JPH0812494A - Production of oxide crystal thin film and thin-film element - Google Patents
Production of oxide crystal thin film and thin-film elementInfo
- Publication number
- JPH0812494A JPH0812494A JP13913194A JP13913194A JPH0812494A JP H0812494 A JPH0812494 A JP H0812494A JP 13913194 A JP13913194 A JP 13913194A JP 13913194 A JP13913194 A JP 13913194A JP H0812494 A JPH0812494 A JP H0812494A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- film
- silicon substrate
- buffer layer
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 123
- 239000013078 crystal Substances 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 72
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 51
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 48
- 239000010703 silicon Substances 0.000 claims abstract description 48
- DQUIAMCJEJUUJC-UHFFFAOYSA-N dibismuth;dioxido(oxo)silane Chemical compound [Bi+3].[Bi+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O DQUIAMCJEJUUJC-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000000463 material Substances 0.000 claims description 14
- 239000007789 gas Substances 0.000 claims description 12
- 239000012159 carrier gas Substances 0.000 claims description 8
- 125000002524 organometallic group Chemical group 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000010408 film Substances 0.000 abstract description 63
- 230000010287 polarization Effects 0.000 abstract description 15
- 230000002269 spontaneous effect Effects 0.000 abstract description 12
- 230000005684 electric field Effects 0.000 abstract description 8
- 230000005621 ferroelectricity Effects 0.000 abstract description 3
- 239000010936 titanium Substances 0.000 description 61
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 28
- 238000000034 method Methods 0.000 description 14
- 238000002441 X-ray diffraction Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 239000002994 raw material Substances 0.000 description 9
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 8
- 229910052797 bismuth Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000005669 field effect Effects 0.000 description 4
- 239000012495 reaction gas Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- -1 for example Substances 0.000 description 3
- 238000000608 laser ablation Methods 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000009751 slip forming Methods 0.000 description 2
- ZHXAZZQXWJJBHA-UHFFFAOYSA-N triphenylbismuthane Chemical compound C1=CC=CC=C1[Bi](C=1C=CC=CC=1)C1=CC=CC=C1 ZHXAZZQXWJJBHA-UHFFFAOYSA-N 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910004356 Ti Raw Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000005616 pyroelectricity Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、酸化物結晶薄膜の製造
方法及び薄膜素子に関し、特に強誘電体不揮発性メモリ
素子、焦電素子、圧電素子等に用いられる酸化物結晶薄
膜の製造方法及び薄膜素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an oxide crystal thin film and a thin film element, and more particularly to a method of manufacturing an oxide crystal thin film used for a ferroelectric nonvolatile memory element, a pyroelectric element, a piezoelectric element and the like. Regarding thin film devices.
【0002】[0002]
【従来の技術】多くの酸化物結晶材料の中には、BaT
iO3 、PZT、LiNbO3 等を初めとして強誘電
性、高誘電性、圧電性、焦電性、電気光学効果等の様々
な機能を持つものがある。そのため、これらの効果を利
用したコンデンサ、圧力センサ、赤外線センサ、超音波
発振器、周波数フィルタ、光スイッチ等の多くのデバイ
ス開発がこれらの材料を用いて行われてきた。特に最
近、強誘電体材料の高誘電率特性や自発分極を利用し
て、DRAM等の半導体デバイスへの応用を通じてデバ
イスの小型化、プロセスの簡略化、不揮発性メモリ等の
新規機能デバイスの開発が行われている。2. Description of the Prior Art Among many oxide crystalline materials, BaT
There are various materials having various functions such as ferroelectricity, high dielectricity, piezoelectricity, pyroelectricity, electro-optic effect, etc., including iO 3 , PZT, LiNbO 3 and the like. Therefore, many devices utilizing these effects, such as capacitors, pressure sensors, infrared sensors, ultrasonic oscillators, frequency filters, and optical switches, have been developed using these materials. In particular, recently, by utilizing the high dielectric constant characteristics and spontaneous polarization of ferroelectric materials, miniaturization of devices, simplification of processes, development of new functional devices such as non-volatile memory through application to semiconductor devices such as DRAM. Has been done.
【0003】酸化物強誘電体Bi4 Ti3 O12は、斜方
晶系に属する層状ペロブスカイト構造を持つ強誘電体で
ある。自発分極は、a軸及びc軸の2方向に成分を持
ち、a軸方向の自発分極は約50μC/cm2 、抗電界
は約50kV/cm、c軸方向の自発分極は約4μC/
cm2 、抗電界は約5kV/cmである。特に、c軸方
向に小さな抗電界をもつことから、SHU YAU W
U,IEEE Trans.Electron.Dev
ices ED−21,499(1974)等による
と、低電圧駆動が可能な強誘電体不揮発性メモリへの応
用が期待されている。例えば、MOS型の電界効果トラ
ンジスタ(FET)のゲート絶縁膜としてBi4 Ti3
O12結晶薄膜を用いることで、膜の自発分極の方向に依
存したソースドレイン間電流の差が発生することを利用
し、電源が切れた状態でも保たれている自発分極の方向
を情報として読み出すことが可能となるため、強誘電体
不揮発性メモリデバイスが実現できる。この場合、低電
圧駆動を実現するためには、できるだけ抗電界の小さい
強誘電体薄膜が望ましく、c軸配向のBi4 Ti3 O12
結晶薄膜が有望である。更に、このようなデバイス構造
において、強誘電体膜の焦電効果を利用することにより
赤外線照射による自発分極値の温度変化に応じたソース
−ドレイン間電流の変化を検出することにより、赤外線
センサの応用も可能となる。Bi4 Ti3 O12の薄膜製
作は、これまでスパッタリング法、ゾル−ゲル法、レー
ザーアブレーション法、MOCVD法等により行われて
いる。The oxide ferroelectric substance Bi 4 Ti 3 O 12 is a ferroelectric substance having a layered perovskite structure belonging to the orthorhombic system. The spontaneous polarization has components in two directions of the a-axis and the c-axis, the spontaneous polarization in the a-axis direction is about 50 μC / cm 2 , the coercive electric field is about 50 kV / cm, and the spontaneous polarization in the c-axis direction is about 4 μC / cm 2 .
cm 2 , and the coercive electric field is about 5 kV / cm. In particular, since it has a small coercive electric field in the c-axis direction, SHU YAU W
U, IEEE Trans. Electron. Dev
According to ices ED-21, 499 (1974) and the like, application to a ferroelectric non-volatile memory capable of low voltage driving is expected. For example, as a gate insulating film of a MOS type field effect transistor (FET), Bi 4 Ti 3 is used.
By utilizing the fact that the source-drain current difference depends on the direction of the spontaneous polarization of the film by using the O 12 crystal thin film, the direction of the spontaneous polarization maintained even when the power is off is read out as information. Therefore, a ferroelectric nonvolatile memory device can be realized. In this case, in order to realize low voltage driving, a ferroelectric thin film with a coercive field as small as possible is desirable, and Bi 4 Ti 3 O 12 with c-axis orientation is desirable.
Crystal thin films are promising. Further, in such a device structure, by utilizing the pyroelectric effect of the ferroelectric film to detect the change in the source-drain current according to the temperature change in the spontaneous polarization value due to infrared irradiation, the infrared sensor It can be applied. Bi 4 Ti 3 O 12 thin film fabrication has hitherto been carried out by a sputtering method, a sol-gel method, a laser ablation method, a MOCVD method or the like.
【0004】[0004]
【発明が解決しようとする課題】上述したようなFET
型の不揮発性メモリを初めとした各種のデバイスへの応
用には、シリコン基板表面上への配向性を制御した酸化
物薄膜の直接成膜技術の開発が不可欠であるが、シリコ
ン基板は、それ自体が極めて酸化しやすい材料であるた
め、強誘電体薄膜の形成時のシリコン基板表面上での非
晶質酸化シリコンの発生が問題となる。このような非晶
質基板上では、その上に形成された強誘電体薄膜の結晶
配向は自然配向となり、最も効果的な自発分極の方向を
持った配向膜を得ることは困難である。従って、強誘電
体薄膜をシリコン基板上に形成する場合、非晶質酸化シ
リコンの発生をいかに抑制し、その上の強誘電体薄膜の
配向性を制御するかが課題となる。The above-mentioned FET
In order to apply to various devices such as a non-volatile memory, it is indispensable to develop a direct film formation technology of an oxide thin film with controlled orientation on the surface of a silicon substrate. Since itself is a material that is extremely susceptible to oxidation, generation of amorphous silicon oxide on the surface of the silicon substrate when forming the ferroelectric thin film poses a problem. On such an amorphous substrate, the crystal orientation of the ferroelectric thin film formed thereon is natural orientation, and it is difficult to obtain an orientation film having the most effective spontaneous polarization direction. Therefore, when a ferroelectric thin film is formed on a silicon substrate, how to suppress the generation of amorphous silicon oxide and control the orientation of the ferroelectric thin film thereon is a problem.
【0005】シリコン基板上への配向性を制御した強誘
電体薄膜のへテロ成長技術は、その応用面の重要性にも
拘らず、十分には確立されていない。シリコン基板上に
直接Bi4 Ti3 O12薄膜を形成する場合、シリコン基
板との界面でSi、Bi、Ti、Oの相互拡散が起こ
り、非晶質の酸化シリコン層が発生する。この場合、B
i4 Ti3 O12薄膜の結晶配向は自然配向性に依存する
だけであり、配向制御は困難である。従って、Bi4 T
i3 O12のc軸配向膜を再現性よく作成するためには、
酸化物薄膜とシリコン基板との間の相互拡散と非晶質層
の発生の抑制が課題である。この課題を解消するため
に、酸化物薄膜とシリコン基板との間へのバッファ層の
挿入が試みられており、例えばスピネルMgAl2 O4
(100)/Si(100)等が知られている。この場
合、バッファ層自身がシリコン基板及び目的の酸化物結
晶材料に格子整合することが重要な問題点となってい
る。 本発明は、上記のような課題を解消するためにな
されたもので、シリコン基板上にc軸配向のBi4 Ti
3 O12薄膜を再現性よく作成するためのバッファ層及び
優れた強誘電性を有する酸化物結晶薄膜の製造方法及び
薄膜素子を提供することを目的とする。A hetero-growth technique for a ferroelectric thin film whose orientation on a silicon substrate is controlled has not been sufficiently established despite its importance in terms of application. When a Bi 4 Ti 3 O 12 thin film is formed directly on a silicon substrate, interdiffusion of Si, Bi, Ti, and O occurs at the interface with the silicon substrate, and an amorphous silicon oxide layer is generated. In this case, B
The crystal orientation of the i 4 Ti 3 O 12 thin film only depends on the natural orientation, and it is difficult to control the orientation. Therefore, Bi 4 T
In order to produce a c-axis oriented film of i 3 O 12 with good reproducibility,
The problem is to suppress the mutual diffusion between the oxide thin film and the silicon substrate and the generation of the amorphous layer. In order to solve this problem, it has been attempted to insert a buffer layer between the oxide thin film and the silicon substrate, for example, spinel MgAl 2 O 4
(100) / Si (100) and the like are known. In this case, it is an important problem that the buffer layer itself lattice-matches the silicon substrate and the intended oxide crystal material. The present invention has been made in order to solve the above-mentioned problems, and c-axis oriented Bi 4 Ti on a silicon substrate is used.
It is an object to provide a buffer layer for producing a 3 O 12 thin film with good reproducibility, a method for producing an oxide crystal thin film having excellent ferroelectricity, and a thin film element.
【0006】[0006]
【課題を解決するための手段】本発明によれば、前述の
目的は、シリコン基板上にビスマスシリケート薄膜から
なるバッファ層を形成し、前記バッファ層上に酸化物強
誘電体薄膜Bi4 Ti3 O12を形成する請求項1の酸化
物結晶薄膜の製造方法によって達成される。According to the present invention, the above-mentioned object is to form a buffer layer made of a bismuth silicate thin film on a silicon substrate, and to form an oxide ferroelectric thin film Bi 4 Ti 3 on the buffer layer. This is achieved by the method for producing an oxide crystal thin film according to claim 1, which forms O 12 .
【0007】本発明によれば、前述の目的は、前記ビス
マスシリケート薄膜からなるバッファ層を形成する際、
Biを含む有機金属材料を加熱気化し、前記加熱気化し
たBiを含む有機金属材料をキャリアガス及びO2 ガス
と共にシリコン基板上に供給する請求項2の酸化物結晶
薄膜の製造方法によって達成される。According to the present invention, the aforementioned object is to form a buffer layer composed of the bismuth silicate thin film,
3. The method for producing an oxide crystal thin film according to claim 2, wherein the organometallic material containing Bi is vaporized by heating, and the vaporized organometallic material containing Bi is supplied onto a silicon substrate together with a carrier gas and an O 2 gas. .
【0008】本発明によれば、前述の目的は、シリコン
基板と、前記シリコン基板上に形成されたビスマスシリ
ケート薄膜バッファ層と、前記ビスマスシリケート薄膜
バッファ層上に形成された酸化物強誘電体薄膜Bi4 T
i3 O12と、前記酸化物強誘電体薄膜上に形成された上
部電極と、前記シリコン基板裏面に形成された下部電極
とを具備する請求項3の薄膜素子によって達成される。According to the present invention, the above objects are achieved by a silicon substrate, a bismuth silicate thin film buffer layer formed on the silicon substrate, and an oxide ferroelectric thin film formed on the bismuth silicate thin film buffer layer. Bi 4 T
The thin film element according to claim 3, comprising i 3 O 12 , an upper electrode formed on the oxide ferroelectric thin film, and a lower electrode formed on the back surface of the silicon substrate.
【0009】[0009]
【作用】請求項1の酸化物結晶薄膜の製造方法によれ
ば、シリコン基板上にビスマスシリケート薄膜からなる
バッファ層を介してBi4 Ti3 O12のc軸配向を持つ
高品質強誘電体結晶薄膜が形成でき、Bi4 Ti3 O12
のc軸方向の優れた強誘電特性を効率的に利用した各種
の電子デバイスへの応用が可能となる。例えば、シリコ
ン基板を用いた半導体デバイスに強誘電体の自発分極や
焦電特性等を付加することによって、電界効果型の不揮
発性メモリや2次元赤外線アレイセンサ等の開発が可能
となる。According to the method for producing an oxide crystal thin film of claim 1, a high quality ferroelectric crystal having a c-axis orientation of Bi 4 Ti 3 O 12 on a silicon substrate through a buffer layer made of a bismuth silicate thin film. A thin film can be formed, Bi 4 Ti 3 O 12
It can be applied to various electronic devices that efficiently utilize the excellent ferroelectric characteristics in the c-axis direction. For example, it is possible to develop a field-effect nonvolatile memory, a two-dimensional infrared array sensor, or the like by adding spontaneous polarization and pyroelectric characteristics of a ferroelectric substance to a semiconductor device using a silicon substrate.
【0010】請求項3の薄膜素子によれば、シリコン基
板上にビスマスシリケート薄膜からなるバッファ層を介
してBi4 Ti3 O12のc軸配向を持つ高品質強誘電体
結晶薄膜が形成でき、Bi4 Ti3 O12のc軸方向の優
れた強誘電特性を効率的に利用した各種の電子デバイス
への応用が可能となる。According to the thin film element of claim 3, a high quality ferroelectric crystal thin film having a c-axis orientation of Bi 4 Ti 3 O 12 can be formed on a silicon substrate via a buffer layer made of a bismuth silicate thin film. It is possible to apply Bi 4 Ti 3 O 12 to various electronic devices that efficiently utilize the excellent ferroelectric properties in the c-axis direction.
【0011】[0011]
【実施例】以下、本発明の酸化物結晶薄膜の製造方法及
び薄膜素子の第1の実施例を図を参照しながら説明す
る。本実施例は、シリコン基板上にc軸配向のBi4 T
i3O12薄膜を再現性よく作成するためのバッファ層を
有する酸化物結晶薄膜の製造方法及び薄膜素子を提供す
ることを課題とする。The first embodiment of the method for producing an oxide crystal thin film and the thin film element of the present invention will be described below with reference to the drawings. In this example, Bi 4 T with c-axis orientation is formed on a silicon substrate.
It is an object of the present invention to provide a method for producing an oxide crystal thin film having a buffer layer for producing an i 3 O 12 thin film with good reproducibility and a thin film element.
【0012】本実施例の薄膜素子は、図1に示すよう
に、下部電極1と、シリコン基板2と、シリコン基板2
上に形成されたビスマスシリケート薄膜から構成された
バッファ層3と、ビスマスシリケート薄膜バッファ層3
上に形成されたBi4 Ti3 O12酸化物強誘電体薄膜4
と、上部電極5とから構成されている。なお、ビスマス
シリケート薄膜3の構成元素Bi、Si、Oは基板のS
i及びBi4 Ti3 O12の構成元素でもあり、膜特性に
影響を与える不純物を含まない点で有利である。As shown in FIG. 1, the thin film element of this embodiment comprises a lower electrode 1, a silicon substrate 2, and a silicon substrate 2.
A buffer layer 3 formed of a bismuth silicate thin film formed above, and a bismuth silicate thin film buffer layer 3
Bi 4 Ti 3 O 12 oxide ferroelectric thin film 4 formed on top
And an upper electrode 5. The constituent elements Bi, Si, and O of the bismuth silicate thin film 3 are S of the substrate.
It is also a constituent element of i and Bi 4 Ti 3 O 12 , and is advantageous in that it does not contain impurities that affect the film characteristics.
【0013】ビスマスシリケート薄膜3には、組成によ
り複数の結晶相が存在する。本発明のバッファ層には、 (1)Bi2 SiO5 :(JCPDSデータ 36−2
87)斜方晶系 格子定数 a=15.217Å、b=
5.477Å、c=5.325Å (2)Bi12SiO20:(JCPDSデータ 37−4
85)立方晶系 格子定数 a=10.1067Å の2種類の内のいずれかが用いられる。The bismuth silicate thin film 3 has a plurality of crystal phases depending on the composition. The buffer layer of the present invention includes (1) Bi 2 SiO 5 : (JCPDS data 36-2
87) Orthorhombic system Lattice constant a = 15.217Å, b =
5.477Å, c = 5.325Å (2) Bi 12 SiO 20 : (JCPDS data 37-4
85) Cubic system One of two types of lattice constant a = 10.1067Å is used.
【0014】一方、シリコンの結晶構造は、 Si:(JCPDSデータ 5−565)立方晶系 格
子定数 a=5.4301Å 及び酸化物強誘電体薄膜Bi4 Ti3 O12の結晶構造
は、 Bi4 Ti3 O12:(JCPDSデータ 35−79
5)斜方晶系 格子定数a=5.4100Å、b=5.
4489Å、c=32.815Å である。従って、各材料の結晶格子の不整合の値は、次
のように見積もられる。 Bi4 Ti3 O12(c面)/Bi2 SiO5 (a面) 約0.5% Bi4 Ti3 O12(c面)/Bi12SiO20(a面) 約7.4% Bi2 SiO5 (a面)/Si(a面) 約−0.5% Bi12SiO20(a面)/Si(a面) 約−6.9% 以上の格子不整合の値から、 Bi4 Ti3 O12(c面)/Bi2 SiO5 (a面)/
Si(a面) Bi4 Ti3 O12(c面)/Bi12SiO20(a面)/
Si(a面) のエピタキシャル結晶成長または配向膜の形成は十分に
可能と考えられる。従って、Si基板の上に直接Bi2
SiO5 またはBi12SiO20の配向膜を形成すること
ができれば、目的とする強誘電体Bi4 Ti3 O12のc
軸配向膜の作成は十分に可能である。On the other hand, the crystal structure of silicon is: Si: (JCPDS data 5-565) cubic lattice constant a = 5.4301Å and the oxide ferroelectric thin film Bi 4 Ti 3 O 12 has a crystal structure of Bi 4 Ti 3 O 12: (JCPDS data 35-79
5) Orthorhombic system lattice constant a = 5.4100Å, b = 5.
It is 4489Å and c = 32.815Å. Therefore, the value of the crystal lattice mismatch of each material is estimated as follows. Bi 4 Ti 3 O 12 (c-face) / Bi 2 SiO 5 (a-face) about 0.5% Bi 4 Ti 3 O 12 (c-face) / Bi 12 SiO 20 (a-face) about 7.4% Bi 2 SiO 5 (a-plane) / Si (a-plane) about -0.5% Bi 12 SiO 20 (a-plane) / Si (a-plane) about -6.9% From the value of the lattice mismatch of more than, Bi 4 Ti 3 O 12 (c surface) / Bi 2 SiO 5 (a surface) /
Si (a surface) Bi 4 Ti 3 O 12 (c surface) / Bi 12 SiO 20 (a surface) /
It is considered that the epitaxial crystal growth of Si (a plane) or the formation of the orientation film is sufficiently possible. Therefore, Bi 2 can be directly deposited on the Si substrate.
If an alignment film of SiO 5 or Bi 12 SiO 20 can be formed, the c of the desired ferroelectric substance Bi 4 Ti 3 O 12 can be formed.
The axial alignment film can be prepared sufficiently.
【0015】本発明に用いられるシリコン基板として
は、(100)面でP型またはN型の低抵抗基板が好ま
しい。酸化物結晶薄膜は、スパッタリング法、ゾル−ゲ
ル法、レーザーアブレーション法、MOCVD法等の種
々の方法により形成できるが、MOCVD法が好まし
い。Bi4 Ti3 O12、Bi2 SiO5 及びBi12Si
O20薄膜をMOCVD法で形成する場合には、これらの
構成元素の有機金属化合物を原料として用いることがで
きる。例えば、トリフェニルビスマスBi(C6 H5 )
3 、オルトトリルビスマスBi(o−C7 H8 )3 、チ
タンイソプロポキサイドTi(i−OC3 H7 )4 等が
用いられる。これらの有機金属材料を加熱気化し、Ar
等のキャリヤガスと共に加熱保持した基板上に供給す
る。この際、反応ガスとしてO2 ガスを同時に供給す
る。成膜パラメータとしては、原料の加熱温度、キャリ
ヤガス流量、O2 ガス流量、成膜圧力、基板温度等があ
る。The silicon substrate used in the present invention is preferably a P type or N type low resistance substrate in the (100) plane. The oxide crystal thin film can be formed by various methods such as a sputtering method, a sol-gel method, a laser ablation method, and a MOCVD method, and the MOCVD method is preferable. Bi 4 Ti 3 O 12 , Bi 2 SiO 5 and Bi 12 Si
When the O 20 thin film is formed by MOCVD, an organometallic compound of these constituent elements can be used as a raw material. For example, triphenylbismuth Bi (C 6 H 5 )
3, ortho-tolyl bismuth Bi (o-C 7 H 8 ) 3, titanium isopropoxide Ti (i-OC 3 H 7 ) 4 or the like is used. These organometallic materials are heated and vaporized, and Ar
It is supplied onto a substrate heated and held with a carrier gas such as. At this time, O 2 gas is simultaneously supplied as a reaction gas. The film forming parameters include the heating temperature of the raw material, the carrier gas flow rate, the O 2 gas flow rate, the film forming pressure, the substrate temperature and the like.
【0016】Bi2 SiO5 またはBi12SiO20薄膜
をシリコン基板上に形成するには、基板温度は550〜
650℃、成膜圧力は10〜100Torrの間が好ま
しい。一方、Bi4 Ti3 O12を形成するには、基板温
度550〜650℃、成膜圧力は1〜10Torrの間
が好ましい。更に、これら2種類の薄膜は同一のCVD
装置内で連続して形成できる点で有利である。To form a Bi 2 SiO 5 or Bi 12 SiO 20 thin film on a silicon substrate, the substrate temperature is 550 to 550.
The film forming pressure is preferably 650 ° C. and 10 to 100 Torr. On the other hand, in order to form Bi 4 Ti 3 O 12 , the substrate temperature is preferably 550 to 650 ° C., and the film forming pressure is preferably 1 to 10 Torr. In addition, these two types of thin films have the same CVD
It is advantageous in that it can be continuously formed in the apparatus.
【0017】更に、作成されたビスマスシリケート薄膜
バッファ層3上のBi4 Ti3 O12の上にPt、RuO
2 、金黒等の上部電極5を形成することにより、強誘電
体不揮発性メモリ素子、焦電赤外線センサ素子、圧電素
子、光変調器等の多くのデバイスに応用することができ
る。Further, Pt and RuO are formed on Bi 4 Ti 3 O 12 on the formed bismuth silicate thin film buffer layer 3.
2. By forming the upper electrode 5 of gold black or the like, it can be applied to many devices such as a ferroelectric nonvolatile memory element, a pyroelectric infrared sensor element, a piezoelectric element, and an optical modulator.
【0018】本実施例においては、縦型MOCVD装置
を用いた。縦型の成膜室内に水平に置かれた基板加熱ホ
ルダ上のシリコン基板に上部に設置されたノズルから原
料ガスを供給する。Bi原料としては、トリフェニルビ
スマスBi(C6 H5 )3 、オルトトリルビスマスBi
(o−C7 H8 )3 、Ti原料としてはチタンイソプロ
ポキサイドTi(i−OC3 H7 )4 、キャリアガスは
Ar、反応ガスはO2を用いた。そして、以下の成膜条
件によりビスマスシリケート薄膜の成長を行った。In this embodiment, a vertical MOCVD apparatus was used. A raw material gas is supplied from a nozzle installed above a silicon substrate on a substrate heating holder placed horizontally in a vertical film forming chamber. Bi raw materials include triphenyl bismuth Bi (C 6 H 5 ) 3 and orthotolyl bismuth Bi
(O-C 7 H 8) 3, Ti raw material as titanium isopropoxide Ti (i-OC 3 H 7 ) 4, the carrier gas is Ar, the reaction gas was used O 2. Then, a bismuth silicate thin film was grown under the following film forming conditions.
【0019】基 板 :P型シリコン(100)面、比
抵抗<0.2Ωcm 基板温度:550℃、600℃、650℃ Bi原料:Bi(o−C7 H8 )3 温度160℃、キャリヤガスAr流量200sccm 反応ガス:O2 、流量400sccm バランスガス:Ar、流量200sccm 成膜圧力:5、50Torr シリコン(100)基板表面の酸化膜をHF水溶液によ
り除去、純水洗浄した後、成膜室内の基板ホルダ上にセ
ットし、速やかに成膜室を1×10-7Torrまで真空
排気した。その後、Arガスを総流量800sccm流
し、所定の成膜圧力及び基板温度に設定した。それか
ら、上記成膜条件で10、20、30、40分間の成膜
を行い、室温まで徐々に冷却し、基板を取り出した。薄
膜表面は青い干渉色を示し、X線回折パターンから次の
結果が得られる。成膜圧力5Torrで成膜温度が55
0℃の場合、Bi2 SiO5 (a軸配向)が発生し、成
膜圧力5Torrで成膜温度が600℃の場合、図2に
示すようなBi2 SiO5 (a軸配向)が発生する。成
膜圧力5Torrで成膜温度が650℃の場合、非晶質
となる。また、成膜圧力50Torrで成膜温度が55
0℃の場合、Bi2 O3(無配向)が発生し、成膜圧力
50Torrで成膜温度が600℃の場合、Bi2 O3
(無配向)が発生し、成膜圧力50Torrで成膜温度
が650℃の場合、図3に示すようなBi12SiO
20(a軸配向)が発生する。Substrate: P-type silicon (100) surface, specific resistance <0.2 Ωcm Substrate temperature: 550 ° C., 600 ° C., 650 ° C. Bi raw material: Bi (o-C 7 H 8 ) 3 temperature 160 ° C., carrier gas Ar flow rate 200 sccm Reaction gas: O 2 , flow rate 400 sccm Balance gas: Ar, flow rate 200 sccm Film formation pressure: 5, 50 Torr Silicon oxide film on the surface of silicon (100) substrate was removed by HF aqueous solution and washed with pure water. After being set on the substrate holder, the film forming chamber was quickly evacuated to 1 × 10 −7 Torr. After that, Ar gas was flowed at a total flow rate of 800 sccm to set a predetermined film forming pressure and substrate temperature. Then, film formation was performed for 10, 20, 30, and 40 minutes under the above-mentioned film formation conditions, the temperature was gradually cooled to room temperature, and the substrate was taken out. The thin film surface shows a blue interference color and the following results are obtained from the X-ray diffraction pattern. The film forming temperature is 55 when the film forming pressure is 5 Torr.
When the temperature is 0 ° C., Bi 2 SiO 5 (a-axis orientation) occurs, and when the film forming pressure is 5 Torr and the film forming temperature is 600 ° C., Bi 2 SiO 5 (a axis orientation) as shown in FIG. 2 occurs. . When the film forming pressure is 5 Torr and the film forming temperature is 650 ° C., the film becomes amorphous. Further, the film forming temperature is 55 at a film forming pressure of 50 Torr.
When the temperature is 0 ° C., Bi 2 O 3 (non-oriented) is generated, and when the film forming pressure is 50 Torr and the film forming temperature is 600 ° C., Bi 2 O 3 is generated.
When (non-orientation) occurs and the film forming pressure is 50 Torr and the film forming temperature is 650 ° C., Bi 12 SiO as shown in FIG.
20 (a-axis orientation) occurs.
【0020】ここで、成長圧力が高くなるとBi2 O3
が発生するのは、Bi原料とO2 ガスの気相反応が起こ
りやすくなると思われる。ただし、基板温度が高くなる
と、基板表面での反応が促進される結果、Bi12SiO
20が形成されたと考えられる。一方、成長時間が30分
以上に長くなると、Bi2 O3 の発生が顕著になる。こ
れは、ビスマクシリケート結晶薄膜の成長過程におい
て、Siの供給はSi基板から行われており、ある程度
の膜厚まで成長すると、その下地のSi基板からのSi
供給が困難になるために、成長時間が長くなるにつれて
Bi2 O3 が成長するものと考えられる。以上の結果か
ら、Bi2 SiO5 薄膜を製作するには、成長圧力を5
Torr程度、基板温度を600℃以下にするとよい。
また、Bi12SiO20薄膜を作成するには、成長圧力を
50Torr程度、基板温度を650℃以上にするとよ
い。更に、成長時間は30分以内が好ましい。Here, when the growth pressure becomes high, Bi 2 O 3
It is thought that the gas phase reaction between the Bi raw material and the O 2 gas is likely to occur. However, as the substrate temperature rises, the reaction on the substrate surface is accelerated, resulting in Bi 12 SiO 2.
It is thought that 20 were formed. On the other hand, when the growth time is longer than 30 minutes, the generation of Bi 2 O 3 becomes remarkable. This is because Si is supplied from the Si substrate in the growth process of the bismuth silicate crystal thin film, and when the Si film is grown to a certain thickness, the Si from the underlying Si substrate is grown.
It is considered that Bi 2 O 3 grows as the growth time increases because the supply becomes difficult. From the above results, the growth pressure should be 5 to produce the Bi 2 SiO 5 thin film.
The substrate temperature may be set to about Torr and 600 ° C. or lower.
Further, in order to form the Bi 12 SiO 20 thin film, the growth pressure may be about 50 Torr and the substrate temperature may be 650 ° C. or higher. Furthermore, the growth time is preferably within 30 minutes.
【0021】次に、上述のように成膜したBi2 SiO
5 薄膜(a軸配向)上に酸化物強誘電体結晶薄膜Bi4
Ti3 O12を成膜する方法について説明する。Next, the Bi 2 SiO film formed as described above is formed.
5 Oxide ferroelectric crystal thin film Bi 4 on the thin film (a-axis orientation)
A method of forming Ti 3 O 12 will be described.
【0022】成長圧力を5Torr程度、基板温度を6
00℃、10分間の成膜により作成したBi2 SiO5
薄膜上に、下記の成膜条件で連続的にBi4 Ti3 O12
の成膜を行った。The growth pressure is about 5 Torr and the substrate temperature is about 6
Bi 2 SiO 5 formed by film formation at 00 ° C. for 10 minutes
Bi 4 Ti 3 O 12 was continuously formed on the thin film under the following film forming conditions.
Was formed.
【0023】基 板 :Bi2 SiO5 (a軸配向)/
Si基板 基板温度:600℃ Bi原料:Bi(o−C7 H8 )3 温度160℃、キャリヤガスAr流量200sccm Ti原料:Ti(i−OC3 H7 )4 温度50℃、キャリヤガスAr流量100sccm 反応ガス:O2 、流量400sccm バランスガス:Ar、流量100sccm 成膜圧力:5Torr Bi2 SiO5 薄膜の成膜の後、原料ガス及びO2 ガス
の成膜室内への導入を停止し、10分間成膜室内を真空
排気した後、上記成膜条件で原料ガスを導入し、Bi4
Ti3 O12の成膜を開始する。上記の成膜条件は、Bi
4 Ti3 O12のストイキオメトリ組成が得られるように
事前に検討して決定したものである。成膜時間は60分
で、膜厚約200nmの薄膜が得られた。膜表面モフォ
ロジーとX線回折法による結晶配向性の評価を行った。
電子顕微鏡(SEM)により観察したところ、薄膜は板
状の結晶粒から形成されていた。この薄膜のX線回折パ
ターンには、図4に示すように、Bi2 SiO5 からの
反射以外にはBi4 Ti3 O12の(00l)反射のみが
見られ、c軸配向膜が形成されていることが分かる。こ
のようにして作成したBi4 Ti3 O12の薄膜試料につ
いて、上部電極5として面積100μm角のPtを蒸着
し、シリコン基板裏面にも下部電極1としてPtを蒸着
した。この薄膜キャパシタ構造について、強誘電ヒステ
リシス曲線の測定を行ったところ、図5に示すように、
残留分極は約2.8μC/cm2 、抗電界は20kV/
cmが得られた。作成されたc軸配向のBi4 Ti3 O
12の薄膜の抗電界は非常に小さく、残留分極も電界効果
型不揮発性メモリを実現するのに十分な値である。この
ように、シリコン基板状に薄いバッファ層を介在するこ
とでBi4 Ti3 O12のc軸配向膜が得られることか
ら、電界効果型の強誘電体不揮発性メモリを初めとし
て、焦電効果を利用した赤外線センサへの応用も可能と
なる。Base plate: Bi 2 SiO 5 (a-axis orientation) /
Si substrate a substrate temperature: 600 ° C. Bi material: Bi (o-C 7 H 8) 3 Temperature 160 ° C., carrier gas Ar flow rate 200 sccm Ti material: Ti (i-OC 3 H 7) 4 temperature 50 ° C., carrier gas flow rate of Ar 100sccm reaction gas: O 2, flow rate 400sccm balance gas: Ar, flow rate 100sccm film formation pressure: 5 Torr Bi 2 after deposition of the SiO 5 film, and stopping the introduction into the deposition chamber the raw material gas and O 2 gas, 10 After evacuation of the film forming chamber for a minute, the raw material gas is introduced under the above film forming conditions, and Bi 4
The film formation of Ti 3 O 12 is started. The above film forming conditions are Bi
It was determined in advance so as to obtain the stoichiometric composition of 4 Ti 3 O 12 . The film formation time was 60 minutes, and a thin film having a film thickness of about 200 nm was obtained. The film surface morphology and the crystal orientation were evaluated by the X-ray diffraction method.
When observed with an electron microscope (SEM), the thin film was formed of plate-shaped crystal grains. In the X-ray diffraction pattern of this thin film, as shown in FIG. 4, only (00l) reflection of Bi 4 Ti 3 O 12 was observed in addition to the reflection from Bi 2 SiO 5 , and a c-axis alignment film was formed. I understand that. With respect to the Bi 4 Ti 3 O 12 thin film sample thus produced, Pt having an area of 100 μm square was vapor-deposited as the upper electrode 5, and Pt was vapor-deposited as the lower electrode 1 also on the back surface of the silicon substrate. When the ferroelectric hysteresis curve was measured for this thin film capacitor structure, as shown in FIG.
Remanent polarization is about 2.8 μC / cm 2 , coercive electric field is 20 kV /
cm was obtained. Created c-axis oriented Bi 4 Ti 3 O
The coercive electric field of the 12 thin films is very small, and the remanent polarization is also a value sufficient to realize a field effect nonvolatile memory. As described above, since the c-axis oriented film of Bi 4 Ti 3 O 12 can be obtained by interposing the thin buffer layer on the silicon substrate, it is possible to obtain the pyroelectric effect including the field effect type ferroelectric nonvolatile memory. It is also possible to apply to infrared sensors using.
【0024】次に、本発明の第2の実施例について説明
する。本実施例は、シリコン基板上にc軸配向のBi4
Ti3 O12薄膜を再現性よく作成するためのバッファ層
を有する酸化物結晶薄膜の製造方法及び薄膜素子を提供
することを課題とする。Next, a second embodiment of the present invention will be described. In this example, Bi 4 with c-axis orientation is formed on a silicon substrate.
An object of the present invention is to provide a method for producing an oxide crystal thin film having a buffer layer for producing a Ti 3 O 12 thin film with good reproducibility and a thin film element.
【0025】上述実施例1においてはビスマスシリケー
ト薄膜バッファ層3にBi2 SiO5 を用いて説明した
が、これに限らず、Bi12SiO20薄膜をシリコン基板
上に形成してもよい。なお、基板以外の成膜条件は上述
実施例1と同じで、基板温度:650℃、成膜圧力:5
0Torr、10分間の成膜によりBi12SiO20薄膜
を製作した。この薄膜上に上述実施例1と同じ成膜条件
により、Bi4 Ti3O12を作成した。成膜時間は60
分で、膜厚約200nmの薄膜が得られた。この薄膜の
X線回折パターンは、図6に示すようになっており、明
らかにBi4 Ti3 O12のc軸配向膜が形成されている
ことが分かる。この薄膜について上述同様に電極を形成
してヒステリシス曲線の計測を行ったところ、図7に示
すように、残留分極約2.5μC/cm2 、抗電界約3
0kV/cmの値が得られた。Although Bi 2 SiO 5 is used for the bismuth silicate thin film buffer layer 3 in the first embodiment, the present invention is not limited to this, and a Bi 12 SiO 20 thin film may be formed on a silicon substrate. The film forming conditions other than the substrate were the same as in Example 1 described above, the substrate temperature was 650 ° C., and the film forming pressure was 5
A Bi 12 SiO 20 thin film was formed by forming the film at 0 Torr for 10 minutes. Bi 4 Ti 3 O 12 was formed on this thin film under the same film forming conditions as in Example 1 above. Film formation time is 60
In a minute, a thin film having a thickness of about 200 nm was obtained. The X-ray diffraction pattern of this thin film is as shown in FIG. 6, and it is clear that the c-axis oriented film of Bi 4 Ti 3 O 12 is clearly formed. When an electrode was formed on this thin film in the same manner as described above and a hysteresis curve was measured, as shown in FIG. 7, the remanent polarization was about 2.5 μC / cm 2 , and the coercive electric field was about 3
A value of 0 kV / cm was obtained.
【0026】また、本出願人は、比較のためにビスマス
シリケート薄膜バッファ層が形成されていないシリコン
基板上にBi4 Ti3 O12を作成した。上述実施例1と
同様に、シリコン(100)基板表面の酸化膜を除去し
た後に、MOCVD装置内にセットする。成膜条件は上
述したBi4 Ti3 O12薄膜製作条件と同じである。6
0分間の成膜を行った後に、得られた薄膜のX線回折パ
ターンの測定結果は、図8に示すように、Bi4 Ti3
O12の回折ピーク以外にパイクロア相Bi2 Ti2 O7
の回折ピークの混在が認められる。また、Bi4 Ti3
O12の配向性はc軸配向以外の回折ピークが多数認めら
れ、配向性は不十分である。作成した薄膜の電気特性を
上述同様な電極構造を作成してヒステリシス曲線の測定
を行ったところ、図9に示すように、上述実施例1で作
成したBi4 Ti3 O12に比べて十分なヒステリシス曲
線が得られなかった。この原因は、Bi4 Ti3 O12薄
膜のc軸配向性が不十分であること以上に、シリコン基
板中へのTiの拡散し易さの結果、界面変質層の発生が
起こっているためと思われる。従って、ビスマスシリケ
ート薄膜バッファ層は、Si基板とBi4 Ti3 O12薄
膜との間の拡散バリアとしての効果を有することが十分
に確認できた。The applicant also prepared Bi 4 Ti 3 O 12 on a silicon substrate on which a bismuth silicate thin film buffer layer was not formed, for comparison. Similar to the first embodiment, after removing the oxide film on the surface of the silicon (100) substrate, it is set in the MOCVD apparatus. The film forming conditions are the same as the Bi 4 Ti 3 O 12 thin film forming conditions described above. 6
After the deposition of 10 minutes, the measurement results of X-ray diffraction pattern of the obtained thin film, as shown in FIG. 8, Bi 4 Ti 3
In addition to the O 12 diffraction peak, the Bichromium phase Bi 2 Ti 2 O 7
Mixing of diffraction peaks is observed. In addition, Bi 4 Ti 3
Regarding the orientation of O 12 , many diffraction peaks other than the c-axis orientation are recognized, and the orientation is insufficient. Regarding the electrical characteristics of the formed thin film, when an electrode structure similar to that described above was formed and a hysteresis curve was measured, as shown in FIG. 9, it was found to be more satisfactory than that of Bi 4 Ti 3 O 12 formed in Example 1 above. No hysteresis curve was obtained. This is because the Bi 4 Ti 3 O 12 thin film has insufficient c-axis orientation and, moreover, the diffusion of Ti into the silicon substrate facilitates the generation of an interface-altered layer. Seem. Therefore, it was sufficiently confirmed that the bismuth silicate thin film buffer layer had an effect as a diffusion barrier between the Si substrate and the Bi 4 Ti 3 O 12 thin film.
【0027】なお、上述実施例においては、Bi4 Ti
3 O12の成膜方法としてMOCVD法を用いたが、ビス
マスシリケート薄膜バッファ層が表面に形成されるSi
基板を用いれば、他の成膜方法、例えばゾル−ゲル法、
スパッタ法、レーザーアブレーション法、反応性蒸着
法、プラズマMOCVD法等を用いてもよい。In the above embodiment, Bi 4 Ti is used.
Although the MOCVD method was used as the film forming method of 3 O 12 , Si having a bismuth silicate thin film buffer layer formed on the surface was used.
If a substrate is used, another film forming method, for example, a sol-gel method,
A sputtering method, a laser ablation method, a reactive vapor deposition method, a plasma MOCVD method or the like may be used.
【0028】[0028]
【発明の効果】請求項1の酸化物結晶薄膜の製造方法に
よれば、シリコン基板上にビスマスシリケート薄膜から
なるバッファ層を介して酸化物強誘電体薄膜Bi4 Ti
3 O12のc軸配向を形成したので、Bi4 Ti3 O12の
c軸配向膜が再現性よく形成でき、c軸方向の極めて小
さい抗電界と大きな自発分極を利用したデバイスの開発
を行うことができる。シリコンを用いたMOS型FET
のゲート絶縁膜に用いることで、自発分極の向きの違い
によるドレイン電流の差を利用した強誘電体不揮発性メ
モリ開発に応用できる。焦電効果を利用した赤外線セン
サとしての応用もでき、赤外線の照射に伴うドレイン電
流の変化として赤外光を検出するセンサデバイスの作
成、それを2次元に配置した2次元赤外線センサの作
成、下地材のシリコン基板にトランジスタを形成するこ
とで検出電流の増幅も行うことができる。According to the method of manufacturing an oxide crystal thin film of claim 1, the oxide ferroelectric thin film Bi 4 Ti is formed on the silicon substrate via the buffer layer made of the bismuth silicate thin film.
Since the c-axis orientation of 3 O 12 is formed, the c-axis oriented film of Bi 4 Ti 3 O 12 can be formed with good reproducibility, and a device utilizing an extremely small coercive electric field in the c-axis direction and a large spontaneous polarization will be developed. be able to. MOS type FET using silicon
It can be applied to the development of ferroelectric non-volatile memory that utilizes the difference in drain current due to the difference in the direction of spontaneous polarization. It can also be applied as an infrared sensor that utilizes the pyroelectric effect, and creates a sensor device that detects infrared light as a change in drain current due to infrared irradiation, creates a two-dimensional infrared sensor in which it is two-dimensionally arranged, The detection current can be amplified by forming a transistor on the silicon substrate of the material.
【0029】請求項3の薄膜素子によれば、シリコン基
板上にビスマスシリケート薄膜からなるバッファ層を介
してBi4 Ti3 O12のc軸配向を持つ高品質強誘電体
結晶薄膜が形成でき、Bi4 Ti3 O12のc軸方向の優
れた強誘電特性を効率的に利用した各種の電子デバイス
への応用が可能となる。According to the thin film element of claim 3, a high quality ferroelectric crystal thin film having a c-axis orientation of Bi 4 Ti 3 O 12 can be formed on a silicon substrate through a buffer layer made of a bismuth silicate thin film. It is possible to apply Bi 4 Ti 3 O 12 to various electronic devices that efficiently utilize the excellent ferroelectric properties in the c-axis direction.
【図1】本発明に係る薄膜素子を示す断面図である。FIG. 1 is a cross-sectional view showing a thin film element according to the present invention.
【図2】本発明の第1の実施例に係るBi2 SiO5 薄
膜のX線回折パターンを示す図である。FIG. 2 is a diagram showing an X-ray diffraction pattern of a Bi 2 SiO 5 thin film according to the first example of the present invention.
【図3】本発明の第1の実施例に係るBi12SiO20薄
膜のX線回折パターンを示す図である。FIG. 3 is a diagram showing an X-ray diffraction pattern of a Bi 12 SiO 20 thin film according to the first example of the present invention.
【図4】本発明の第1の実施例に係るBi4 Ti3 O12
薄膜のX線回折パターンを示す図である。FIG. 4 Bi 4 Ti 3 O 12 according to the first embodiment of the present invention.
It is a figure which shows the X-ray-diffraction pattern of a thin film.
【図5】本発明の第1の実施例に係るBi4 Ti3 O12
薄膜のヒステリシス曲線を示す図である。FIG. 5 shows Bi 4 Ti 3 O 12 according to the first embodiment of the present invention.
It is a figure which shows the hysteresis curve of a thin film.
【図6】本発明の第2の実施例に係るBi4 Ti3 O12
薄膜のX線回折パターンを示す図である。FIG. 6 is a Bi 4 Ti 3 O 12 according to a second embodiment of the present invention.
It is a figure which shows the X-ray-diffraction pattern of a thin film.
【図7】本発明の第2の実施例に係るBi4 Ti3 O12
薄膜のヒステリシス曲線を示す図である。FIG. 7 shows Bi 4 Ti 3 O 12 according to the second embodiment of the present invention.
It is a figure which shows the hysteresis curve of a thin film.
【図8】ビスマスシリケート薄膜バッファ層が形成され
ていないシリコン基板上に作成されたBi4 Ti3 O12
薄膜のX線回折パターンを示す図である。FIG. 8: Bi 4 Ti 3 O 12 formed on a silicon substrate on which a bismuth silicate thin film buffer layer is not formed.
It is a figure which shows the X-ray-diffraction pattern of a thin film.
【図9】ビスマスシリケート薄膜バッファ層が形成され
ていないシリコン基板上に作成されたBi4 Ti3 O12
薄膜のヒステリシス曲線を示す図である。FIG. 9 is a Bi 4 Ti 3 O 12 film formed on a silicon substrate on which a bismuth silicate thin film buffer layer is not formed.
It is a figure which shows the hysteresis curve of a thin film.
1 下部電極 2 シリコン基板 3 ビスマスシリケート薄膜バッファ層 4 Bi4 Ti3 O12酸化物強誘電体薄膜 5 上部電極1 Lower electrode 2 Silicon substrate 3 Bismuth silicate thin film buffer layer 4 Bi 4 Ti 3 O 12 Oxide ferroelectric thin film 5 Upper electrode
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/108 21/8247 29/788 29/792 37/02 41/08 41/22 H01L 41/08 Z 41/22 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location H01L 27/108 21/8247 29/788 29/792 37/02 41/08 41/22 H01L 41 / 08 Z 41/22 Z
Claims (3)
膜からなるバッファ層を形成し、前記バッファ層上に酸
化物強誘電体薄膜Bi4 Ti3 O12を形成する酸化物結
晶薄膜の製造方法。1. A method for producing an oxide crystal thin film, comprising forming a buffer layer made of a bismuth silicate thin film on a silicon substrate, and forming an oxide ferroelectric thin film Bi 4 Ti 3 O 12 on the buffer layer.
ッファ層を形成する際、Biを含む有機金属材料を加熱
気化し、前記加熱気化したBiを含む有機金属材料をキ
ャリアガス及びO2 ガスと共にシリコン基板上に供給す
る請求項1記載の酸化物結晶薄膜の製造方法。2. When forming the buffer layer comprising the bismuth silicate thin film, the organometallic material containing Bi is vaporized by heating, and the vaporized organometallic material containing Bi is deposited on a silicon substrate together with a carrier gas and O 2 gas. The method for producing an oxide crystal thin film according to claim 1, wherein
形成されたビスマスシリケート薄膜バッファ層と、前記
ビスマスシリケート薄膜バッファ層上に形成された酸化
物強誘電体薄膜Bi4 Ti3 O12と、前記酸化物強誘電
体薄膜上に形成された上部電極と、前記シリコン基板裏
面に形成された下部電極とを具備することを特徴とする
薄膜素子。3. A silicon substrate, a bismuth silicate thin film buffer layer formed on the silicon substrate, an oxide ferroelectric thin film Bi 4 Ti 3 O 12 formed on the bismuth silicate thin film buffer layer, and A thin film element comprising an upper electrode formed on an oxide ferroelectric thin film and a lower electrode formed on the back surface of the silicon substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13913194A JP3095944B2 (en) | 1994-06-21 | 1994-06-21 | Method for producing oxide crystal thin film and thin film element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13913194A JP3095944B2 (en) | 1994-06-21 | 1994-06-21 | Method for producing oxide crystal thin film and thin film element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0812494A true JPH0812494A (en) | 1996-01-16 |
JP3095944B2 JP3095944B2 (en) | 2000-10-10 |
Family
ID=15238256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13913194A Expired - Fee Related JP3095944B2 (en) | 1994-06-21 | 1994-06-21 | Method for producing oxide crystal thin film and thin film element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3095944B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0732422A3 (en) * | 1995-03-08 | 1996-12-04 | Sharp Kk | Ferroelectric thin-film coated substrate, method for its manufacture and nonvolatile memory comprising such a substrate |
WO1999032691A1 (en) * | 1997-12-19 | 1999-07-01 | Sharp Kabushiki Kaisha | Insulating material, substrate covered with an insulating film, method of producing the same, and thin-film device |
US6224669B1 (en) | 2000-09-14 | 2001-05-01 | Motorola, Inc. | Method for fabricating a semiconductor structure having a crystalline alkaline earth metal oxide interface with silicon |
US6241821B1 (en) * | 1999-03-22 | 2001-06-05 | Motorola, Inc. | Method for fabricating a semiconductor structure having a crystalline alkaline earth metal oxide interface with silicon |
US6498358B1 (en) | 2001-07-20 | 2002-12-24 | Motorola, Inc. | Structure and method for fabricating an electro-optic system having an electrochromic diffraction grating |
US6501121B1 (en) | 2000-11-15 | 2002-12-31 | Motorola, Inc. | Semiconductor structure |
EP1411028A1 (en) * | 2001-06-13 | 2004-04-21 | Seiko Epson Corporation | Ceramics film and production method therefor, and ferroelectric capacitor, semiconductor device, other elements |
KR100633754B1 (en) * | 1999-07-15 | 2006-10-16 | 프리스케일 세미컨덕터, 인크. | Method for fabricating a semiconductor structure including a metal oxide interface with silicon |
JP2009161435A (en) * | 2002-03-25 | 2009-07-23 | Seiko Epson Corp | Inkjet recording head and inkjet printer |
JP2014192268A (en) * | 2013-03-26 | 2014-10-06 | Seiko Epson Corp | Liquid injection head, liquid injection apparatus, and piezoelectric element |
JP2015110505A (en) * | 2013-11-07 | 2015-06-18 | Tdk株式会社 | Dielectric composition, dielectric film and electronic component |
-
1994
- 1994-06-21 JP JP13913194A patent/JP3095944B2/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0732422A3 (en) * | 1995-03-08 | 1996-12-04 | Sharp Kk | Ferroelectric thin-film coated substrate, method for its manufacture and nonvolatile memory comprising such a substrate |
US6307225B1 (en) | 1997-12-19 | 2001-10-23 | Sharp Kabushiki Kaisha | Insulating material, substrate covered with an insulating film, method of producing the same, and thin-film device |
WO1999032691A1 (en) * | 1997-12-19 | 1999-07-01 | Sharp Kabushiki Kaisha | Insulating material, substrate covered with an insulating film, method of producing the same, and thin-film device |
US6241821B1 (en) * | 1999-03-22 | 2001-06-05 | Motorola, Inc. | Method for fabricating a semiconductor structure having a crystalline alkaline earth metal oxide interface with silicon |
KR100633754B1 (en) * | 1999-07-15 | 2006-10-16 | 프리스케일 세미컨덕터, 인크. | Method for fabricating a semiconductor structure including a metal oxide interface with silicon |
US6224669B1 (en) | 2000-09-14 | 2001-05-01 | Motorola, Inc. | Method for fabricating a semiconductor structure having a crystalline alkaline earth metal oxide interface with silicon |
US6501121B1 (en) | 2000-11-15 | 2002-12-31 | Motorola, Inc. | Semiconductor structure |
EP1411028A1 (en) * | 2001-06-13 | 2004-04-21 | Seiko Epson Corporation | Ceramics film and production method therefor, and ferroelectric capacitor, semiconductor device, other elements |
EP1411028A4 (en) * | 2001-06-13 | 2005-12-14 | Seiko Epson Corp | CERAMIC FILM AND PRODUCTION METHOD AND FERROELECTRIC CAPACITOR, SEMICONDUCTOR DEVICE AND OTHER ELEMENTS |
US7205056B2 (en) | 2001-06-13 | 2007-04-17 | Seiko Epson Corporation | Ceramic film and method of manufacturing the same, ferroelectric capacitor, semiconductor device, and other element |
EP1777203A1 (en) * | 2001-06-13 | 2007-04-25 | Seiko Epson Corporation | Ceramic film and method of manufacturing the same, ferroelectric capacitor, semiconductor device, and other element |
US6498358B1 (en) | 2001-07-20 | 2002-12-24 | Motorola, Inc. | Structure and method for fabricating an electro-optic system having an electrochromic diffraction grating |
JP2009161435A (en) * | 2002-03-25 | 2009-07-23 | Seiko Epson Corp | Inkjet recording head and inkjet printer |
JP2014192268A (en) * | 2013-03-26 | 2014-10-06 | Seiko Epson Corp | Liquid injection head, liquid injection apparatus, and piezoelectric element |
JP2015110505A (en) * | 2013-11-07 | 2015-06-18 | Tdk株式会社 | Dielectric composition, dielectric film and electronic component |
Also Published As
Publication number | Publication date |
---|---|
JP3095944B2 (en) | 2000-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3137880B2 (en) | Ferroelectric thin film, electronic device, and method of manufacturing ferroelectric thin film | |
JP3133922B2 (en) | Ferroelectric thin film coated substrate, method of manufacturing the same, and capacitor structure element | |
JP3188179B2 (en) | Method of manufacturing ferroelectric thin film element and method of manufacturing ferroelectric memory element | |
JP3113141B2 (en) | Ferroelectric crystal thin film coated substrate, method of manufacturing the same, and ferroelectric thin film device using ferroelectric crystal thin film coated substrate | |
KR100827216B1 (en) | Microelectronic piezoelectric structure | |
EP0732422B1 (en) | Ferroelectric thin-film coated substrate, method for its manufacture and nonvolatile memory comprising such a substrate | |
JP3476932B2 (en) | Ferroelectric thin film, substrate coated with ferroelectric thin film, and method of manufacturing ferroelectric thin film | |
JPH10313097A (en) | Ferroelectric thin film, manufacturing method and device comprising ferroelectric thin film | |
JP3095944B2 (en) | Method for producing oxide crystal thin film and thin film element | |
KR19990006318A (en) | Deposition of Ferroelectric Films and Ferroelectric Capacitor Devices | |
JPH10200059A (en) | Ferroelectric thin film element and its manufacturing method | |
JP3292795B2 (en) | Method for manufacturing semiconductor memory device | |
JP3013418B2 (en) | Dielectric thin film, thin film device, and method for producing them | |
JP3366212B2 (en) | Method of manufacturing ferroelectric thin film element, ferroelectric thin film element, and ferroelectric memory device | |
JP3545850B2 (en) | Ferroelectric thin film element | |
JPH06112504A (en) | Manufacture of crystalline thin film | |
JPH09321234A (en) | Ferroelectric thin film device, manufacture thereof and ferroelectric memory device | |
JPH10294433A (en) | Manufacture of ferroelectric memory element | |
JPH07111107A (en) | Manufacture of thin film of ferroelectric substance | |
JPH1197630A (en) | Manufacture of ferroelectric thin film and ferroelectric memory device | |
JPH08340086A (en) | Ferroelectric thin film, its manufacture, and capacitor-structure device | |
JPH06196018A (en) | Oriented ferroelectric substance thin film element | |
JP2001332549A (en) | Forming method of crystalline oxide film and semiconductor device | |
IX et al. | SYMPOSIUM CC | |
JPH0874049A (en) | Production of thin film of ferroelectric substance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070804 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080804 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080804 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090804 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |