 9 Outer shroud 10 Cover plate 11 Hastelloy W alloy 12 Balestrain test piece (before bending strain addition) 13 Yoke 14 Bead 15 Welding torch 16 Balestrain test piece (after bending strain addition) 17 Bending block
───────────────────────────────────────────────────── フロントページの続き (72)発明者 川端 隆史 栃木県宇都宮市平出工業団地1 三菱製鋼 株式会社宇都宮製作所内 (72)発明者 国分 剛己 栃木県宇都宮市平出工業団地1 三菱製鋼 株式会社宇都宮製作所内 (72)発明者 望月 俊男 栃木県宇都宮市平出工業団地1 三菱製鋼 株式会社宇都宮製作所内 (72)発明者 坂下 修一 栃木県宇都宮市平出工業団地1 三菱製鋼 株式会社宇都宮製作所内 (72)発明者 河合 久孝 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 岡田 郁生 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 辻 一郎 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 (72)発明者 高橋 孝二 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 (72)発明者 鳥越 泰治 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Kawabata 1 Hiraide Industrial Park, Utsunomiya City, Tochigi Prefecture Utsunomiya Manufacturing Co., Ltd. (72) Inventor Takemi Kokubu 1 Hiide Industrial Park, Utsunomiya City, Tochigi Prefecture Mitsubishi Steel Corporation Company Utsunomiya Works (72) Inventor Toshio Mochizuki 1 Hiraide Industrial Park, Utsunomiya City, Tochigi Prefecture Mitsubishi Steel Corporation Utsunomiya Works (72) Inventor Shuichi Sakashita 1 Hitsuide Industrial Park, Utsunomiya City, Tochigi Prefecture Mitsubishi Steel Corporation Utsunomiya Manufacturing Co., Ltd. (72) Inventor Hisataka Kawai 2-1-1, Niihama, Arai-cho, Takasago-shi, Hyogo, Takasago Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Ikuo Okada 2-1-1, Niihama, Arai-cho, Takasago, Hyogo Mitsubishi Heavy Industries, Ltd. In the laboratory (72) Inventor Ichiro Tsuji 2-1-1, Niihama, Arai-cho, Takasago-shi, Hyogo Mitsubishi Heavy Industries, Ltd., Takasago Plant (72) Inventor, Koji Takahashi, 2-1-1 Nihama, Arai-cho, Takasago-shi, Hyogo Prefecture Mitsubishi Heavy Industries, Ltd., Takasago Plant, (72) In-house, Taiji, Taiji, Niihama, Arai-cho, Hyogo Prefecture No. 1 Mitsubishi Heavy Industries, Ltd. Takasago Plant
Claims (2)
18〜25%のCr、15〜25%のCo、W+1/2
Moの値が5〜10%である量の3.5%までのMoお
よび5〜10%までのWの一種又は二種、1.0〜5.
0%のTi、1.0〜4.0%のAl、0.5〜4.5
%のTa、0.2〜3.0%のNb、0.005〜0.
10%のZrと0.001〜0.01%のBを含有し、
残部がNiおよび不可避的不純物元素からなり、(Al
+Ti)量および(W+1/2Mo)量が図1において
点A(Al+Ti:3%、W+1/2Mo:10%)、
点B(Al+Ti:5%、W+1/2Mo:7.5
%)、点C(Al+Ti:5%、W+1/2Mo:5
%)、点D(Al+Ti:7%、W+1/2Mo:5
%)、点E(Al+Ti:7%、W+1/2Mo:10
%)の各点を順次結ぶ線で囲まれた範囲内の組成を有す
ることを特徴とする溶接性にすぐれたニッケル基耐熱合
金。1. A weight percentage of 0.05 to 0.25% C,
18-25% Cr, 15-25% Co, W + 1/2
One or two of up to 3.5% Mo and 5-10% W in an amount with a Mo value of 5-10%, 1.0-5.
0% Ti, 1.0-4.0% Al, 0.5-4.5
% Ta, 0.2-3.0% Nb, 0.005-0.
Containing 10% Zr and 0.001-0.01% B,
The balance consists of Ni and unavoidable impurity elements, and (Al
+ Ti) amount and (W + 1 / 2Mo) amount are points A (Al + Ti: 3%, W + 1 / 2Mo: 10%) in FIG.
Point B (Al + Ti: 5%, W + 1 / 2Mo: 7.5
%), Point C (Al + Ti: 5%, W + 1 / 2Mo: 5)
%), Point D (Al + Ti: 7%, W + 1 / 2Mo: 5)
%), Point E (Al + Ti: 7%, W + 1 / 2Mo: 10)
%), A nickel-base heat-resistant alloy having excellent weldability, characterized in that it has a composition within a range surrounded by a line that sequentially connects the respective points (%).
10〜20%のCr、15〜25%のCo、W+1/2
Moの値が0.5〜10%である量の3.5%までのM
oおよび0.5〜10%までのWの一種又は二種、1.
0〜5.0%のTi、1.0〜4.0%のAl、0.5
〜4.5%のTa、0.2〜3.0%のNb、0.00
5〜0.10%のZrと0.001〜0.01%のBを
含有し、残部がNiおよび不可避的不純物元素からな
り、(Al+Ti)量および(W+1/2Mo)量が、
図1において、点A(Al+Ti:3%、W+1/2M
o:10%)、点B(Al+Ti:5%、W+1/2M
o:7.5%)、点C(Al+Ti:5%、W+1/2
Mo:5%)、点F(Al+Ti:4%、W+1/2M
o:5%)、点G(Al+Ti:4%、W+1/2M
o:0.5%)、点H(Al+Ti:7%、W+1/2
Mo:0.5%)点E(Al+Ti:7%、W+1/2
Mo:10%)の各点を順次結ぶ線で囲まれた範囲内の
組成を有することを特徴とする溶接性にすぐれたニッケ
ル基耐熱合金。2. 0.05 to 0.25% C by weight,
10-20% Cr, 15-25% Co, W + 1/2
M up to 3.5% of the amount where Mo value is 0.5-10%
o and one or two of W up to 0.5-10%;
0-5.0% Ti, 1.0-4.0% Al, 0.5
~ 4.5% Ta, 0.2-3.0% Nb, 0.00
5 to 0.10% of Zr and 0.001 to 0.01% of B are contained, the balance is Ni and unavoidable impurity elements, and the amount of (Al + Ti) and (W + 1 / 2Mo) is
In FIG. 1, point A (Al + Ti: 3%, W + 1 / 2M
o: 10%), point B (Al + Ti: 5%, W + 1 / 2M)
o: 7.5%), point C (Al + Ti: 5%, W + 1/2)
Mo: 5%), point F (Al + Ti: 4%, W + 1 / 2M
o: 5%), point G (Al + Ti: 4%, W + 1 / 2M)
o: 0.5%), point H (Al + Ti: 7%, W + 1/2)
Mo: 0.5%) Point E (Al + Ti: 7%, W + 1/2)
Mo: 10%) is a nickel-base heat-resistant alloy having excellent weldability, characterized by having a composition within a range surrounded by a line sequentially connecting each point.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6267111A JP2862487B2 (en) | 1994-10-31 | 1994-10-31 | Nickel-base heat-resistant alloy with excellent weldability |
CA 2146534 CA2146534C (en) | 1994-10-31 | 1995-04-06 | Heat-resistant nickel-based alloy excellent in weldability |
DE1995602680 DE69502680T2 (en) | 1994-10-31 | 1995-09-11 | Weldable and heat-resistant alloy based on nickel |
EP19950114242 EP0709477B1 (en) | 1994-10-31 | 1995-09-11 | Heat-resistant nickel-based alloy excellent in weldability |
US08/899,587 US5882586A (en) | 1994-10-31 | 1997-07-24 | Heat-resistant nickel-based alloy excellent in weldability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6267111A JP2862487B2 (en) | 1994-10-31 | 1994-10-31 | Nickel-base heat-resistant alloy with excellent weldability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08127833A true JPH08127833A (en) | 1996-05-21 |
JP2862487B2 JP2862487B2 (en) | 1999-03-03 |
Family
ID=17440220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6267111A Expired - Lifetime JP2862487B2 (en) | 1994-10-31 | 1994-10-31 | Nickel-base heat-resistant alloy with excellent weldability |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0709477B1 (en) |
JP (1) | JP2862487B2 (en) |
CA (1) | CA2146534C (en) |
DE (1) | DE69502680T2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000160313A (en) * | 1998-06-30 | 2000-06-13 | Howmet Res Corp | Nickel base super heat resistant alloy and heat treatment before welding, and welding for this nickel base superalloy |
US6132535A (en) * | 1999-10-25 | 2000-10-17 | Mitsubishi Heavy Industries, Ltd. | Process for the heat treatment of a Ni-base heat-resisting alloy |
JP2003510459A (en) * | 1999-08-11 | 2003-03-18 | シーメンス ウエスチングハウス パワー コーポレイション | Superalloy for high temperature applications with excellent weldability |
JP2009013450A (en) * | 2007-07-03 | 2009-01-22 | Hitachi Ltd | Ni-based alloy |
JP2009228024A (en) * | 2008-03-19 | 2009-10-08 | Daido Steel Co Ltd | Co-BASED ALLOY |
US8042723B2 (en) | 2007-10-15 | 2011-10-25 | Mitsubishi Heavy Industries, Ltd | Method of repair |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4382244B2 (en) | 2000-04-11 | 2009-12-09 | 日立金属株式会社 | Method for producing Ni-base alloy having excellent resistance to high-temperature sulfidation corrosion |
US6696176B2 (en) | 2002-03-06 | 2004-02-24 | Siemens Westinghouse Power Corporation | Superalloy material with improved weldability |
JP3842717B2 (en) * | 2002-10-16 | 2006-11-08 | 株式会社日立製作所 | Welding material, welded structure, gas turbine rotor blade, and gas turbine rotor blade or stationary blade repair method |
US6866727B1 (en) * | 2003-08-29 | 2005-03-15 | Honeywell International, Inc. | High temperature powder metallurgy superalloy with enhanced fatigue and creep resistance |
US20110062220A1 (en) * | 2009-09-15 | 2011-03-17 | General Electric Company | Superalloy composition and method of forming a turbine engine component |
JP5657964B2 (en) * | 2009-09-15 | 2015-01-21 | 三菱日立パワーシステムズ株式会社 | High-strength Ni-base forged superalloy and manufacturing method thereof |
JP5296046B2 (en) | 2010-12-28 | 2013-09-25 | 株式会社日立製作所 | Ni-based alloy and turbine moving / stator blade of gas turbine using the same |
GB2565063B (en) | 2017-07-28 | 2020-05-27 | Oxmet Tech Limited | A nickel-based alloy |
EP3572540B1 (en) | 2018-05-23 | 2024-07-10 | Rolls-Royce plc | Nickel-base superalloy |
GB2584654B (en) | 2019-06-07 | 2022-10-12 | Alloyed Ltd | A nickel-based alloy |
CN112981186B (en) * | 2021-04-22 | 2021-08-24 | 北京钢研高纳科技股份有限公司 | High-temperature alloy with low-layer fault energy, structural component and application thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4039330A (en) * | 1971-04-07 | 1977-08-02 | The International Nickel Company, Inc. | Nickel-chromium-cobalt alloys |
GB1367661A (en) * | 1971-04-07 | 1974-09-18 | Int Nickel Ltd | Nickel-chromium-cobalt alloys |
JPS546968A (en) | 1977-06-13 | 1979-01-19 | Unitika Ltd | Sewing process |
US4810467A (en) | 1987-08-06 | 1989-03-07 | General Electric Company | Nickel-base alloy |
JP2778705B2 (en) * | 1988-09-30 | 1998-07-23 | 日立金属株式会社 | Ni-based super heat-resistant alloy and method for producing the same |
TW222017B (en) * | 1992-03-18 | 1994-04-01 | Westinghouse Electric Corp |
-
1994
- 1994-10-31 JP JP6267111A patent/JP2862487B2/en not_active Expired - Lifetime
-
1995
- 1995-04-06 CA CA 2146534 patent/CA2146534C/en not_active Expired - Lifetime
- 1995-09-11 DE DE1995602680 patent/DE69502680T2/en not_active Expired - Lifetime
- 1995-09-11 EP EP19950114242 patent/EP0709477B1/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000160313A (en) * | 1998-06-30 | 2000-06-13 | Howmet Res Corp | Nickel base super heat resistant alloy and heat treatment before welding, and welding for this nickel base superalloy |
JP2003510459A (en) * | 1999-08-11 | 2003-03-18 | シーメンス ウエスチングハウス パワー コーポレイション | Superalloy for high temperature applications with excellent weldability |
US6132535A (en) * | 1999-10-25 | 2000-10-17 | Mitsubishi Heavy Industries, Ltd. | Process for the heat treatment of a Ni-base heat-resisting alloy |
EP1096033A1 (en) * | 1999-10-25 | 2001-05-02 | Mitsubishi Heavy Industries, Ltd. | Process for the heat treatment of a Ni-base heat-resisting alloy |
JP2009013450A (en) * | 2007-07-03 | 2009-01-22 | Hitachi Ltd | Ni-based alloy |
US8042723B2 (en) | 2007-10-15 | 2011-10-25 | Mitsubishi Heavy Industries, Ltd | Method of repair |
JP2009228024A (en) * | 2008-03-19 | 2009-10-08 | Daido Steel Co Ltd | Co-BASED ALLOY |
Also Published As
Publication number | Publication date |
---|---|
CA2146534C (en) | 2001-10-02 |
CA2146534A1 (en) | 1996-05-01 |
EP0709477B1 (en) | 1998-05-27 |
DE69502680D1 (en) | 1998-07-02 |
JP2862487B2 (en) | 1999-03-03 |
DE69502680T2 (en) | 1998-09-24 |
EP0709477A1 (en) | 1996-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3629920B2 (en) | Nozzle for gas turbine, gas turbine for power generation, Co-base alloy and welding material | |
JP3842717B2 (en) | Welding material, welded structure, gas turbine rotor blade, and gas turbine rotor blade or stationary blade repair method | |
JP2862487B2 (en) | Nickel-base heat-resistant alloy with excellent weldability | |
JP4484093B2 (en) | Ni-base heat-resistant alloy | |
KR102228130B1 (en) | High gamma prime nickel based superalloy and method of manufacturing of turbine engine components | |
CN101784685B (en) | Low-thermal-expansion ni-based super-heat-resistant alloy for boiler and having excellent high-temperature strength, and boiler component and boiler component production method using the same | |
US11459640B2 (en) | High gamma prime nickel based superalloy, its use, and method of manufacturing of turbine engine components | |
EP2902516B1 (en) | A weld filler for nickel-base superalloys | |
EP2128283B1 (en) | Nickel-base casting superalloy and cast component for steam turbine using the same | |
KR101809360B1 (en) | METHOD FOR PRODUCING Ni-BASED HEAT-RESISTANT ALLOY WELDING JOINT AND WELDING JOINT OBTAINED BY USING THE SAME | |
EP1338663A1 (en) | Ni-base heat-resistant alloy and weld joint using the same | |
WO2007119847A1 (en) | WIRE FOR Ni-BASE HEAT-RESISTANT ALLOY WELDING | |
EP2677053A1 (en) | Ni-based alloy for welding material and welding wire, rod and powder | |
US5882586A (en) | Heat-resistant nickel-based alloy excellent in weldability | |
CN103276249A (en) | Ni based alloy for forging and components for steam turbine plant using same | |
JP2003013161A (en) | Ni-BASED AUSTENITIC SUPERALLOY WITH LOW THERMAL EXPANSION AND MANUFACTURING METHOD THEREFOR | |
WO1997010368A1 (en) | Cobalt based alloy, and gas turbine nozzle and welding material made by using same | |
JP4635065B2 (en) | Ni-based alloy for steam turbine turbine rotor and steam turbine turbine rotor | |
JP3912815B2 (en) | High temperature sulfidation corrosion resistant Ni-base alloy | |
JPH07238349A (en) | Heat resistant steel | |
WO2022251781A2 (en) | A nickel based superalloy weld filler | |
JP2003117687A (en) | FILLER METAL FOR Ni BASED HEAT RESISTANT SUPERALLOY, AND MELTING WELDING METHOD FOR Ni BASED HEAT RESISTANT SUPERALLOY | |
JPH0211292A (en) | Welding material for weld-repairing of co base precision casting parts | |
JPS59232247A (en) | Manufacturing method of welded structure nozzle for gas turbine | |
Stephenson | Paper 10: Cast High Temperature Materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19981117 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071211 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081211 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081211 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091211 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101211 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101211 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111211 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111211 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121211 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121211 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131211 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term |