JPH08126229A - Power wave receiving apparatus - Google Patents
Power wave receiving apparatusInfo
- Publication number
- JPH08126229A JPH08126229A JP6253152A JP25315294A JPH08126229A JP H08126229 A JPH08126229 A JP H08126229A JP 6253152 A JP6253152 A JP 6253152A JP 25315294 A JP25315294 A JP 25315294A JP H08126229 A JPH08126229 A JP H08126229A
- Authority
- JP
- Japan
- Prior art keywords
- power wave
- wave receiving
- coil
- power
- receiving coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Train Traffic Observation, Control, And Security (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電力波受信装置に関
し、特に、8の字状に巻かれた電力波送信コイルからの
電力波を受信する際に、電力波送信コイルと電力波受信
コイルとの相対位置が左右に変動した時に、送信された
電力波を受信できる変動許容距離を大きく取れるように
した電力波送受信装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power wave receiver, and more particularly to a power wave transmitter coil and a power wave receiver coil when receiving a power wave from a power wave transmitter coil wound in a figure 8. The present invention relates to a power wave transmitter / receiver capable of widening a fluctuation allowable distance for receiving a transmitted power wave when the relative position of the power wave fluctuates left and right.
【0002】[0002]
【従来の技術】例えば、鉄道交通においては、列車を安
全に運行するために自動列車停止装置(以下、ATS装
置とする)が設備されている。このATS装置では、車
上側に地上側から列車運行に必要な情報を供給するため
の地上子が、列車軌道に沿って所定地点に備えられてい
る。前記地上子は、地上の電源供給設備から電源供給を
受ける有電源のものが一般的であるが、地点情報等、固
定情報を送信する場合には、車上側に設備された電力波
送信コイルから電力波を供給し、その電力波を地上子に
内蔵した電力波受信装置で受信してエネルギ変換し、地
上子内の回路駆動用の電力を得るようにした無電源地上
子が用いられる。2. Description of the Related Art For example, in railway traffic, an automatic train stop device (hereinafter referred to as an ATS device) is installed to safely operate a train. In this ATS device, a ground element for supplying information necessary for train operation from the ground side to the upper side of the vehicle is provided at a predetermined point along the train track. Generally, the ground element has a power source that is supplied with power from a ground power supply facility, but when transmitting fixed information such as point information, a power wave transmission coil installed on the upper side of the vehicle is used. A non-power source ground element is used that supplies a power wave, receives the power wave by a power wave receiving device built in the ground element, converts the energy, and obtains power for driving a circuit in the ground element.
【0003】無電源地上子に内蔵される従来の電力波受
信装置は、図5に示すように、車上側に搭載される電力
波送信コイル10からの電力波を受信する電力波受信コイ
ル11と、電力波受信コイル11の出力を整流する整流回路
12とからなり、整流回路12の直流出力を地上子内の回路
駆動用電力としている。そして、前記電力波受信コイル
11を、8の字状に巻回された電力波送信コイル10と同様
に、8の字状に巻回したものを1個設け、電力波送信コ
イル10の閉塞部10a,10bと電力波受信コイル11の閉塞
部11a,11bを対峙して配置している。尚、20は、電力
波送信コイル10に交流電流を供給する車上側に搭載され
た交流電流供給回路である。As shown in FIG. 5, a conventional power wave receiving device incorporated in an unpowered ground coil includes a power wave receiving coil 11 for receiving a power wave from a power wave transmitting coil 10 mounted on the vehicle upper side. , A rectifier circuit that rectifies the output of the power wave receiving coil 11
The DC output of the rectifier circuit 12 is used as the power for driving the circuit in the ground element. And the power wave receiving coil
Similar to the power wave transmitting coil 10 wound in the shape of a figure 8, one winding is provided in the shape of a figure 8 and the closed portions 10a and 10b of the power wave transmitting coil 10 and the power wave receiving are provided. The closed portions 11a and 11b of the coil 11 are arranged to face each other. Reference numeral 20 is an AC current supply circuit mounted on the upper side of the vehicle that supplies an AC current to the power wave transmission coil 10.
【0004】[0004]
【発明が解決しようとする課題】しかし、従来の電力波
受信装置では、電力波受信コイル11が、電力波送信コイ
ル10と同様の8の字状コイルのため、電力波を受信でき
る左右の応動範囲は受信コイルの大きさ、形状によって
決まってしまう欠点があった。図6及び図7に基づきこ
の間の事情を説明する。However, in the conventional power wave receiving device, the power wave receiving coil 11 is an 8-shaped coil similar to the power wave transmitting coil 10, so that the left and right response waves that can receive the power wave are generated. There was a drawback that the range was determined by the size and shape of the receiving coil. The situation during this period will be described based on FIGS. 6 and 7.
【0005】まず、図6において、電力波送信コイル10
は8の字状に巻くことにより、8の字に出来た2つの閉
塞部10a,10bには同図の右側に矢印で示すような方向
の交流電流が流れ、アンペアの右ネジの法則により各閉
塞部10a,10b内には、同図左側に示すように互いに反
対向きの磁束が生ずる。図中、点線aは電力波送信コイ
ル10の中心線を示す。First, referring to FIG. 6, the power wave transmission coil 10 is shown.
Is wound in the shape of a figure 8, so that an alternating current flows in the direction of the arrow on the right side of the figure in the two closed parts 10a, 10b formed in the figure of a figure 8. Magnetic fluxes in opposite directions are generated in the blocking portions 10a and 10b, as shown on the left side of FIG. In the figure, the dotted line a indicates the center line of the power wave transmission coil 10.
【0006】一方、地上子側に設けられる電力波受信コ
イル11は、列車側の前記電力波送信コイル10から電力を
受けるため、同じように8の字状に巻かれて構成され
る。従って、例えば図7の(A)のように電力波受信コ
イル11の中心が電力波送信コイル10の中心線aと一致し
ているような場合には、電力波送信コイル10の2つの閉
塞部10a,10bで生じた各々の磁束は確実に電力波受信
コイル11の各々の閉塞部11a,11bを鎖交する。従っ
て、レンツの法則により電力波受信コイル11に起電力
が生じ図中の右図で示すような方向の電流が流れる。On the other hand, the electric power wave receiving coil 11 provided on the ground side receives the electric power from the electric power wave transmitting coil 10 on the train side, and thus is similarly wound into a figure eight shape. Therefore, for example, when the center of the power wave receiving coil 11 is aligned with the center line a of the power wave transmitting coil 10 as shown in FIG. The respective magnetic fluxes generated at 10a and 10b surely interlink the respective closed portions 11a and 11b of the power wave receiving coil 11. Therefore, an electromotive force is generated in the power wave receiving coil 11 according to Lenz's law, and a current flows in the direction shown in the right diagram in the figure.
【0007】しかし、電力波送信コイル10は列車の振動
やカーブ等により進行方向に向かって左右に揺れるよう
な変動を生ずる。この変動距離は走行区間によっては大
きい場合も考えられる。この変動に応じた電力波送信コ
イル10と電力波受信コイル11の関係は次のようになる。However, the electric power wave transmitting coil 10 causes fluctuations such as swinging left and right in the traveling direction due to train vibrations and curves. This variation distance may be large depending on the traveling section. The relationship between the power wave transmitting coil 10 and the power wave receiving coil 11 according to this variation is as follows.
【0008】まず、図7の(B)は列車の変動により電
力波送信コイル10の中心線aが電力波受信コイル11の一
方の閉塞部11bの中心まで移動した場合を示す。このと
き、前記閉塞部11b内を鎖交する磁束は互いに反対方向
であり相殺されるため、出力としては、図中の右図に示
すように閉塞部11a側のみの鎖交磁束で発生する起電力
分の電流しか流れず図7(A)の場合に比べ半分に減っ
てしまう。First, FIG. 7B shows a case where the center line a of the power wave transmitting coil 10 is moved to the center of one closed portion 11b of the power wave receiving coil 11 due to train fluctuation. At this time, since the magnetic fluxes interlinking in the blocking portion 11b are in opposite directions and cancel each other, the output is generated by the interlinking magnetic flux only on the blocking portion 11a side as shown in the right figure in the figure. Only the electric current corresponding to the electric power flows, which is reduced to half of that in the case of FIG.
【0009】また、図7(C)は、電力波送信コイル10
の中心線aが、電力波受信コイル11の閉塞部11bの左端
まで移動した場合を示す。この場合には、電力波受信コ
イル11の2つの閉塞部11a,11bには同じ方向の磁束が
鎖交することになるため、8の字で構成される2つの閉
塞部11a,11bに生ずる起電力は各々相殺し合い、電力
波受信コイル11には電流が流れず出力は零になってしま
う。この状況は、電力波送信コイル10の中心線aが電力
波受信コイル11の2つの閉塞部11a,11bより更に離れ
て移動した場合でも同様である。Further, FIG. 7C shows a power wave transmission coil 10
The center line a of the figure shows the case where it moves to the left end of the closed portion 11b of the power wave receiving coil 11. In this case, since magnetic fluxes in the same direction are linked to the two closed portions 11a and 11b of the power wave receiving coil 11, the occurrence of the two closed portions 11a and 11b formed by the figure 8 is generated. The electric powers cancel each other out, and no current flows in the electric power wave receiving coil 11 and the output becomes zero. This situation is the same even when the center line a of the power wave transmitting coil 10 is moved further away from the two closed portions 11a and 11b of the power wave receiving coil 11.
【0010】即ち、従来の電力波受信コイル形状では、
電力波の受信可能な応動範囲は、一方の閉塞部の大きさ
で決まってしまい。受信コイルとしてはその略2倍の大
きさが必要となる。従って、列車のどのような横揺れに
対しても電力波を確実に受信できるようにするには、電
力波受信コイルの小型化には限界があり、その結果、無
電源地上子の左右の幅を狭くするとにも限界があった。That is, in the conventional power wave receiving coil shape,
The response range in which electric power waves can be received is determined by the size of one block. The receiving coil needs to be about twice as large. Therefore, there is a limit to miniaturization of the power wave receiving coil in order to reliably receive the power wave against any rolling of the train, and as a result, the left and right widths of the unpowered ground coil are limited. There was a limit to narrowing.
【0011】ところで、この無電源地上子は線路間の枕
木上に設置されるものであり、線路の保守等の際に、地
上子の横幅が大きいと保守作業がやり難いため、近年、
無電源地上子の小型化の要求がある。本発明はこのよう
な従来の課題に鑑みてなされたもので、8の字状の電力
波送信コイルからの電力波を受信する電力波受信コイル
の小型化を図り、コンパクトな電力波受信装置を提供
し、鉄道設備の例で言えば無電源地上子の小型化を図る
ことを目的とする。By the way, this unpowered ground conductor is installed on the sleepers between the railroad tracks, and it is difficult to perform maintenance work in maintenance of the railroad tracks if the width of the ground conductor is large.
There is a demand for miniaturization of non-powered ground elements. The present invention has been made in view of the above-described conventional problems, and achieves a compact power wave receiving device by downsizing a power wave receiving coil that receives a power wave from an 8-shaped power wave transmitting coil. The purpose is to reduce the size of the non-powered ground element in the case of railway equipment.
【0012】[0012]
【課題を解決するための手段】このため、請求項1記載
の発明では、8の字状に巻かれた電力波送信コイルから
送信される電力波を受信する電力波受信装置において、
前記電力波送信コイルの2つの閉塞部とそれぞれ対峙す
る0の字状に巻かれた2つの電力波受信コイルと、該各
電力波受信コイルの出力をそれぞれ整流する2つの整流
手段と、該各整流手段の出力を加算する加算手段を備え
て構成した。Therefore, in the invention described in claim 1, in the power wave receiving device for receiving the power wave transmitted from the power wave transmitting coil wound in a figure 8 shape,
Two power wave receiving coils wound in a 0 shape facing the two closed portions of the power wave transmitting coil, two rectifying means for rectifying the output of each power wave receiving coil, and each of the two rectifying means. It is configured by adding means for adding the outputs of the rectifying means.
【0013】また、請求項2記載の発明では、前記2つ
の0の字状に巻かれた電力波受信コイルに代えて、8の
字状に巻かれた電力波受信コイルと、0の字状に巻かれ
た電力波受信コイルとを、上下に配置して設け、前記電
力波送信コイルに対峙させる構成とした。また、請求項
3記載の発明では、請求項1又は2記載の電力波受信装
置を、列車上に設置された前記電力波送信コイルから送
信される電力波を受信するために地上子に内蔵する構成
とした。According to the second aspect of the invention, instead of the two power wave receiving coils wound in the shape of 0, a power wave receiving coil wound in the shape of 8 and a shape of 0 are formed. And a power wave receiving coil wound on the upper and lower sides of the power wave receiving coil. Further, in the invention according to claim 3, the power wave receiving device according to claim 1 or 2 is built in the ground element for receiving the power wave transmitted from the power wave transmitting coil installed on the train. It was configured.
【0014】[0014]
【作用】請求項1の構成によれば、電力波送信コイルと
電力波受信コイルの相対位置関係が、8の字状に巻かれ
た電力波送信コイルの中心が、対峙した0の字状に巻か
れた一方の電力波受信コイルの中心と一致するときは、
一方の電力波受信コイル内の磁束が相殺するため当該電
力波受信コイルには起電力は生じない。しかし、この場
合でも、他方の0の字状に巻かれた電力波受信コイルに
は電力波送信コイルからの磁束が鎖交するため起電力を
生ずる。また、0の字状に巻かれた2つの電力波受信コ
イルが、対峙する電力波送信コイルの一方の閉塞部内に
共に入った場合でも、2つの電力波受信コイルはそれぞ
れに独立した閉塞ループを構成しているため、それぞれ
の受信コイルに独立した起電力を生ずる。そして、両起
電力を整流後に加算することで、8の字状に巻かれた電
力波送信コイルの中心が、対峙した0の字状に巻かれた
2つのコイルからなる電力波受信コイルの中心と一致す
る変動のない場合に得られる電力と同じだけの電力を得
ることができる。According to the structure of claim 1, the relative positional relationship between the power wave transmitting coil and the power wave receiving coil is such that the center of the power wave transmitting coil wound in the shape of 8 is in the shape of 0 facing each other. When it coincides with the center of one of the wound power wave receiving coils,
Since the magnetic fluxes in one of the power wave receiving coils cancel each other, no electromotive force is generated in the power wave receiving coil. However, even in this case, an electromotive force is generated in the other power wave receiving coil wound in the shape of 0 because the magnetic flux from the power wave transmitting coil is interlinked. Further, even when the two power wave receiving coils wound in the shape of 0 enter together in the closed part of one of the power wave transmitting coils facing each other, the two power wave receiving coils form independent closed loops. Since it is configured, an independent electromotive force is generated in each receiving coil. Then, by adding both electromotive forces after rectification, the center of the power wave transmitting coil wound in the shape of 8 is the center of the power wave receiving coil consisting of two coils wound in the shape of 0 facing each other. It is possible to obtain as much power as there would be no fluctuations consistent with.
【0015】その結果、電力波送信コイルと電力波受信
コイルの相対的位置関係がずれて、電力波受信コイル左
端(又は右端)が電力波送信コイルの中心より右側(又
は左側)に移動した場合でも、電力波送信コイルから発
せられた電力波は電力波受信コイルで確実にしかも効率
良く受信でき、安定した直流電力が得られる。従って、
電力波受信コイルの形状(特に左右)を従来より小さく
しても従来と同様の受信可能な左右の応動距離を取れ、
言い換えれば、従来と同じ大きさであれば、従来より受
信可能な応動距離が大きくとれる。従って、左右の応動
特性を向上できる。As a result, when the relative positional relationship between the power wave transmitting coil and the power wave receiving coil is deviated, the left end (or right end) of the power wave receiving coil moves to the right side (or left side) from the center of the power wave transmitting coil. However, the power wave emitted from the power wave transmitting coil can be reliably and efficiently received by the power wave receiving coil, and stable DC power can be obtained. Therefore,
Even if the shape (especially right and left) of the power wave receiving coil is made smaller than the conventional one, the same receiving left and right response distance as before can be obtained
In other words, if the size is the same as the conventional one, the response distance that can be received is larger than that in the conventional one. Therefore, the left and right response characteristics can be improved.
【0016】請求項2の構成によれば、8の字状に巻か
れた電力波送信コイルの中心が、8の字状に巻かれて対
峙する電力波受信コイルの一方の閉塞部の中心と一致す
るときは、8の字状に巻かれた電力波受信コイルの一方
の閉塞部を鎖交する磁束は相殺することになるが、他方
の閉塞部を鎖交する磁束により8の字状に巻かれた電力
波受信コイルと0の字状に巻かれた電力波受信コイルの
両コイルで独立した起電力を生ずる。According to the second aspect of the present invention, the center of the power wave transmitting coil wound in a figure 8 shape and the center of one closed portion of the power wave receiving coil wound in a shape of 8 and facing each other. When they match, the magnetic flux linking one of the closed portions of the power wave receiving coil wound in the shape of 8 cancels each other, but the magnetic flux linking the other closed portion forms the shape of 8 in the figure. Independent electromotive force is generated in both the wound power wave receiving coil and the zero-shaped power wave receiving coil.
【0017】また、8の字状と0の字状の両電力波受信
コイルが、対峙する電力波送信コイルの一方の閉塞部内
に共に入った場合には、8の字状に巻かれた電力波受信
コイルからは起電力が得られないが、0の字状に巻かれ
た電力波受信コイルからは鎖交する磁束により起電力を
得ることができる。その結果、請求項1と同様の効果を
得ることができるが、更に8の字状に巻かれた電力波送
信コイルの中心が、8の字状に巻かれて対峙する電力波
受信コイルの一方の閉塞部の中心と一致するときでも、
8の字状に巻かれた電力波受信コイルと0の字状に巻か
れた電力波受信コイルの両コイルから起電力が得られる
ため、請求項1のように一方の電力波受信コイルのみか
ら起電力を得るということはなく、請求項1の発明に比
べて、より効率の良い受信が出来る。When both the 8-shaped and 0-shaped power wave receiving coils enter into one closed portion of one of the power wave transmitting coils facing each other, the power wound in the figure 8 shape is obtained. An electromotive force cannot be obtained from the wave receiving coil, but an electromotive force can be obtained from the power wave receiving coil wound in the shape of 0 by the interlinking magnetic flux. As a result, the same effect as that of claim 1 can be obtained, but one side of the power wave receiving coil in which the center of the power wave transmitting coil further wound in the shape of 8 is wound in the shape of 8 and faces each other. Even when it coincides with the center of the occlusion
Since the electromotive force is obtained from both the power wave receiving coil wound in the shape of 8 and the power wave receiving coil wound in the shape of 0, only one of the power wave receiving coils as in claim 1 is obtained. There is no need to obtain electromotive force, and more efficient reception can be performed as compared with the invention of claim 1.
【0018】請求項3の構成によれば、車上側の8の字
状に巻かれた電力波送信コイルが、列車の振動やカーブ
等で左右に変動し対峙する電力波受信コイルとの相対的
位置がずれた場合でも、上述した理由から磁束は必ず組
み合わされた電力波受信コイルの何れかと鎖交すること
になる。その結果、電力波受信コイルを従来より小型化
しても、車上子側から供給された電力波を地上子側で確
実にしかも効率良く受信でき必要な電力が得られ、地上
子内の論理回路を確実に駆動できるので、地上側から車
上側に必要な情報波を安定して送信出来る。従って、地
上子の小型化を図ることができると共に、地上子の動作
の安定性も向上できる。According to the third aspect of the invention, the power wave transmitting coil wound in the shape of a figure 8 on the upper side of the car is relative to the power wave receiving coil which is opposed to the left and right by vibrations or curves of the train. Even if the position is deviated, the magnetic flux always links with any of the combined power wave receiving coils for the reason described above. As a result, even if the power wave receiving coil is made smaller than before, the power wave supplied from the car core side can be reliably and efficiently received on the ground core side, and the required power can be obtained. Can be reliably driven, so that necessary information waves can be stably transmitted from the ground side to the upper side of the vehicle. Therefore, the size of the ground element can be reduced, and the stability of the operation of the ground element can be improved.
【0019】[0019]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1に本発明に係る電力波受信装置の第1実施例
を示す。尚、従来と同一部分には同一符号を付する。図
1において、交流電流供給回路20から8の字状の電力波
送信コイル10に交流電流を供給し、電力波送信コイル10
から電力波が送信されることは同じである。これら交流
電流供給回路20及び電力波送信コイル10は、列車上から
地上に設置された地上子に電力波を供給するため列車側
に搭載されている。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of a power wave receiving apparatus according to the present invention. The same parts as those in the conventional art are designated by the same reference numerals. In FIG. 1, an alternating current is supplied from an alternating current supply circuit 20 to a power wave transmitting coil 10 having a figure 8 shape,
It is the same that the power wave is transmitted from. The AC current supply circuit 20 and the power wave transmission coil 10 are mounted on the train side to supply the power wave from the train to the ground wire installed on the ground.
【0020】そして、この電力波を受信する本実施例の
電力波受信装置は、以下のように構成される。即ち、電
力波送信コイル10の2つの閉塞部10a,10bとそれぞれ
対峙して0の字状に巻かれた2つの電力波受信コイル1
A,1Bと、これら2つの電力波受信コイル1A,1B
から得られた交流出力を各々直流に変換するために設け
られている整流手段としての2つの整流回路2A,2B
と、これら整流回路2A,2Bから得られた各直流電圧
を加算するために設けられている加算手段としての加算
回路3とを備え、これら電力波受信コイル1A,1B、
整流回路2A,2B、加算回路3は、線路の枕木上に設
置される無電源地上子に内蔵される。The power wave receiving apparatus of this embodiment for receiving this power wave is constructed as follows. That is, the two power wave receiving coils 1 wound in the shape of 0 facing the two closed portions 10a and 10b of the power wave transmitting coil 10 respectively.
A, 1B and these two power wave receiving coils 1A, 1B
Two rectifying circuits 2A and 2B as rectifying means provided for converting the AC output obtained from
And an adder circuit 3 as an adding means provided to add the DC voltages obtained from the rectifier circuits 2A and 2B, and the power wave receiving coils 1A and 1B.
The rectifier circuits 2A and 2B and the adder circuit 3 are built in a non-powered ground element installed on the sleepers of the line.
【0021】次にその作用を説明する。電力波送信コイ
ル10に交流電流供給回路20から交流電流(例えば245
KHZ)が供給されると、アンペアの右ネジの法則によ
り電力波送信コイル10からは磁束が生ずる。この磁束の
向きは8の字を構成する2つの閉塞部10a,10bでそれ
ぞれコイルの巻き方向が逆になるため、互いに異なる方
向の磁束となる。この磁束が、対峙する2つの電力波受
信コイル1A,1Bを鎖交することになりその結果コイ
ルには起電力を生じて交流電流が流れ、それぞれの整流
回路2A,2Bで整流され、加算回路3で加算されて、
地上子内部の各回路に駆動用電力として供給される。Next, the operation will be described. From the AC current supply circuit 20 to the power wave transmission coil 10, an AC current (for example, 245
When KH Z ) is supplied, a magnetic flux is generated from the power wave transmission coil 10 by the Ampere's right-handed screw law. The directions of the magnetic fluxes are different in the two closed portions 10a and 10b forming the figure 8 because the winding directions of the coils are opposite to each other. This magnetic flux links the two power wave receiving coils 1A and 1B facing each other, and as a result, an electromotive force is generated in the coils and an alternating current flows, which is rectified by the respective rectifier circuits 2A and 2B and added. Added by 3,
It is supplied as driving power to each circuit inside the ground element.
【0022】次に、本実施例の電力波受信装置におけ
る、電力波送信コイル10と2つの電力波受信コイル1
A,1Bの相対的位置関係と電力波受信コイル1A,1
Bの出力関係について図2(A)〜(C)を参照しなが
ら説明する。尚、電力波送信コイル10の電流と磁束の方
向は、図6に示すものと同じとする。まず、図2(A)
のように電力波送信コイル10の中心(図中の点線aで示
す)と2つの電力波受信コイル1A,1Bの中心とが一
致している場合について説明する。Next, in the power wave receiving apparatus of this embodiment, the power wave transmitting coil 10 and the two power wave receiving coils 1 are provided.
Relative positional relationship between A and 1B and power wave receiving coils 1A and 1
The output relationship of B will be described with reference to FIGS. The directions of the current and magnetic flux of the power wave transmission coil 10 are the same as those shown in FIG. First, FIG.
A case where the center of the power wave transmitting coil 10 (shown by the dotted line a in the figure) and the center of the two power wave receiving coils 1A and 1B coincide with each other will be described.
【0023】この場合は、電力波受信コイル1Aと電力
波受信コイル1Bにはそれぞれ電力波送信コイル10の2
つの閉塞部10a,10bから生じた磁束が鎖交する。そし
て、その鎖交磁束により各電力波受信コイル1A,1B
を流れる電流の方向は、レンツの法則より同図の右側に
矢印で示すような方向となる。また、図2(B)のよう
に電力波送信コイル10の中心が、一方の電力波受信コイ
ル1Bの中心と一致する場合は、電力波受信コイル1A
には電力波送信コイル10aからの磁束のみが鎖交する
が、電力波受信コイル1Bには電力波送信コイル10の2
つの閉塞部10a,10bから生じた磁束が共に鎖交する。
その結果、電力波受信コイル1B内の磁束は両磁束によ
り相殺され、電力波受信コイル1Bには起電力は生じな
い。しかし、この場合でも、電力波受信コイル1Aには
電力波送信コイル10aからの磁束により起電力が生じ
る。従って、この場合には、(B)図の右側に示すよう
に、電力波受信コイル1Aに矢印方向の電流が流れる。In this case, the power wave receiving coil 1A and the power wave receiving coil 1B have two power wave transmitting coils 10 respectively.
The magnetic fluxes generated from the two closed portions 10a and 10b are interlinked. The power flux receiving coils 1A and 1B are generated by the interlinkage magnetic flux.
According to Lenz's law, the direction of the current flowing through is the direction shown by the arrow on the right side of the figure. Further, when the center of the power wave transmitting coil 10 coincides with the center of one power wave receiving coil 1B as shown in FIG. 2B, the power wave receiving coil 1A
Although only the magnetic flux from the power wave transmitting coil 10a is linked to the
The magnetic fluxes generated from the two closed portions 10a and 10b are linked together.
As a result, the magnetic flux in the power wave receiving coil 1B is canceled by both magnetic fluxes, and no electromotive force is generated in the power wave receiving coil 1B. However, even in this case, electromotive force is generated in the power wave receiving coil 1A by the magnetic flux from the power wave transmitting coil 10a. Therefore, in this case, as shown in the right side of FIG. 7B, a current flows in the arrow direction in the power wave receiving coil 1A.
【0024】次に、図2(C)のように電力波送信コイ
ル10の中心が、電力波受信コイル1Bの左端と一致した
場合には、電力波受信コイル1A、電力波受信コイル1
B共に、電力波送信コイル10の一方の閉塞部10aに対峙
することになり、両電力波受信コイル1A、1Bには共
に閉塞部10aからの同方向の磁束が鎖交する。この場
合、電力波受信コイル1A、電力波受信コイル1Bは共
に独立して構成されているため、電力波受信コイル1
A、電力波受信コイル1Bにそれぞれ起電力が発生し、
(C)図の右側に示すように同方向の電流が流れる。こ
の状況は、更に電力波送信コイル10が図中左方向に移動
した場合(相対的に電力波受信コイル1A、電力波受信
コイル1Bが右方向に移動した場合)でも、両コイルを
鎖交する磁束の本数は変わることがないため同様の起電
力と電流が生じる。この点で、従来構造が8の字状に巻
かれた電力波受信コイル11を有するため、この場合に各
閉塞部ループで生じた起電力同士がお互いに打ち消し合
い、起電力が零となるのと大きく異なる。尚、本実施例
では、極端な場合で言えば、電力波送信コイルが、列車
の横揺れによって、対峙する電力波受信コイル1A,1
Bの位置をはみ出した場合でも、そのはみ出し程度如何
によっては電力波を受信可能である。Next, when the center of the power wave transmitting coil 10 coincides with the left end of the power wave receiving coil 1B as shown in FIG. 2 (C), the power wave receiving coil 1A and the power wave receiving coil 1
Both B face the one closed portion 10a of the power wave transmitting coil 10, and the magnetic fluxes in the same direction from the closed portion 10a are linked to both the power wave receiving coils 1A and 1B. In this case, since the power wave receiving coil 1A and the power wave receiving coil 1B are both configured independently, the power wave receiving coil 1
A, electromotive force is generated in the power wave receiving coil 1B,
(C) Current flows in the same direction as shown on the right side of the figure. In this situation, even when the power wave transmitting coil 10 further moves to the left in the figure (when the power wave receiving coil 1A and the power wave receiving coil 1B relatively move to the right), both coils are linked. Since the number of magnetic flux does not change, similar electromotive force and current are generated. In this respect, since the conventional structure has the power wave receiving coil 11 wound in the shape of a figure 8, in this case, the electromotive forces generated in the closed loops cancel each other out, and the electromotive force becomes zero. Is very different from. In the present embodiment, in an extreme case, the power wave transmitting coil has the power wave receiving coils 1A and 1A facing each other due to rolling of the train.
Even when the position B is protruded, the power wave can be received depending on the extent of the protrusion.
【0025】以上の各場合において、電力波受信コイル
1A及び電力波受信コイル1Bに発生した各起電力は、
レンツの法則より電力波送信コイル10を流れる電流と同
じ周波数を持つ交流となるが、地上子内の論理回路を駆
動するのに必要な直流を得るため各々整流回路2A,2
Bにて交流─直流変換される。その後、加算回路3で各
出力は加え合わされた後、各回路に供給される。In each of the above cases, each electromotive force generated in the power wave receiving coil 1A and the power wave receiving coil 1B is
According to Lenz's law, an alternating current having the same frequency as the current flowing through the power wave transmission coil 10 is generated, but in order to obtain the direct current necessary to drive the logic circuit in the ground element, the rectifier circuits 2A, 2
AC is converted to DC at B. After that, the respective outputs are added up by the adder circuit 3 and then supplied to the respective circuits.
【0026】以上のように、本実施例では、電力波受信
コイルを、2つの独立した0の字状の電力波受信コイル
1A,1Bを並設することで構成したので、仮に送信コ
イル10側の変動距離が大きく送信コイル10の中心線aが
受信コイル1A又は1Bの端からずれても、電力波送信
コイル10に対して、2つの電力波受信コイル1A,1B
の少なくとも一方が一部分でも対峙していれば、必ず起
電力が発生し、両コイルからの起電力を整流後加算する
ようにしたため安定して直流電力を得ることが出来る。As described above, in this embodiment, the power wave receiving coil is constructed by arranging the two independent 0-shaped power wave receiving coils 1A and 1B side by side. Even if the center line a of the transmission coil 10 is displaced from the end of the reception coil 1A or 1B, the two power wave reception coils 1A and 1B are different from the power wave transmission coil 10.
If at least one of them faces each other even partially, an electromotive force is always generated, and since the electromotive forces from both coils are rectified and added, stable DC power can be obtained.
【0027】即ち、受信コイル側で電力波を受信できる
送信コイル側の応動範囲は、受信コイルの端から端まで
となり、従来のような受信コイルの中心から中心までの
ものに比べて、受信コイルの左右の幅が同じであれば略
2倍の応動距離がとれるようになる。従って、従来より
送信コイルと受信コイルとの受信可能な相対移動距離が
大きくでき、許容変動距離を同じとすれば、受信コイル
の左右の幅を大幅に小さくでき、受信コイルの小型化が
図れ、延いては、無電源地上子の小型化を図ることがで
きる。また、左右の応動特性が従来より広がり、列車の
広い変動範囲に対し、車上子側から供給された電力波を
地上子側で確実にしかも効率良く受信できるようにな
り、地上子側の回路動作の安定性を向上できる。That is, the response range on the side of the transmission coil where the power wave can be received on the side of the reception coil is from the end of the reception coil to the end. If the left and right widths are the same, the response distance can be doubled. Therefore, it is possible to increase the receivable relative moving distance between the transmitting coil and the receiving coil compared with the conventional one, and if the permissible variable distance is the same, the left and right width of the receiving coil can be significantly reduced, and the receiving coil can be downsized, As a result, the size of the unpowered ground element can be reduced. In addition, the left and right response characteristics are wider than before, and the power wave supplied from the train car side can be reliably and efficiently received by the ground car side over a wide fluctuation range of the train. The stability of operation can be improved.
【0028】次に、図3に本発明の第2実施例を示す。
尚、図1と同一部分には同一符号を付する。図3におい
て、電力波受信コイル4は、電力波送信コイル10の2つ
の閉塞部10a,10bの両方に跨がって0の字状に巻かれ
て構成され、電力波受信コイル5は、電力波送信コイル
10に対峙して8の字状に巻かれて構成され、両コイル
4,5は上下に間隔を設けて配置されている。そして、
両電力波受信コイル4,5は、整流回路2A,2B及び
加算回路3と共に地上子に内蔵されるようになってい
る。電力波受信コイル4,5で受信した電力エネルギを
変換して地上子内の回路の駆動源として出力を発生する
までの動作は第1実施例と同様であるので説明は省略
し、ここでは、本実施例の電力波受信装置における、電
力波送信コイル10と2つの電力波受信コイル4,5の相
対的位置関係と電力波受信コイル4,5の出力関係につ
いて図4(A)〜(C)を参照しながら説明する。尚、
電力波送信コイル10の電流と磁束の方向は、図6と同じ
とする。Next, FIG. 3 shows a second embodiment of the present invention.
The same parts as those in FIG. 1 are designated by the same reference numerals. In FIG. 3, the power wave receiving coil 4 is formed by winding the power wave receiving coil 5 in a shape of 0 across both of the two closed portions 10a and 10b of the power wave transmitting coil 10. Wave transmitting coil
The coil 4 and the coil 5 are arranged to face each other in the shape of a figure 8 and face each other. And
Both power wave receiving coils 4 and 5 are built in the ground element together with the rectifying circuits 2A and 2B and the adding circuit 3. The operation until the power energy received by the power wave receiving coils 4 and 5 is converted to generate the output as the drive source of the circuit in the ground is the same as that of the first embodiment, and therefore the description thereof is omitted. 4A to 4C of the relative positional relationship between the power wave transmitting coil 10 and the two power wave receiving coils 4 and 5 and the output relationship of the power wave receiving coils 4 and 5 in the power wave receiving apparatus of the present embodiment. ) Will be described. still,
The directions of the current and magnetic flux of the power wave transmission coil 10 are the same as those in FIG.
【0029】まず、図4(A)のように電力波送信コイ
ル10の中心(図中の点線aで示す)と2つの電力波受信
コイル4,5の中心が一致している場合について説明す
る。この場合は、電力波送信コイル10で発生した磁束は
電力波受信コイル4,5を鎖交する。そして、図に示す
ように、電力波受信コイル4を鎖交する磁束は、電力波
受信コイル4が電力波送信コイル10の各閉塞部10a,10
bの両方に均等に跨がって対峙しているため、閉塞部10
aと閉塞部10bからの磁束はお互いに相殺しあう。従っ
て、電力波受信コイル4には起電力は生じない。一方、
電力波受信コイル5を鎖交する磁束は、閉塞部5aと5
bで共に8の字の方向に起電力が発生するため、両コイ
ルで生じた起電力は加わり合う。従って、この場合に
は、(A)図の右側に示すように、電力波受信コイル5
側に矢印方向の電流が流れる。First, the case where the center of the power wave transmitting coil 10 (shown by the dotted line a in the figure) and the centers of the two power wave receiving coils 4 and 5 coincide with each other as shown in FIG. 4A will be described. . In this case, the magnetic flux generated in the power wave transmitting coil 10 links the power wave receiving coils 4 and 5. Then, as shown in the figure, the magnetic flux interlinking the power wave receiving coil 4 is generated by the power wave receiving coil 4 in each of the blocking portions 10 a, 10 a of the power wave transmitting coil 10.
Since it is evenly straddling both of b and facing each other,
The magnetic fluxes from a and the blocking portion 10b cancel each other out. Therefore, no electromotive force is generated in the power wave receiving coil 4. on the other hand,
The magnetic flux that links the power wave receiving coil 5 is
Since the electromotive force is generated in the direction of the figure 8 in both b, the electromotive force generated in both coils is added. Therefore, in this case, as shown on the right side of FIG.
Current flows in the direction of the arrow.
【0030】次に、図4(B)のように電力波送信コイ
ル10の中心が、電力波受信コイル5の一方の閉塞部5b
の中心と一致している場合には、閉塞部5b内には電力
波送信コイル10の両閉塞部10a,10bで生じた磁束が鎖
交するが、磁束はお互いに相殺するようになるため、閉
塞部5b側に起電力は発生しない。一方、他方の閉塞部
5aには電力波送信コイル10の閉塞部10aで生じた磁束
が鎖交するため起電力を生じる。また、前述したのと同
じ電力波送信コイル10側の全ての磁束が電力波受信コイ
ル4を鎖交するため、相殺後の残りの磁束により電力波
受信コイル4には起電力が発生する。従って、この場合
には、(B)図の右側に示すように、電力波受信コイル
4,5に矢印方向の電流が流れる。Next, as shown in FIG. 4B, the center of the power wave transmitting coil 10 is located at one closed portion 5b of the power wave receiving coil 5.
When they coincide with the center of the magnetic field, the magnetic fluxes generated in both the closed portions 10a and 10b of the power wave transmission coil 10 are interlinked in the closed portion 5b, but the magnetic fluxes cancel each other out. No electromotive force is generated on the closed portion 5b side. On the other hand, an electromotive force is generated in the other closed portion 5a because the magnetic flux generated in the closed portion 10a of the power wave transmission coil 10 is interlinked. Further, since all the magnetic fluxes on the side of the electric power wave transmitting coil 10 which are the same as those described above interlink the electric power wave receiving coil 4, an electromotive force is generated in the electric power wave receiving coil 4 by the remaining magnetic flux after the cancellation. Therefore, in this case, as shown in the right side of FIG. 7B, a current flows in the direction of the arrow through the power wave receiving coils 4 and 5.
【0031】次に、図4(C)のように電力波送信コイ
ル10の中心が両電力波受信コイル4,5の左端と一致し
た場合には、閉塞部5aと5b内には電力波送信コイル
10の閉塞部10aで生じた磁束が鎖交するが、磁束は同じ
方向であり、8の字のコイル内で発生した起電力がお互
いに相殺するようになるため、電力波受信コイル5に起
電力は発生しない。一方、同じ磁束が電力波受信コイル
4を鎖交するため、かかる磁束により電力波受信コイル
4には起電力が発生する。従って、この場合には、
(C)図の右側に示すように電力波受信コイル4に矢印
方向の電流が流れる。この状況は、電力波受信コイル4
及び電力波受信コイル5の図中の左端が電力波送信コイ
ル10の中心から更に離れた場合でも同様である。Next, when the center of the power wave transmitting coil 10 coincides with the left ends of the power wave receiving coils 4 and 5 as shown in FIG. 4C, the power wave transmitting is performed in the closed portions 5a and 5b. coil
The magnetic fluxes generated in the closed portion 10a of 10 are interlinked, but the magnetic fluxes are in the same direction, and the electromotive forces generated in the coil of figure 8 cancel each other out. No electricity is generated. On the other hand, since the same magnetic flux links the power wave receiving coil 4, an electromotive force is generated in the power wave receiving coil 4 by the magnetic flux. So in this case,
(C) As shown on the right side of the drawing, a current flows in the power wave receiving coil 4 in the arrow direction. In this situation, the power wave receiving coil 4
The same applies when the left end of the power wave receiving coil 5 in the figure is further away from the center of the power wave transmitting coil 10.
【0032】その結果、第1実施例と同様に、仮に送信
コイル10側の変動が大きく、送信コイル10の中心線aが
受信コイル1A又は1Bの端からずれても、電力波送信
コイル10に対して、2つの電力波受信コイル1A,1B
の少なくとも一方が一部分でも対峙していれば、必ず起
電力が発生し、両コイルからの起電力を整流後加算する
ようにしたため安定して直流電力を得ることが出来る。As a result, similar to the first embodiment, even if the variation on the side of the transmission coil 10 is large and the center line a of the transmission coil 10 is deviated from the end of the reception coil 1A or 1B, the power wave transmission coil 10 is affected. On the other hand, two power wave receiving coils 1A and 1B
If at least one of them faces each other even partially, an electromotive force is always generated, and since the electromotive forces from both coils are rectified and added, stable DC power can be obtained.
【0033】尚、上述した第1実施例と第2実施例の説
明は簡単化するため1巻のコイルについて行ったが、実
際には所定の電力を得るため複数回巻かれる。また、各
コイル毎の巻数は異なっていても原理的には支障ない
が、特性を揃えるように統一することが望ましい。更
に、電力波受信コイル4と電力波受信コイル5は図3で
示したものとその上下が逆であっても良いし、同一の巻
芯に絶縁材を介して重ねるように巻いてもよい。また、
各コイルの形状は図では四角で説明したが、レンツの法
則を考慮すれば四角には限定されない。更に、説明では
2組のコイルに限定したが、これは経済面やスペースそ
の他製造面等の実施上の利点を考慮したからで、理論的
には第1実施例と第2実施例の構成を適宜組み合わせ
て、例えば4組のコイルで構成する等も可能である。The above-described first and second embodiments have been described for one coil for simplification, but in reality, they are wound a plurality of times to obtain a predetermined electric power. In principle, even if the number of turns of each coil is different, there is no problem, but it is desirable to unify them so that the characteristics are the same. Further, the power wave receiving coil 4 and the power wave receiving coil 5 may be upside down from those shown in FIG. 3, or may be wound so as to be stacked on the same winding core via an insulating material. Also,
Although the shape of each coil is described as a square in the figure, it is not limited to a square in consideration of Lenz's law. Further, although the description is limited to two sets of coils, this is because the advantages in terms of implementation such as economy, space and manufacturing are taken into consideration. Therefore, theoretically, the configurations of the first embodiment and the second embodiment are It is also possible to combine them appropriately, for example, to configure with four sets of coils.
【0034】[0034]
【発明の効果】以上説明したように本発明(請求項1)
によれば、0の字状に巻かれた2つの電力波受信コイル
を並設し、両コイルの各出力をそれぞれ整流して加算す
る構成としたので、電力波送信コイルと電力波受信コイ
ルの相対的位置関係が、従来構造では受信不能となる位
置までずれた場合でも、電力波送信コイルから出力され
た電力波を電力波受信コイルで確実にしかも効率良く受
信でき、必要な直流電力に変換される。従って、従来よ
り応動特性を向上できる。換言すれば、従来と同等の応
動特性とするならば、電力波受信コイルの形状(特に左
右)を小さくでき、電力波受信装置の小型化を図れる。As described above, the present invention (Claim 1).
According to the method, two power wave receiving coils wound in the shape of 0 are arranged in parallel, and the outputs of both coils are rectified and added. Therefore, the power wave transmitting coil and the power wave receiving coil are Even if the relative positional relationship shifts to a position where the conventional structure cannot receive the signal, the power wave output from the power wave transmitting coil can be reliably and efficiently received by the power wave receiving coil and converted to the required DC power. To be done. Therefore, the response characteristic can be improved as compared with the conventional case. In other words, if the response characteristic is equivalent to that of the conventional one, the shape (especially right and left) of the power wave receiving coil can be made small, and the power wave receiving apparatus can be downsized.
【0035】また、本発明(請求項2)によれば、8の
字状に巻かれた電力波受信コイルと、0の字状に巻かれ
た電力波受信コイルを上下に配置し、各コイル出力をそ
れぞれ整流して加算する構成としたので、請求項1で得
られた効果と同様の効果を得ることが出来る。更に、8
の字状に巻かれた電力波送信コイルの中心が、8の字状
に巻かれて対峙する電力波受信コイルの一方の閉塞部の
中心と一致するときでも、8の字状に巻かれた電力波受
信コイルと0の字状に巻かれた電力波受信コイルの両コ
イルで起電力が得られるため、請求項1のように一方の
電力波受信コイルのみから起電力を得るということはな
くなり、より効率の良い受信が出来、その結果、より安
定した直流電力を得ることが出来る。Further, according to the present invention (claim 2), the power wave receiving coil wound in the shape of 8 and the power wave receiving coil wound in the shape of 0 are arranged vertically and each coil is arranged. Since the outputs are rectified and added, the same effect as that obtained in claim 1 can be obtained. Furthermore, 8
Even when the center of the power wave transmitting coil wound in the shape of "8" coincides with the center of one closed part of the power wave receiving coil which is wound in the shape of "8" and confronts, it is wound in the shape of "8". Since the electromotive force is obtained from both the power wave receiving coil and the power wave receiving coil wound in the shape of 0, it is not necessary to obtain the electromotive force from only one power wave receiving coil as in claim 1. , More efficient reception is possible, and as a result, more stable DC power can be obtained.
【0036】更に、本発明(請求項3)によれば、請求
項1又は請求項2の電力波受信装置を地上子に内蔵した
結果、列車の変動が大きくても車上子側から供給された
電力波を地上子側で確実にしかも効率良く受信でき、こ
の電力波を整流し加算することで必要な電力が得られ、
地上子内の論理回路を駆動し、地上子より車上子に列車
運行に必要な情報波を安定して送信出来るようになる。
また、地上子の小型化を図ることができる。Further, according to the present invention (Claim 3), the power wave receiving device according to Claim 1 or 2 is built in the ground element, and as a result, even if the train fluctuation is large, the power wave is supplied from the train side. The power wave can be received reliably and efficiently on the ground side, and the necessary power can be obtained by rectifying and adding this power wave,
By driving the logic circuit in the ground train, it becomes possible to stably transmit the information waves necessary for train operation from the ground train to the train train train.
In addition, the size of the ground element can be reduced.
【図1】本発明に係る電力波受信装置の第1実施例の構
成図FIG. 1 is a configuration diagram of a first embodiment of a power wave receiving apparatus according to the present invention.
【図2】同上実施例の電力波送信コイルと電力波受信コ
イルとの相対位置関係に応じた電力波受信コイル側の鎖
交磁束と発生電流の様子を説明する図FIG. 2 is a diagram for explaining the states of the interlinking magnetic flux and the generated current on the power wave receiving coil side according to the relative positional relationship between the power wave transmitting coil and the power wave receiving coil according to the above embodiment.
【図3】本発明に係る電力波受信装置の第2実施例の構
成図FIG. 3 is a configuration diagram of a second embodiment of a power wave receiving apparatus according to the present invention.
【図4】同上実施例の電力波送信コイルと電力波受信コ
イルとの相対位置関係に応じた電力波受信コイル側の鎖
交磁束と発生電流の様子を説明する図FIG. 4 is a diagram for explaining the states of the interlinking magnetic flux and the generated current on the power wave receiving coil side according to the relative positional relationship between the power wave transmitting coil and the power wave receiving coil according to the above-described embodiment.
【図5】従来例の電力波受信装置の構成図FIG. 5 is a configuration diagram of a conventional power wave receiving device.
【図6】8の字状の電力波送信コイルで発生する磁束と
電流の様子を説明する図FIG. 6 is a diagram for explaining the states of magnetic flux and current generated in an 8-shaped power wave transmission coil.
【図7】従来の電力波送信コイルと電力波受信コイルと
の相対位置関係に応じた電力波受信コイル側の鎖交磁束
と発生電流の様子を説明する図FIG. 7 is a diagram for explaining the states of the interlinking magnetic flux and the generated current on the side of the power wave receiving coil according to the relative positional relationship between the conventional power wave transmitting coil and the power wave receiving coil.
1A,1B,4,5 電力波受信コイル 2A,2B 整流回路 3 加算回路 1A, 1B, 4,5 Power wave receiving coil 2A, 2B Rectifier circuit 3 Adder circuit
Claims (3)
送信される電力波を受信する電力波受信装置において、 前記電力波送信コイルの2つの閉塞部とそれぞれ対峙す
る0の字状に巻かれた2つの電力波受信コイルと、該各
電力波受信コイルの出力をそれぞれ整流する2つの整流
手段と、該各整流手段の出力を加算する加算手段を備え
たことを特徴とする電力波受信装置。1. A power wave receiving device for receiving a power wave transmitted from a power wave transmitting coil wound in a figure 8 shape, wherein a shape of "0" which faces the two closed portions of the power wave transmitting coil, respectively. Power comprising two power wave receiving coils wound around the two, two rectifying means for rectifying the outputs of the respective power wave receiving coils, and an adding means for adding the outputs of the rectifying means. Wave receiver.
コイルに代えて、8の字状に巻かれた電力波受信コイル
と、0の字状に巻かれた電力波受信コイルとを、上下に
配置して設け、前記電力波送信コイルに対峙させる構成
とした請求項1記載の電力波受信装置。2. A power wave receiving coil wound in a shape of 8 and a power wave receiving coil wound in a shape of 0 instead of the two power wave receiving coils wound in the shape of 0. The power wave receiving device according to claim 1, wherein the power wave receiving device and the power wave receiving device are arranged vertically to face the power wave transmitting coil.
から送信される電力波を受信するために地上子に内蔵し
たことを特徴とする請求項1又は2記載の電力波受信装
置。3. The power wave receiving device according to claim 1, wherein the power wave receiving device is incorporated in a ground element for receiving a power wave transmitted from the power wave transmitting coil installed on a train.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25315294A JP3434589B2 (en) | 1994-10-19 | 1994-10-19 | Power wave receiver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25315294A JP3434589B2 (en) | 1994-10-19 | 1994-10-19 | Power wave receiver |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08126229A true JPH08126229A (en) | 1996-05-17 |
JP3434589B2 JP3434589B2 (en) | 2003-08-11 |
Family
ID=17247253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25315294A Expired - Fee Related JP3434589B2 (en) | 1994-10-19 | 1994-10-19 | Power wave receiver |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3434589B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100484715B1 (en) * | 2002-08-22 | 2005-04-22 | 김봉택 | On-board unit for control system of train |
JP2009201594A (en) * | 2008-02-26 | 2009-09-10 | Hiroshima Univ | Power supplier |
JP2012519287A (en) * | 2009-03-02 | 2012-08-23 | マイクロ−エプシロン・メステヒニク・ゲーエムベーハー・ウント・コンパニー・カー・ゲー | Position sensor |
JP2013207897A (en) * | 2012-03-28 | 2013-10-07 | Casio Comput Co Ltd | Non-contact charging system and charging device |
JP2013247822A (en) * | 2012-05-29 | 2013-12-09 | Sharp Corp | Wireless power feeding device, wireless power receiving device, wireless power feeding system, and electrical instrument |
JP2019068696A (en) * | 2017-10-05 | 2019-04-25 | 株式会社豊田中央研究所 | Non-contact power feeding device and electric circuit module |
US10593468B2 (en) | 2018-04-05 | 2020-03-17 | Apple Inc. | Inductive power transfer assembly |
-
1994
- 1994-10-19 JP JP25315294A patent/JP3434589B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100484715B1 (en) * | 2002-08-22 | 2005-04-22 | 김봉택 | On-board unit for control system of train |
JP2009201594A (en) * | 2008-02-26 | 2009-09-10 | Hiroshima Univ | Power supplier |
JP2012519287A (en) * | 2009-03-02 | 2012-08-23 | マイクロ−エプシロン・メステヒニク・ゲーエムベーハー・ウント・コンパニー・カー・ゲー | Position sensor |
JP2013207897A (en) * | 2012-03-28 | 2013-10-07 | Casio Comput Co Ltd | Non-contact charging system and charging device |
JP2013247822A (en) * | 2012-05-29 | 2013-12-09 | Sharp Corp | Wireless power feeding device, wireless power receiving device, wireless power feeding system, and electrical instrument |
JP2019068696A (en) * | 2017-10-05 | 2019-04-25 | 株式会社豊田中央研究所 | Non-contact power feeding device and electric circuit module |
US10593468B2 (en) | 2018-04-05 | 2020-03-17 | Apple Inc. | Inductive power transfer assembly |
Also Published As
Publication number | Publication date |
---|---|
JP3434589B2 (en) | 2003-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6499701B1 (en) | System for inductive transfer of power, communication and position sensing to a guideway-operated vehicle | |
KR100372174B1 (en) | Direct type contactless feeding device | |
Boys et al. | The inductive power transfer story at the University of Auckland | |
KR940002048B1 (en) | Linear induction motor transport system | |
US6580185B2 (en) | Integrated system of a permanent magnet excited motor and a non-contact power feeding apparatus | |
US6407470B1 (en) | Electric power transmission device | |
US7116540B2 (en) | Device for inductively transmitting electrical energy | |
JP4523076B1 (en) | Transformer | |
WO2013046533A1 (en) | Planar coil and coil module, power reception apparatus, and contactless power transmission apparatus provided with same | |
US8013706B2 (en) | System for contactless energy transmission | |
US10377255B2 (en) | Methods and apparatus for reducing flux cancellation in ferrite of double couple inductive power transfer systems | |
JP2003528555A (en) | Electric Telher with non-contact power transmission | |
CN108292561B (en) | Voltage and current compensation in inductive power transfer units | |
JP3434589B2 (en) | Power wave receiver | |
US7232020B2 (en) | Telpher line with contactless energy and data transmission | |
JPH1197263A (en) | Non-contact power transmitter and spiral coil used therefor | |
JPH11122847A (en) | Non-contact power supply system for railway truck | |
JP2013214613A (en) | Coil unit and power transmission device having coil unit | |
JPH10136587A (en) | Power wave receiver | |
WO2011148468A1 (en) | Transformer | |
CN102075017A (en) | Mobile noncontact uninterrupted power supply device | |
JPH10285836A (en) | Receiving device of electromagnetic induction power supply unit | |
CN107251174A (en) | The power conversion unit for the system transmitted for induction type power, the method for the method and operational power transmission unit of manufacture power conversion unit | |
JP6187085B2 (en) | Electronic component and transmitter / receiver | |
JP3770047B2 (en) | Pickup coil and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080530 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090530 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090530 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100530 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110530 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110530 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120530 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130530 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |