JPH08124558A - Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery - Google Patents
Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary batteryInfo
- Publication number
- JPH08124558A JPH08124558A JP6262478A JP26247894A JPH08124558A JP H08124558 A JPH08124558 A JP H08124558A JP 6262478 A JP6262478 A JP 6262478A JP 26247894 A JP26247894 A JP 26247894A JP H08124558 A JPH08124558 A JP H08124558A
- Authority
- JP
- Japan
- Prior art keywords
- carbonaceous
- secondary battery
- electrode plate
- molded body
- carbon fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 9
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 57
- 239000004917 carbon fiber Substances 0.000 claims abstract description 57
- 239000011159 matrix material Substances 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 24
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 23
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 39
- 239000000835 fiber Substances 0.000 claims description 21
- 238000007664 blowing Methods 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 5
- 238000007796 conventional method Methods 0.000 abstract description 4
- 238000012360 testing method Methods 0.000 description 20
- 229920005989 resin Polymers 0.000 description 18
- 239000011347 resin Substances 0.000 description 18
- -1 polytetrafluoroethylene Polymers 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- 238000010304 firing Methods 0.000 description 13
- 239000003575 carbonaceous material Substances 0.000 description 10
- 238000000748 compression moulding Methods 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 6
- 238000007600 charging Methods 0.000 description 6
- 238000013007 heat curing Methods 0.000 description 6
- 239000011295 pitch Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000005011 phenolic resin Substances 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000010277 constant-current charging Methods 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 3
- 239000003610 charcoal Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000011233 carbonaceous binding agent Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- WLNBMPZUVDTASE-HXIISURNSA-N (2r,3r,4s,5r)-2-amino-3,4,5,6-tetrahydroxyhexanal;sulfuric acid Chemical compound [O-]S([O-])(=O)=O.O=C[C@H]([NH3+])[C@@H](O)[C@H](O)[C@H](O)CO.O=C[C@H]([NH3+])[C@@H](O)[C@H](O)[C@H](O)CO WLNBMPZUVDTASE-HXIISURNSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- LFVLUOAHQIVABZ-UHFFFAOYSA-N Iodofenphos Chemical compound COP(=S)(OC)OC1=CC(Cl)=C(I)C=C1Cl LFVLUOAHQIVABZ-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910015030 LiNiCoO Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- 239000011337 anisotropic pitch Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 239000011294 coal tar pitch Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000001941 electron spectroscopy Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002931 mesocarbon microbead Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 238000001420 photoelectron spectroscopy Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
(57)【要約】
【構成】 炭素質マトリックスが微小ブロック状に分割
されており、かつ炭素繊維が複数のブロック間を貫通し
ている構造を有している可撓性炭素質成形体からなる電
極板およびそれを負極として用いた非水電解液二次電池
に関する。
【効果】 該成形体を用いた電極板は任意の形状に曲げ
加工できるため、複数枚の電極を並列または直列に配列
して構成する従来方法に比べ簡便な方法で電池を構成で
き、円筒形、角型等のリチウム二次電池を構成するため
には効果的である。(57) [Summary] [Structure] A carbonaceous matrix is divided into minute blocks, and a flexible carbonaceous molded product having a structure in which carbon fibers penetrate between a plurality of blocks is formed. The present invention relates to an electrode plate and a non-aqueous electrolyte secondary battery using the same as a negative electrode. [Effect] Since the electrode plate using the molded body can be bent into an arbitrary shape, a battery can be configured by a simpler method than the conventional method in which a plurality of electrodes are arranged in parallel or in series, and a cylindrical shape It is effective for forming a prismatic lithium secondary battery.
Description
【0001】[0001]
【産業上の利用分野】本発明は炭素質成形体を用いた非
水電解液二次電池の電極板に関するものであり、またそ
れを用いた非水電解液二次電池に関する。更に詳しく言
えば、本発明は非水電解液二次電池であるリチウム二次
電池の電極板として有用な炭素質成形体およびそれを電
極に用いた二次電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode plate for a non-aqueous electrolyte secondary battery using a carbonaceous molded body, and a non-aqueous electrolyte secondary battery using the same. More specifically, the present invention relates to a carbonaceous molded body useful as an electrode plate of a lithium secondary battery, which is a non-aqueous electrolyte secondary battery, and a secondary battery using the same as an electrode.
【0002】そして本発明の二次電池に電極板として用
いられる炭素質成形体は、可撓性に優れるという特徴あ
る性質を有しているため、特にリチウム二次電池の負極
として極めて有用である。Since the carbonaceous molded body used as an electrode plate in the secondary battery of the present invention has a characteristic property of being excellent in flexibility, it is extremely useful particularly as a negative electrode of a lithium secondary battery. .
【0003】[0003]
【従来技術】近年、各種電気製品のダウンサイジング、
いわゆる小型化に伴い、その動力源である電池に対して
も小型化、高エネルギー密度化の要求が増してきてい
る。また、世界的な環境保護に対する関心の高まりか
ら、各種二次電池への切り替えも広がってきている。こ
うした中で負極活物質として金属リチウムを用いたリチ
ウム二次電池は、高エネルギー密度、小型軽量、および
長期保存性などの利点を有しているが充放電サイクルが
短く、充放電における充放電効率が低いといった欠点を
有し、また金属リチウムの使用は、トラブル発生時の危
険性をはらむため、安全性の点からも問題となってい
る。2. Description of the Related Art In recent years, downsizing of various electric products,
With so-called miniaturization, there is an increasing demand for miniaturization and high energy density of the battery as the power source. Also, due to the growing interest in environmental protection worldwide, switching to various secondary batteries is also spreading. Among them, the lithium secondary battery using metallic lithium as the negative electrode active material has advantages such as high energy density, small size and light weight, and long-term storability, but the charge / discharge cycle is short and the charge / discharge efficiency in charge / discharge is high. However, the use of metallic lithium poses a risk in the event of trouble, which is a problem from the viewpoint of safety.
【0004】以上の欠点は充放電により負極に金属リチ
ウムが析出するという電気化学的反応による負極劣化に
起因するものであり、金属リチウム負極の使用時安全性
及び劣化を回避することは現状できていない。このよう
な欠点を解決する方法として、負極として種々の炭素材
料を用いることが検討され、これまでに例えば共役系を
有する高分子焼成体(特開昭 58-093176)、アリールア
セチレン重合体の熱分解生成物(特開昭 59-154763)、
有機物焼成体(特開昭 60-235372、特開昭 62-09086
3)、擬黒鉛構造を有する炭素材料(特開昭 62-12206
6)、炭素繊維成形体(特開昭 62-268056)、或いは平
面網状六員環構造を有する構造体(特開昭 63-013282)
等で構成された炭素質電極を用いる方法が提案されてい
る。The above-mentioned drawbacks are caused by the deterioration of the negative electrode due to an electrochemical reaction in which metallic lithium is deposited on the negative electrode by charging and discharging, and the safety and deterioration during use of the metallic lithium negative electrode cannot be avoided at present. Absent. The use of various carbon materials for the negative electrode has been investigated as a method for solving such a drawback, and until now, for example, a polymer fired body having a conjugated system (Japanese Patent Laid-Open No. 58-093176) and an arylacetylene polymer have been used. Decomposition product (JP-A-59-154763),
Organic material fired product (JP-A-60-235372, JP-A-62-09086)
3), a carbon material having a pseudo-graphite structure (JP-A-62-12206)
6), a carbon fiber molded body (JP-A-62-268056), or a structure having a planar net-like six-membered ring structure (JP-A-63-013282)
A method using a carbonaceous electrode composed of the above is proposed.
【0005】リチウム二次電池の負極を炭素材料とする
方法は、負極活物質であるリチウムを充放電時に各々炭
素材料中に吸蔵放出するという電気化学的な可逆的吸脱
着反応を利用したものである。The method of using the negative electrode of a lithium secondary battery as a carbon material utilizes an electrochemical reversible adsorption-desorption reaction in which lithium, which is a negative electrode active material, is inserted into and discharged from the carbon material during charge and discharge. is there.
【0006】リチウム二次電池の負極として用いられる
炭素材料は一般に粉末状であるため、負極として用いる
場合有機質バインダーを用いて圧縮成形法などの方法で
所定の形状に成形して使用される。通常、炭素材料の成
形用バインダーとして、ポリテトラフルオロエチレン、
ポリエチレン、ポリプロピレン等の高分子化合物が用い
られ、それらを炭素粉末と均一に混合した後、加圧成形
法、ロール成形法等で成形される。またニッケル等金属
集電体に、炭素材料とバインダーを溶剤に分散させて得
た混合液を塗布する方法も知られている。Since the carbon material used as the negative electrode of the lithium secondary battery is generally powdery, when it is used as the negative electrode, it is molded into a predetermined shape by a method such as compression molding using an organic binder. Usually, polytetrafluoroethylene, as a binder for molding carbon materials,
A high molecular compound such as polyethylene or polypropylene is used, which is uniformly mixed with carbon powder and then molded by a pressure molding method, a roll molding method or the like. There is also known a method of applying a mixed liquid obtained by dispersing a carbon material and a binder in a solvent onto a metal current collector such as nickel.
【0007】これらの方法で成形された電極はバインダ
ーとして添加したポリテトラフルオロエチレン、ポリエ
チレンやポリプロピレン等の高分子化合物、及び/また
は、微量の溶剤を含んでいるため、炭素材料の特徴であ
る高電気伝導度の低下といった問題点があり、更には過
電圧増大による放電容量の低下、発熱、寿命の低下とい
う好ましくない現象の原因となり得る。これらの問題を
解決する方法として、これまで炭素粉末と炭素質バイン
ダーを用いて構成された電極をリチウム二次電池の負極
として用いる方法(特開平5-101818)や、フィルム状炭
素材を用いる方法(特開平5-242880)、炭素粉末と炭素
繊維の複合化シートを用いる方法(特開平5-283061)、
自己燃結性を有する高分子化合物を成形焼成して用いる
方法(特開平5-299090)等が提案されている。The electrodes formed by these methods contain polytetrafluoroethylene added as a binder, polymer compounds such as polyethylene and polypropylene, and / or a small amount of a solvent, and are therefore characteristic of carbon materials. There is a problem such as a decrease in electric conductivity, and further, it may cause an undesirable phenomenon such as a decrease in discharge capacity due to an increase in overvoltage, heat generation, and a decrease in life. As a method for solving these problems, a method of using an electrode, which has been composed of a carbon powder and a carbonaceous binder, as a negative electrode of a lithium secondary battery (Japanese Patent Laid-Open No. 5-101818), or a method of using a film carbon material. (JP-A-5-242880), a method using a composite sheet of carbon powder and carbon fibers (JP-A-5-283061),
A method (Japanese Patent Laid-Open No. 5-299090) in which a polymer compound having a self-burning property is used by molding and firing has been proposed.
【0008】一般に炭素繊維と炭素質バインダーからな
る電極用炭素質成形体を用いる場合、密度、剛性が高い
ため、例えばごく薄い炭素質成形体シートは、これを所
定の円状、惰円状、或いは角状のものに巻き付けようと
しても、脆性的に破壊し均一に巻き付けることができな
い。従ってこれら炭素質成形体を電極として用いる場
合、通常炭素質成形体を所定寸法に加工して一枚毎に集
電体を取り付けて電極を構成し、該電極とセパレータフ
ィルムとを複数回交互に重ね合わせて電池を構成してい
る。Generally, when a carbonaceous molded body for an electrode composed of carbon fiber and a carbonaceous binder is used, since it has high density and rigidity, for example, a very thin carbonaceous molded body sheet has a predetermined circular shape, Alternatively, even if it is attempted to wind it around a rectangular shape, it breaks brittlely and cannot be wound uniformly. Therefore, when these carbonaceous compacts are used as electrodes, usually the carbonaceous compacts are processed to have a predetermined size and a current collector is attached to each sheet to form an electrode, and the electrodes and the separator film are alternately alternated a plurality of times. A battery is constructed by stacking them.
【0009】[0009]
【発明が解決しようとする課題】上述したように従来の
炭素質成形体を用いる場合、その高剛性のために、切断
した電極シートと、セパレータ、集電体を積層して電池
を構成しなければならない。この場合各電極に性能差が
存在すると、充放電時に過充電、過放電をおこしやす
く、電池性能の低下、更には破裂等非常に危険な状態に
なりやすいことが知られている。つまり、多数枚の電極
板を用いて電池の負極を構成する従来方法に替わり、少
ない枚数の電極で負極を構成することが可能で、かつ電
池のエネルギー高密度化、小型化に対応していろいろな
形状を構成できる電極としての炭素質成形体が必要とさ
れていた。As described above, when the conventional carbonaceous molded body is used, the cut electrode sheet, the separator and the current collector must be laminated to form a battery because of its high rigidity. I have to. In this case, if there is a difference in performance between the electrodes, it is known that overcharging and overdischarging are likely to occur at the time of charging / discharging, the battery performance is degraded, and further, a very dangerous state such as rupture is likely to occur. In other words, instead of the conventional method of forming a negative electrode of a battery by using a large number of electrode plates, it is possible to form a negative electrode with a small number of electrodes, and various types of batteries can be used for high energy density and miniaturization. There was a need for a carbonaceous molded body as an electrode capable of forming various shapes.
【0010】[0010]
【課題を解決するための手段】本発明者らは上記の課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。本発明は可撓性に優れた炭素質成形体からな
る電極板およびそれを電極に用いた二次電池特にリチウ
ム二次電池に関するものである。The present inventors have completed the present invention as a result of intensive studies to solve the above problems. The present invention relates to an electrode plate made of a carbonaceous molded article having excellent flexibility and a secondary battery using the same as an electrode, particularly a lithium secondary battery.
【0011】本発明で述べる炭素質成形体の可撓性の評
価(定義)は、図1に示すように直径dの円柱に接触さ
せ、その円周の1/2に面接触した状態を保ちつつ破壊
せずに曲がるときの最小の円の直径(d0) で評価する
こととし、この直径(d0)を可撓性の評価となる可撓
最小径と定義する。即ちd0 が小さいほど可撓性が優れ
ていることを意味する。 また、この可撓性(d0)
は、嵩密度及び厚み依存性を持ち、一般に嵩密度が小さ
いほど、また厚みが小さいほど、可撓性は増す(d0 は
小さくなる)。The evaluation (definition) of the flexibility of the carbonaceous compact described in the present invention is carried out by contacting a cylinder having a diameter d as shown in FIG. while the evaluating the diameter of the smallest circle when turning without destroying (d 0), defining the diameter (d 0) and the flexible minimum diameter to be evaluated for flexibility. That is, the smaller d 0 means the better flexibility. Also, this flexibility (d 0 )
Has a bulk density and thickness dependency. Generally, the smaller the bulk density and the smaller the thickness, the greater the flexibility (d 0 becomes smaller).
【0012】本発明における可撓性としては、かかる嵩
密度や厚みの影響を考慮して同一の嵩密度及び厚みでの
可撓性によって比較評価するものとし、従来公知の通常
法で得られる炭素質成形体のd0 の1/10以下、好ま
しくは1/50以下であることを特徴とする。ここで通
常法で得られる炭素質成形板とは、800〜1300℃
で焼成された市販炭素繊維を原料として、マトリックス
樹脂を含浸、成形して得られる成形体を真空、または不
活性ガス雰囲気下、800℃以上で焼成して得られる炭
素質成形体をさす。本発明における可撓性の違いの例
を、通常法での炭素質成形体と比較して図2に示す。As the flexibility in the present invention, the flexibility obtained at the same bulk density and the same thickness is comparatively evaluated in consideration of the influence of the bulk density and the thickness. It is characterized in that it is 1/10 or less, preferably 1/50 or less of d 0 of the quality molded product. Here, the carbonaceous molded plate obtained by the usual method means 800 to 1300 ° C.
A commercially available carbon fiber calcined in step 1 is used as a raw material to impregnate and mold a matrix resin to obtain a compact, which is then calcined at 800 ° C. or higher in a vacuum or an inert gas atmosphere to indicate a carbonaceous compact. An example of the difference in flexibility according to the present invention is shown in FIG. 2 in comparison with a carbonaceous molded body produced by a conventional method.
【0013】本発明による可撓性炭素質成形体では、炭
素質マトリックスが微小ブロック状に分割されているこ
と及びブロック間を複数の炭素繊維が貫通しているこ
と、そして貫通している炭素繊維と炭素質マトリックス
との界面が一定の割合以上で剥離していることが好まし
い。この様な炭素質成形体を図3に構造模式図で例示す
る。ここで炭素質マトリックスの微小ブロックの大きさ
の程度としては、一辺の大きさが20μm〜2000μ
mくらいで、それぞれのブロックは必ずしも均一な大き
さである必要はない。In the flexible carbonaceous molded article according to the present invention, the carbonaceous matrix is divided into minute blocks, a plurality of carbon fibers penetrate between the blocks, and the carbon fibers that penetrate the carbonaceous matrix. It is preferable that the interface between the carbonaceous matrix and the carbonaceous matrix is separated at a certain ratio or more. Such a carbonaceous compact is illustrated in FIG. 3 as a structural schematic diagram. Here, as the size of the minute block of the carbonaceous matrix, the size of one side is 20 μm to 2000 μm.
Each block does not necessarily have to have a uniform size of about m.
【0014】このような構造を有する炭素質成形体は炭
素繊維と炭素質マトリックスからなる、いわゆるC/C
(カーボン/カーボンファイバー)コンポジットである
にもかかわらず曲面に沿った曲げ変形が可能である。か
かる可撓性を発現するためには炭素繊維と炭素質マトリ
ックスの結合力が弱く、例えば走査型電子顕微鏡で観察
される両者の界面が剥離している割合が少なくとも50
%以上あるものが好ましい。この場合その界面において
炭素繊維と炭素質マトリックスとは強く固定されていな
いため、炭素繊維と炭素質マトリックスの間での滑りが
生じること、また炭素質マトリックスが焼成過程で微小
ブロック状に分割されやすいことから可撓性が発現され
る。この可撓性は上記の炭素繊維と炭素質マトリックス
との界面の剥離割合が大きいほど高く、80%以上では
特に可撓性に優れたものとなる。このような可撓性のあ
るC/Cコンポジットを得るための方法としては、例え
ば原料炭素繊維の表面活性が低いものを使用して炭素質
成形体を得る方法がある。低表面活性としてはESCA
(Electron Spectroscopy for Chemical Analisis,X線
光電子分光法)により測定される、炭素繊維表面のO1S
/C1S値がより低いもの、動的接触角測定で得られる接
触角がより大きいもの、X線回折測定で得られる黒鉛化
性がより高いもの等が有効で、これらの特性をもつ炭素
繊維を原料として用いると炭素質マトリックスとの密着
性が少なく、焼成後に上記可撓性炭素質成形体を得るこ
とができる。図2に示される前記の炭素質成形体は、O
1S/C 1S値が違う炭素繊維を基材とする以外は全て同じ
条件で作成したもので、本発明における炭素質成形体
と、通常法炭素質成形体の可撓性の比較を示す。この炭
素質成形体の製造方法は後述の実施例と同じであり、基
材はドナカーボペーパー(商品名、ドナック社製)、マ
トリックス樹脂はフェノール樹脂、樹脂含有率は75重
量%、加熱硬化後の成形体は全て真空中2400℃で焼
成したものである。この図よりO1S/C1S値が小さい炭
素繊維を基材としたものは、可撓性に優れていることが
わかる。The carbonaceous molding having such a structure is charcoal.
So-called C / C consisting of elemental fiber and carbonaceous matrix
(Carbon / carbon fiber) composite
Nevertheless, bending deformation along a curved surface is possible. Or
Carbon fiber and carbonaceous matri are used to express the flexibility.
The binding force of the probe is weak, and it is observed with a scanning electron microscope, for example.
The ratio of the peeled interface between the two is at least 50
% Or more is preferable. In this case at the interface
The carbon fiber and carbonaceous matrix are not firmly fixed
Therefore, there is no slippage between the carbon fiber and the carbonaceous matrix.
What happens and the carbonaceous matrix becomes fine during the firing process
Flexibility is expressed because it is easy to divide into blocks
You. This flexibility is due to the above carbon fiber and carbonaceous matrix
The higher the peeling ratio at the interface with the
In particular, it has excellent flexibility. Such flexibility
As a method to obtain a C / C composite
For example, use carbon fiber with low surface activity as raw carbon fiber.
There is a method of obtaining a molded body. ESCA for low surface activity
(Electron Spectroscopy for Chemical Analisis, X-ray
O of the carbon fiber surface measured by photoelectron spectroscopy)1S
/ C1SLower value, contact obtained by dynamic contact angle measurement
Larger antenna, graphitization obtained by X-ray diffraction measurement
A carbon with higher properties is effective, and carbon with these characteristics
Adhesion to carbonaceous matrix when fiber is used as raw material
Since it has little property, it is possible to obtain the above-mentioned flexible carbonaceous molded body after firing.
You can The carbonaceous compact shown in FIG.
1S/ C 1SAll the same except that carbon fiber with different values is used as the base material
The carbonaceous molded product according to the present invention, which was produced under the conditions
And a comparison of the flexibility of the conventional carbonaceous moldings. This charcoal
The method for producing a molded body is the same as in the examples described below,
Materials are Dona Carbo Paper (trade name, manufactured by Donac),
Trix resin is phenol resin, resin content is 75
%, All molded products after heat curing are baked at 2400 ° C in vacuum
It was made. O from this figure1S/ C1SSmall charcoal
Those based on elementary fibers should have excellent flexibility.
Recognize.
【0015】本発明において、炭素繊維とはPAN系炭
素繊維、石油系、石炭系の等方性、異方性ピッチを原料
とするピッチ系炭素繊維、レーヨン系繊維、フェノール
樹脂繊維を焼成して得られる炭素繊維、ベンゼンを気相
熱分解させて得られる気相成長炭素繊維等が使用でき、
特に限定されない。また、一本の繊維が直状のもの、曲
状のもののいずれも使用に供されるが、曲状炭素繊維の
ほうが可撓性においてその効果が高く直状のものは引張
強度において効果が高い。In the present invention, the carbon fibers are PAN-based carbon fibers, petroleum-based or coal-based isotropic, pitch-based carbon fibers made of anisotropic pitch as raw materials, rayon-based fibers, and phenol resin fibers by firing. The obtained carbon fiber, vapor-grown carbon fiber obtained by vapor-phase thermal decomposition of benzene, etc. can be used,
There is no particular limitation. Both straight and curved single fibers are used, but curved carbon fibers are more effective in flexibility and straight ones are more effective in tensile strength. .
【0016】ここで曲状炭素繊維とは、繊維径0.1〜
100μm、アスペクト比50以上で、その外形におい
て、弾性変形し得る屈曲ないし湾曲した固定形状を有
し、そのランダム集合体の比容積が、屈曲ないし湾曲固
定形状を有さない同種の直状炭素繊維のランダム集合体
の比容積より大であるものをさす。更に詳しく述べる
と、例えば繊維径を13μmとし、アスペクト比を50
0とした場合に、比容積が9cm3/g 以上のものをさ
す。但し、ここでの比容積とは、繊維のランダム集合体
を直径7cmの円筒状容器に150g/cm2 の加圧下
で充填したときの繊維500mlの重量に基づく。Here, the curved carbon fiber means a fiber diameter of 0.1 to 0.1.
A straight carbon fiber of 100 μm and an aspect ratio of 50 or more, which has a bent or curved fixed shape capable of elastically deforming in its outer shape, and the specific volume of the random aggregate does not have the bent or curved fixed shape. Which is larger than the specific volume of the random aggregate of. More specifically, for example, the fiber diameter is 13 μm and the aspect ratio is 50 μm.
When the value is 0, the specific volume is 9 cm 3 / g or more. However, the specific volume here is based on the weight of 500 ml of fibers when a random assembly of fibers is filled in a cylindrical container having a diameter of 7 cm under a pressure of 150 g / cm 2 .
【0017】典型的な曲状炭素繊維は、渦流吹繊法(特
公昭58−57374)により製造されるピッチ系炭素
繊維の短繊維で、これは円錐の接線方向に複数のノズル
から吹き出される気流が生じる渦流によって、溶融ピッ
チがノズルから吹き飛ばされて成形され、渦流の作用で
カールされ、繊維のランダム集合体としてマット状に堆
積され、熱処理されて生成するものである。この様なマ
ット状ランダム集合体は、ニードルパンチすることによ
ってフェルト状ないしペーパー状のシート体に成形され
る。A typical curved carbon fiber is a short fiber of pitch-based carbon fiber produced by the eddy current blowing method (Japanese Patent Publication No. 58-57374), which is blown out from a plurality of nozzles in a tangential direction of a cone. The molten pitch is blown out from the nozzle by a vortex flow generated by the air flow, is shaped, is curled by the action of the vortex flow, is deposited in the form of a mat as a random aggregate of fibers, and is heat-treated. Such a mat-shaped random aggregate is formed into a felt-like or paper-like sheet by needle punching.
【0018】本発明における炭素質マトリックスとは、
焼成によって炭素化して炭素繊維と一体化し得る物質で
あればよく、例えばフェノール樹脂、エポキシ樹脂、イ
ミド樹脂、不飽和ポリエステル樹脂、メラミン樹脂、尿
素樹脂、ビニルエステル樹脂、フルフリルアルコール樹
脂の熱硬化性樹脂及びこれらの混合物や、焼成後の残炭
率が比較的高いポリフェニレンサルファイド、ポリサル
フォン、ポリエーテルイミド等の熱可塑性樹脂及びこれ
らの混合物を焼成して得られる炭素質マトリックス、さ
らに石油、石炭ピッチ、アスファルトピッチ、コールタ
ールピッチ、原油分解ピッチ、および、縮合多環炭化水
素化合物や多環複素環化合物などの有機高分子化合物の
熱分解によって得られるピッチ等を挙げることができ
る。The carbonaceous matrix in the present invention means
Any substance can be used as long as it can be carbonized by firing and integrated with the carbon fiber, for example, thermosetting property of phenol resin, epoxy resin, imide resin, unsaturated polyester resin, melamine resin, urea resin, vinyl ester resin, furfuryl alcohol resin. Resin and a mixture thereof, a residual carbon ratio after firing is relatively high polyphenylene sulfide, polysulfone, a thermoplastic resin such as polyetherimide and a carbonaceous matrix obtained by firing a mixture thereof, further petroleum, coal pitch, Examples thereof include asphalt pitch, coal tar pitch, crude oil cracking pitch, and pitch obtained by thermal decomposition of an organic polymer compound such as a condensed polycyclic hydrocarbon compound or a polycyclic heterocyclic compound.
【0019】炭素繊維と炭素質マトリックスの割合は広
範囲で可能であり特に限定されないが、最終密度を高め
るためには1:9〜6:4、更に好ましくは2:8〜
4:6の割合が使用される。可撓性炭素質成形体の焼成
前成形体の成形方法としては熱圧縮成形、射出成形、押
出し成形、スタンパブル成形等の常法により得ることが
できる。この時、密度の増加、導電性の向上等の目的の
ため、他の黒鉛材料、例えばアセチレンブラック、ファ
ーネスブラック、天然及び人工黒鉛等の各種黒鉛粉末や
メソカーボンマイクロビーズ、炭素繊維ミルド等を添加
することもできる。The ratio of the carbon fiber to the carbonaceous matrix can be within a wide range and is not particularly limited, but it is 1: 9 to 6: 4, more preferably 2: 8 to increase the final density.
A ratio of 4: 6 is used. As a method for molding the flexible carbonaceous molded body before firing, it can be obtained by a conventional method such as thermal compression molding, injection molding, extrusion molding or stampable molding. At this time, for the purpose of increasing density, improving conductivity, etc., other graphite materials such as acetylene black, furnace black, various graphite powders such as natural and artificial graphite, mesocarbon microbeads, carbon fiber milled, etc. are added. You can also do it.
【0020】このようにして得られた成形体は真空、あ
るいは不活性ガス雰囲気下で800℃以上で焼成するこ
とにより可撓性炭素質成形体を得ることができる。80
0℃以下の焼成では可撓性の発現が不十分である。具体
的な焼成温度は成形体の組成により変化するが二次電池
の負極としての性能が最適になるよう決定される。A flexible carbonaceous molded body can be obtained by firing the molded body thus obtained at 800 ° C. or higher in a vacuum or an inert gas atmosphere. 80
If the firing temperature is 0 ° C. or lower, the flexibility is not sufficiently expressed. The specific firing temperature varies depending on the composition of the molded body, but is determined so that the performance as the negative electrode of the secondary battery is optimum.
【0021】得られた可撓性炭素質成形体は、電池とし
て組み立てられた二次電池の負極として使用される。す
なわちここに得た炭素質成形体は、正極の正極活物質に
リチウムを含む場合、更に具体的に言えば正極活物質と
して例えばLiCoO2、LiNiCoO2、LiNiO2、LiMnO2、或い
は、LiMn2O4 を選んだ場合には、そのまま負極として使
用し、一方正極活物質にリチウムを含まない場合は、予
め可撓性炭素質成形体に所定量のリチウムを吸蔵させる
か、または所定量のリチウムを圧着させて使用される。
なお本発明を実施するとき、リチウムを負極用可撓性炭
素成形体に吸蔵させる方法は特に限定されず、例えば有
機電解液中で炭素質成形体を負極とし、金属リチウムを
正極として両電極間に電流を流す方法や両電極間を導体
で短絡させるなどの電気化学的方法、或いは炭素質成形
体を2枚の金属リチウム板で挟持または接触させて積み
重ねた積層体を有機電解液中に浸漬して金属リチウムと
を接触させたり、炭素質成形体に所定量の金属リチウム
の箔などを張り付けた後に有機電解液中に浸漬させたり
するといった物理的方法が可能である。The obtained flexible carbonaceous molded product is used as a negative electrode of a secondary battery assembled as a battery. That is, the obtained carbonaceous molded article, when containing lithium in the positive electrode active material of the positive electrode, more specifically, as the positive electrode active material, for example, LiCoO 2 , LiNiCoO 2 , LiNiO 2 , LiMnO 2 , or LiMn 2 O. When 4 is selected, it is used as a negative electrode as it is, while when the positive electrode active material does not contain lithium, the flexible carbonaceous molded body is allowed to store a predetermined amount of lithium in advance, or a predetermined amount of lithium is stored. Used by crimping.
When carrying out the present invention, the method of occluding lithium in the negative electrode flexible carbon molded body is not particularly limited. For example, a carbonaceous molded body is used as a negative electrode in an organic electrolyte, and metallic lithium is used as a positive electrode A method of passing an electric current through it, an electrochemical method such as short-circuiting both electrodes with a conductor, or a laminated body in which carbonaceous compacts are sandwiched or contacted with two metallic lithium plates and immersed in an organic electrolytic solution. Then, a physical method such as contacting with metal lithium or immersing a carbonaceous molded body in a predetermined amount of metal lithium foil or the like and then immersing it in an organic electrolytic solution is possible.
【0022】本発明二次電池における正極としては、二
次電池正極としての性能を有するものであれば特に限定
されず何れも使用することができる。またセパレータと
してはポリエチレン、ポリプロピレン、ポリテトラフル
オロエチレン等の合成樹脂繊維や、ガラス繊維や天然繊
維の織布、或いは不織布が使用されうる。The positive electrode in the secondary battery of the present invention is not particularly limited as long as it has the performance as a secondary battery positive electrode, and any of them can be used. As the separator, synthetic resin fibers such as polyethylene, polypropylene and polytetrafluoroethylene, or woven or non-woven fabric of glass fibers or natural fibers can be used.
【0023】本発明二次電池における非水電解液として
は、LiClO4、LiBF4、LiPF6、LiAsF6、LiSbF6等のリチウ
ム塩を0.1〜5mol/lの濃度で高誘電率の有機溶
媒、例えばアセトニトリル、プロピオニトリル、プロピ
レンカーボネート、エチレンカーボネート、テトラヒド
ロフラン、ジオキサン、ジエチルカーボネート、ジメチ
ルカーボネート、1・2ジメトキシエタン、ジメチルス
ルホキシド等に溶解させた溶液が使用される。[0023] As the non-aqueous electrolyte solution in the present invention a secondary battery, LiClO 4, LiBF 4, LiPF 6, LiAsF 6, a high dielectric constant of the organic lithium salt LiSbF 6 such at a concentration of 0.1 to 5 mol / l A solution dissolved in a solvent such as acetonitrile, propionitrile, propylene carbonate, ethylene carbonate, tetrahydrofuran, dioxane, diethyl carbonate, dimethyl carbonate, 1.2 dimethoxyethane, dimethyl sulfoxide, etc. is used.
【0024】炭素質成形体を負極とする二次電池の形状
は、通常コイン型、ペーパー型、カード型、円筒型、あ
るいは箱型などであるが、本発明に於いては負極として
使用する炭素質成形体が可撓性を有しているため、正
極、セパレータ、及び可撓性炭素質成形体とを渦巻状に
巻いて円筒形の電池としたり、体積効率が有効になるよ
うに該可撓性炭素質成形体をある曲率で形状変化させて
二次電池を構成したりできる。The shape of a secondary battery having a carbonaceous molded body as a negative electrode is usually coin type, paper type, card type, cylindrical type, box type, or the like. In the present invention, carbon used as a negative electrode is used. Since the quality molded body is flexible, the positive electrode, the separator, and the flexible carbonaceous molded body are spirally wound to form a cylindrical battery, or the volumetric efficiency is improved. It is possible to form a secondary battery by changing the shape of the flexible carbonaceous molded body with a certain curvature.
【0025】尚、この明細書において、本発明の電極板
は、二次電池の負極として主として説明されているが、
所望により正極として使用されることや、一次電池に使
用されることも妨げられない。In this specification, the electrode plate of the present invention is mainly described as a negative electrode of a secondary battery.
It can be used as a positive electrode or used in a primary battery as desired.
【0026】[0026]
【発明の効果】本発明の電極板または二次電池は、電池
内部で多数の板状の炭素質成形体を直列、並列に配線し
て負極として使用している従来のものに比べて、例えば
1枚の可撓性炭素質成形体とセパレータとを共に巻いた
り、折りたたんだりした形状で負極として用いることが
可能であり、電池としての体積効率を向上させることが
でき、また電極各板の性能差に起因する過充電、過放電
による電池性能の低下、破裂等の危険な状態になること
を避けることができる。EFFECTS OF THE INVENTION The electrode plate or secondary battery of the present invention has, for example, a large number of plate-like carbonaceous compacts wired in series or in parallel inside the battery and used as a negative electrode. It is possible to use one flexible carbonaceous molded body and a separator together as a negative electrode in a rolled or folded shape, and it is possible to improve the volumetric efficiency as a battery and the performance of each electrode plate. It is possible to avoid a dangerous state such as a decrease in battery performance due to overcharge or overdischarge due to a difference, or a burst.
【0027】[0027]
【実施例】以下本発明について実施例、および比較例を
示してその効果を説明するが、これらの例は本発明を具
体的に説明するためのものであって、本発明の技術的範
囲を限定するものとしては意図されていない。EXAMPLES The effects of the present invention will be described below with reference to examples and comparative examples. These examples are for specifically explaining the present invention, and the technical scope of the present invention is not limited thereto. It is not intended to be limiting.
【0028】実施例1 ドナカーボ S−251(商品名、ドナック社製:50
g/m2 のペーパー、繊維径13μm、アスペクト比2
50)を真空雰囲気下で焼成した炭素繊維ペーパー(O
1S/C1S=0.04)に、マトリックス樹脂としてフェ
ノール樹脂:フェノライトJ−325(商品名、大日本
インキ化学工業社製)を含浸して樹脂含有率80重量%
のプリプレグを得た。このプリプレグ1プライを加熱硬
化圧縮成形し得られた成形体の樹脂含有率は77重量%
である。該成形体を真空雰囲気下で2400℃に焼成
し、厚みが0.12mm、密度が1.0g/cm3 炭素
繊維含量35重量%の炭素質成形体を得た。この成形体
は可撓性を有し、可撓最小径は1mmであり、該成形体
の断面において観測した界面剥離の炭素繊維の割合は8
1%(剥離数495/総検査数611)であった。ここ
に得られた可撓性炭素質成形体から10×30mm(重
量63mg)の二次電池の負極用試験片を打ち抜いて作
成した。Example 1 Donacarb S-251 (trade name, manufactured by Donac Co .: 50)
g / m 2 paper, fiber diameter 13 μm, aspect ratio 2
Carbon fiber paper (O)
1S / C1S = 0.04) is impregnated with phenol resin: Phenolite J-325 (trade name, manufactured by Dainippon Ink and Chemicals, Inc.) as a matrix resin, and the resin content is 80% by weight.
I got a prepreg of. The resin content of the molded product obtained by heat-curing and compression-molding 1 ply of this prepreg is 77% by weight.
Is. The compact was fired at 2400 ° C. in a vacuum atmosphere to obtain a carbonaceous compact having a thickness of 0.12 mm and a density of 1.0 g / cm 3 carbon fiber content of 35% by weight. This molded product is flexible, and has a minimum flexible diameter of 1 mm, and the ratio of carbon fibers with interfacial peeling observed in the cross section of the molded product is 8 mm.
It was 1% (the number of peeling 495 / the total number of inspection 611). A test piece for a negative electrode of a secondary battery having a size of 10 × 30 mm (weight: 63 mg) was punched out from the obtained flexible carbonaceous molded product.
【0029】正極としてはLiCoO285重量部にアセチレ
ンブラック10重量部とポリテトラフルオロエチレン粉
末5重量部とを配合して圧縮成形したものを(重量14
0mg、10×30mm)を、また電解液としては過塩
素酸リチウムをエチレンカーボネートと、ジエチルカー
ボネートとの等容量混合物に溶解した溶液(濃度1mo
l/l)を作成し使用した。これらの正、負極用電極板
試験片及び電解液を用いて、厚さ34μmのポリエチレ
ン製微多孔膜(セパレータ)と重ねて半径5mmの円筒状
に巻き付けた円筒形二次電池を構成した。なおここに得
られた二次電池の初期回路電圧は3.2V(ボルト)で
あった。As the positive electrode, a mixture obtained by mixing 85 parts by weight of LiCoO 2 with 10 parts by weight of acetylene black and 5 parts by weight of polytetrafluoroethylene powder and compression-molding (weight 14
0 mg, 10 × 30 mm), and an electrolyte solution of lithium perchlorate dissolved in an equal volume mixture of ethylene carbonate and diethyl carbonate (concentration: 1 mo)
1 / l) was prepared and used. Using these positive and negative electrode plate test pieces and the electrolytic solution, a cylindrical secondary battery was formed by stacking a polyethylene microporous film (separator) having a thickness of 34 μm and winding it in a cylindrical shape having a radius of 5 mm. The initial circuit voltage of the secondary battery obtained here was 3.2 V (volt).
【0030】次いで電流密度1.0mA/cm2 にて充
電電圧が4.10Vになるまで定電流充電を行ったの
ち、電流密度1.0mA/cm2 で定電流放電試験を行
ったところ、初期放電容量10.8mAh、初期放電容
量の効率92.0%なる結果を得た。次いで定電流放電
サイクル試験を電流密度1.0mA/cm2 、下限電圧
2.00V、上限電圧4.10Vの条件下に実施したと
ころ、50サイクル目の放電容量10.0mAh、20
0サイクル目の放電容量9.5mAh、500サイクル
目の放電容量9.3mAhなる結果を得た。500サイ
クル目の定電流充放電試験を終えた二次電池、および試
験片を分解解体して点検したところ、何等の異常も見ら
れなかった。[0030] Then after the charging voltage at a current density of 1.0 mA / cm 2 was subjected to constant current charging until 4.10 V, was subjected to constant current discharge test at a current density of 1.0 mA / cm 2, the initial The result was that the discharge capacity was 10.8 mAh and the efficiency of the initial discharge capacity was 92.0%. Then, a constant current discharge cycle test was carried out under the conditions of a current density of 1.0 mA / cm 2 , a lower limit voltage of 2.00 V and an upper limit voltage of 4.10 V. The discharge capacity at the 50th cycle was 10.0 mAh, 20
The discharge capacity at the 0th cycle was 9.5 mAh and the discharge capacity at the 500th cycle was 9.3 mAh. When the secondary battery after the 500th cycle constant current charge / discharge test and the test piece were disassembled and disassembled and inspected, no abnormality was found.
【0031】実施例2 実施例1において用いたフェノール樹脂の替わりにフル
フリルアルコール樹脂:DA−404(大日本インキ化
学工業社製)を含浸し、同様に樹脂含有率79重量%の
プリプレグを得た。このプリプレグ5プライを加熱硬化
圧縮成形し得られた成形体の樹脂含有率は75重量%で
あり、該成形体を真空雰囲気下で2400℃に焼成し、
厚みが0.47mm、密度が1.2g/cm3 、炭素繊
維含有率38重量%の炭素質成形体を得た。この成形体
は可撓性を有しており、可撓最小径は12mmであり、
該成形体の断面において観測した界面剥離の炭素繊維の
割合は89%(剥離数328/総検査数369)であっ
た。この可撓性炭素質成形体から実施例1と同様に円筒
形二次電池を構成し試験を行った。ここに得られた二次
電池の初期回路電圧は3.2Vであった。Example 2 Instead of the phenol resin used in Example 1, a furfuryl alcohol resin: DA-404 (manufactured by Dainippon Ink and Chemicals, Inc.) was impregnated to obtain a prepreg having a resin content of 79% by weight. It was The resin content of the molded body obtained by heat-curing compression molding of this prepreg 5 ply is 75% by weight, and the molded body is baked at 2400 ° C. in a vacuum atmosphere,
A carbonaceous compact having a thickness of 0.47 mm, a density of 1.2 g / cm 3 and a carbon fiber content of 38% by weight was obtained. This molded body is flexible, and has a minimum flexible diameter of 12 mm.
The ratio of carbon fibers with interfacial peeling observed in the cross section of the molded product was 89% (peeling number 328 / total inspection number 369). A cylindrical secondary battery was constructed from this flexible carbonaceous molded body in the same manner as in Example 1 and tested. The initial circuit voltage of the secondary battery obtained here was 3.2V.
【0032】次いで電流密度1.0mA/cm2 にて充
電電圧が4.10Vになるまで定電流充電を行ったの
ち、電流密度1.0mA/cm2 で定電流放電試験を行
ったところ、初期放電容量15.0mAh、初期放電容
量の効率91.2%なる結果を得た。次いで定電流放電
サイクル試験を電流密度1.0mA/cm2、 下限電圧
2.00V、上限電圧4.10Vの条件下に実施したと
ころ、50サイクル目の放電容量14.0mAh、20
0サイクル目の放電容量13.5mAh、500サイク
ル目の放電容量13.3mAhなる結果を得た。500
サイクル目の定電流充放電試験を終えた二次電池、およ
び試験片を同様に分解解体して点検したところ、何等の
異常も見られなかった。[0032] Then after the charging voltage at a current density of 1.0 mA / cm 2 was subjected to constant current charging until 4.10 V, was subjected to constant current discharge test at a current density of 1.0 mA / cm 2, the initial As a result, the discharge capacity was 15.0 mAh and the efficiency of the initial discharge capacity was 91.2%. Then, a constant current discharge cycle test was carried out under conditions of a current density of 1.0 mA / cm 2 , a lower limit voltage of 2.00 V and an upper limit voltage of 4.10 V, and the discharge capacity at the 50th cycle was 14.0 mAh, 20.
The discharge capacity at the 0th cycle was 13.5 mAh, and the discharge capacity at the 500th cycle was 13.3 mAh. 500
When the secondary battery after the constant current charge / discharge test of the cycle and the test piece were similarly disassembled and disassembled and inspected, no abnormality was found.
【0033】実施例3 実施例1においてドナカーボ S−251の替わりに同
様に真空雰囲気下で焼成したドナカーボ S−223
(商品名、ドナック社製:300g/m2 のフェルト、
繊維径13μm、アスペクト比1000以上)を用いて
含浸して同様に樹脂含有率80重量%のプリプレグを得
た。このプリプレグ1プライを加熱硬化圧縮成形し得ら
れた成形体の樹脂含有率は76重量%であり、該成形体
を真空雰囲気下で2400℃に焼成し、厚みが0.75
mm、密度が1.1g/cm3 炭素繊維含有率36重量
%の炭素質成形体を得た。この成形体は可撓性を有して
おり、可撓最小径は22mmであり、該成形体の断面に
おいて観測した界面剥離の炭素繊維の割合は85%(剥
離数264/総検査数309)であった。この可撓性炭
素質成形体から実施例1、2と同様に半径10mmの円
筒形二次電池を構成し試験を行った。ここに得られた二
次電池の初期回路電圧は3.2Vであった。Example 3 In place of Donacarb S-251 in Example 1, Donacarb S-223 similarly fired in a vacuum atmosphere was used.
(Product name, manufactured by Donac: 300 g / m 2 felt,
A prepreg having a resin content of 80% by weight was similarly obtained by impregnation with a fiber diameter of 13 μm and an aspect ratio of 1000 or more). The resin content of the molded product obtained by heat-curing and compression-molding 1 ply of this prepreg was 76% by weight, and the molded product was fired at 2400 ° C. in a vacuum atmosphere to have a thickness of 0.75.
A carbonaceous compact having a carbon fiber content of 36% by weight and a carbon fiber content of 1.1 g / cm 3 was obtained. This molded body has flexibility, the minimum flexible diameter is 22 mm, and the ratio of carbon fibers for interfacial peeling observed in the cross section of the molded body is 85% (peel number 264 / total inspection number 309). Met. A cylindrical secondary battery having a radius of 10 mm was constructed from the flexible carbonaceous molded body in the same manner as in Examples 1 and 2, and a test was conducted. The initial circuit voltage of the secondary battery obtained here was 3.2V.
【0034】次いで電流密度1.0mA/cm2 にて充
電電圧が4.10Vになるまで定電流充電を行ったの
ち、電流密度1.0mA/cm2 で定電流放電試験を行
ったところ、初期放電容量24.2mAh、初期放電容
量の効率89.3%なる結果を得た。次いで、定電流放
電サイクル試験を電流密度1.0mA/cm2 、下限電
圧2.00V、上限電圧4.10Vの条件下に実施した
ところ50サイクル目の放電容量22.8mAh、20
0サイクル目の放電容量21.2mAh、500イクル
目の放電容量20.7mAhなる結果を得た。500サ
イクル目の定電流充放電試験を終えた二次電池、および
試験片を同様に分解解体して点検したところ、何等の異
常も見られなかった。[0034] Then after the charging voltage at a current density of 1.0 mA / cm 2 was subjected to constant current charging until 4.10 V, was subjected to constant current discharge test at a current density of 1.0 mA / cm 2, the initial As a result, the discharge capacity was 24.2 mAh and the efficiency of the initial discharge capacity was 89.3%. Then, a constant current discharge cycle test was carried out under conditions of a current density of 1.0 mA / cm 2 , a lower limit voltage of 2.00 V and an upper limit voltage of 4.10 V. The discharge capacity at the 50th cycle was 22.8 mAh, 20.
The discharge capacity at the 0th cycle was 21.2 mAh and the discharge capacity at the 500th cycle was 20.7 mAh. When the secondary battery after the constant current charge / discharge test at the 500th cycle and the test piece were similarly disassembled and disassembled and inspected, no abnormality was found.
【0035】比較例1 実施例1における炭素繊維ペ−パ−について、焼成しな
いでO1S/C1S値を著しく大きいままに止め、同様に樹
脂を含浸し樹脂含有率80重量%のプリプレグを得た。
このプリプレグ1プライを加熱硬化圧縮成形し得られた
成形体の樹脂含有率は77重量%であり、該成形体を真
空雰囲気下で2400℃に焼成し、厚みが0.12m
m、密度が1.0g/cm3 、炭素繊維含有率35重量
%の炭素質成形体を得た。この成形体は炭素繊維と炭素
質マトリックスとの界面が密着しているため可撓性を有
していなかった。この炭素材の可撓最小径は230mm
であり、実施例1の可撓性炭素質成形体に比べてd0が
50倍以上であった。そのため円筒状に巻きとることが
できなく、円筒形の二次電池を構成することができなか
った。Comparative Example 1 With respect to the carbon fiber paper in Example 1, the O 1S / C 1S value was maintained at a remarkably large value without firing and the resin was impregnated in the same manner to obtain a prepreg having a resin content of 80% by weight. It was
The resin content of the molded product obtained by heat-curing compression molding of this prepreg 1 ply was 77% by weight, and the molded product was baked at 2400 ° C. in a vacuum atmosphere to have a thickness of 0.12 m.
m, the density was 1.0 g / cm 3 , and the carbon fiber content rate was 35% by weight. This molded product did not have flexibility because the interface between the carbon fiber and the carbonaceous matrix was in close contact. The minimum flexible diameter of this carbon material is 230 mm
And d 0 is smaller than that of the flexible carbonaceous molded article of Example 1.
It was 50 times or more. Therefore, it cannot be wound into a cylindrical shape and a cylindrical secondary battery cannot be constructed.
【0036】比較例2 実施例1における炭素繊維について、トレカマット(商
品名、東レ社製:30g/m2 のマット)を真空雰囲気
下で焼成した炭素繊維マット(O1S/C1S=0.04)
を用いて同様に作成して樹脂含有率80重量%のプリプ
レグを得た。このプリプレグ2プライを加熱硬化圧縮成
形し得られた成形体の樹脂含有率は75重量%であり、
該成形体を真空雰囲気下で2400℃に焼成し、厚みが
0.16mm、密度が1.0g/cm3 炭素繊維含量#
#の炭素質成形体を得た。この成形体の断面において観
測した界面剥離の炭素繊維に割合は80%(剥離数36
1/総検査数451)であったが、可撓最小径は75m
mであったためこの成形体を用いて実施例1〜3記載の
ような半径5〜10mmの円筒形電池を構成することは
できなかった。Comparative Example 2 Regarding the carbon fiber in Example 1, a carbon fiber mat (O 1S / C 1S = 0. 0) obtained by firing a trading card mat (trade name, mat manufactured by Toray Industries Co., Ltd .: 30 g / m 2 mat) in a vacuum atmosphere. 04)
Was prepared in the same manner as above to obtain a prepreg having a resin content of 80% by weight. The resin content of the molded product obtained by heat-curing compression molding of this prepreg 2 ply is 75% by weight,
The molded body was fired at 2400 ° C. in a vacuum atmosphere to have a thickness of 0.16 mm and a density of 1.0 g / cm 3 carbon fiber content #
A # carbonaceous compact was obtained. The ratio of interfacial peeling carbon fibers observed in the cross section of this molded body was 80% (peeling number 36
1 / total inspection number was 451), but the minimum flexible diameter was 75 m
Since it was m, it was not possible to construct a cylindrical battery having a radius of 5 to 10 mm as described in Examples 1 to 3 by using this molded body.
【0037】比較例3 実施例1における負極として、真空雰囲気下で焼成した
ドナカーボ S−241(商品名、ドナック社製:炭素
繊維ミルド、繊維径13μm、アスペクト比10、O1S
/C1S=0.04)85重量部とポリテトラフルオロエ
チレン粉末15重量部とを配合して圧縮成形したもの
(厚み0.30mm、重量90mg、10×30mm)
を用いて半径5mmの円筒形二次電池を構成し同様の充
放電放電試験を行った。ここに得られた二次電池の初期
回路電圧は3.1Vであった。Comparative Example 3 As the negative electrode in Example 1, donacarb S-241 (trade name, manufactured by Donac Co .: carbon fiber milled, fiber diameter 13 μm, aspect ratio 10, O 1S , which was fired in a vacuum atmosphere, was used.
/ C 1S = 0.04) 85 parts by weight and 15 parts by weight of polytetrafluoroethylene powder, and compression molded (thickness 0.30 mm, weight 90 mg, 10 × 30 mm)
A cylindrical secondary battery having a radius of 5 mm was constructed by using and the same charge / discharge test was conducted. The initial circuit voltage of the secondary battery obtained here was 3.1V.
【0038】次いで電流密度1.0mA/cm2 にて充
電電圧が4.10Vになるまで定電流充電を行ったのち
電流密度1.0mA/cm2 で定電流放電試験を行った
ところ、初期放電容量6.5mAh、初期放電容量の効
率90.8%なる結果を得た。次いで、定電流放電サイ
クル試験を電流密度1.0mA/cm2 、下限電圧2.
00V上限電圧4.10Vの条件下に実施したところ5
0サイクル目の放電容量4.4mAh、130サイクル
目の放電容量1.2mAhであった。130サイクル目
の定電流充放電試験を終えた二次電池、および試験片を
同様に分解解体して点検したところ、負極は膨張して、
かつ亀裂がはいっており、電池としての機能を果たして
いなかった。[0038] Then place the charging voltage at a current density of 1.0 mA / cm 2 was subjected to constant current discharge test at a current density of 1.0 mA / cm 2 After performing constant current charging until 4.10 V, the initial discharge As a result, the capacity was 6.5 mAh and the efficiency of the initial discharge capacity was 90.8%. Then, a constant current discharge cycle test was conducted with a current density of 1.0 mA / cm 2 and a lower limit voltage of 2.
00V Upper limit voltage 4.10V
The discharge capacity at the 0th cycle was 4.4 mAh, and the discharge capacity at the 130th cycle was 1.2 mAh. When the secondary battery after the 130th cycle constant current charge / discharge test and the test piece were similarly disassembled and disassembled and inspected, the negative electrode expanded,
Moreover, cracks were present and they did not function as batteries.
【図1】可撓性の評価法(可撓性の定義)を示す概念図
である。FIG. 1 is a conceptual diagram showing a flexibility evaluation method (definition of flexibility).
【図2】本発明による炭素質成形体と、公知の通常法に
よる炭素質成形体の可撓性の比較例を示したグラフであ
る。FIG. 2 is a graph showing a comparative example of the flexibility of the carbonaceous molded body according to the present invention and the carbonaceous molded body according to a known ordinary method.
【図3】本発明の可撓性炭素質成形体を概念的に示す構
造模式図である。FIG. 3 is a structural schematic view conceptually showing a flexible carbonaceous molded body of the present invention.
Claims (12)
れ、それ自体可撓性を有する炭素質成形体からなる非水
電解液二次電池用炭素質電極板。1. A carbonaceous electrode plate for a non-aqueous electrolyte secondary battery, which is composed of a carbonaceous molded article which is composed of carbon fibers and a carbonaceous matrix and which itself has flexibility.
ロック状に分割された炭素質マトリックスと、複数の該
微小ブロックを相互に貫通した炭素繊維とで構成された
ものである請求項1記載の電極板。2. A flexible carbonaceous molded article is composed of a carbonaceous matrix divided into minute blocks and carbon fibers which penetrate a plurality of the minute blocks. 1. The electrode plate according to 1.
リックスとの界面の50%以上において夫々が相互に剥
離しているものである請求項2記載の電極板。3. The electrode plate according to claim 2, wherein the carbonaceous molded body is separated from each other at 50% or more of the interface between the carbon fiber and the carbonaceous matrix.
リックスとの界面の80%以上において夫々が相互に剥
離しているものである請求項3記載の電極板。4. The electrode plate according to claim 3, wherein the carbonaceous molded body is separated from each other at 80% or more of the interface between the carbon fiber and the carbonaceous matrix.
る請求項1〜4のいずれか1つに記載の電極板。5. The electrode plate according to claim 1, wherein the carbon fibers include curved carbon fibers.
μm、アスペクト比50以上で、その外形において、弾
性変形し得る屈曲ないし湾曲した固定形状を有し、その
ランダム集合体の比容積が、屈曲ないし湾曲固定形状を
有さない同種の直状炭素繊維のランダム集合体の比容積
より大であるものである請求項5記載の電極板。但し、
ここでの比容積とは、繊維のランダム集合体を直径7c
mの円筒状容器に150g/cm2 の加圧下で充填したとき
の繊維500mlの重量に基づく。6. The curved carbon fiber has a fiber diameter of 0.1 to 100.
The same kind of straight carbon fiber having a bent or curved fixed shape capable of elastically deforming in its outer shape with a micrometer and an aspect ratio of 50 or more, and the specific volume of the random aggregate does not have the bent or curved fixed shape. The electrode plate according to claim 5, which has a specific volume larger than that of the random assembly of. However,
The specific volume here means a random aggregate of fibers with a diameter of 7c.
m based on the weight of 500 ml of fiber when filled in a cylindrical container under a pressure of 150 g / cm 2 .
されるピッチ系炭素繊維の短繊維をマット状に堆積し、
熱処理して得られるものである請求項5または6記載の
電極板。7. A curved carbon fiber is obtained by depositing short fibers of pitch-based carbon fiber produced by the eddy current blowing method in a mat shape,
The electrode plate according to claim 5, which is obtained by heat treatment.
(d0) が同一嵩密度、同一厚みを持つ通常炭素質成形
体の値の1/10以下、好ましくは1/50以下である
ことを特徴とする請求項1〜7のいずれか1つに記載の
電極板。8. The minimum flexible diameter (d 0 ) of the flexible carbonaceous molded body is 1/10 or less, preferably 1/50 or less of the value of a normal carbonaceous molded body having the same bulk density and the same thickness. It exists, The electrode plate as described in any one of Claims 1-7 characterized by the above-mentioned.
ックスの割合が、1:9〜6:4である請求項1〜8の
いずれか1つに記載の電極板。9. The electrode plate according to any one of claims 1 to 8, wherein the carbon fiber and the carbonaceous matrix in the carbonaceous molded body have a ratio of 1: 9 to 6: 4.
され、それ自体可撓性を有する炭素質成形体からなる炭
素質電極板を負極として用いた非水電解液二次電池。10. A non-aqueous electrolyte secondary battery using, as a negative electrode, a carbonaceous electrode plate composed of a carbonaceous molded body which is composed of carbon fibers and a carbonaceous matrix and which itself has flexibility.
電極板を負極として用いた非水電解液二次電池。11. A non-aqueous electrolyte secondary battery using the electrode plate according to claim 2 as a negative electrode.
求項10または11記載の二次電池。12. The secondary battery according to claim 10, wherein the secondary battery is a lithium secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6262478A JPH08124558A (en) | 1994-10-26 | 1994-10-26 | Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6262478A JPH08124558A (en) | 1994-10-26 | 1994-10-26 | Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08124558A true JPH08124558A (en) | 1996-05-17 |
Family
ID=17376348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6262478A Pending JPH08124558A (en) | 1994-10-26 | 1994-10-26 | Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08124558A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001015170A (en) * | 1999-06-29 | 2001-01-19 | Sony Corp | Nonaqueous electrolyte battery |
JP2001155718A (en) * | 1999-11-24 | 2001-06-08 | Honda Motor Co Ltd | Method of measuring adhesive strength of electrode and method of judging its acceptability |
US7033702B2 (en) | 2000-07-31 | 2006-04-25 | Electrovaya Inc. | Particulate electrode including electrolyte for a rechargeable lithium battery |
-
1994
- 1994-10-26 JP JP6262478A patent/JPH08124558A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001015170A (en) * | 1999-06-29 | 2001-01-19 | Sony Corp | Nonaqueous electrolyte battery |
JP2001155718A (en) * | 1999-11-24 | 2001-06-08 | Honda Motor Co Ltd | Method of measuring adhesive strength of electrode and method of judging its acceptability |
US7033702B2 (en) | 2000-07-31 | 2006-04-25 | Electrovaya Inc. | Particulate electrode including electrolyte for a rechargeable lithium battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100714346B1 (en) | Non-Aqueous Electrolyte Secondary Battery | |
KR101708360B1 (en) | Negative active material and lithium battery containing the material | |
KR100289973B1 (en) | Cell and Production Method Thereof | |
JP4144038B2 (en) | Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same | |
CN107851778B (en) | Method for manufacturing negative electrode and negative electrode | |
US20080171265A1 (en) | Positive Electrode For Secondary Battery, Manufacturing Method Thereof, and Secondary Battery | |
KR20140108697A (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
CN112219293A (en) | Negative electrode for lithium secondary battery and lithium secondary battery comprising same | |
JP3361510B2 (en) | Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery | |
JPWO2006082708A1 (en) | Positive electrode for secondary battery, method for producing the same, and secondary battery | |
JP2001345100A (en) | Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell | |
JP3633223B2 (en) | Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery | |
US20230081140A1 (en) | Catalysts and methods for lowering electrode pyrolysis temperature | |
JPH09204936A (en) | Battery | |
JP2001089118A (en) | Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery | |
JPH09274920A (en) | Nonaqueous electrolyte battery | |
JPH08124558A (en) | Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery | |
WO2024250691A1 (en) | Composite positive electrode sheet having high compaction density, and preparation method therefor and energy storage device | |
JP3475530B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH09180759A (en) | Battery | |
JPH08138651A (en) | Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery | |
US20230378424A1 (en) | Method for manufacturing negative electrode | |
JPH09161838A (en) | Battery | |
JP2001185149A (en) | Lithium secondary battery | |
JP4811699B2 (en) | Negative electrode for lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040106 |