JPH0812321A - Magnesia powder and its production - Google Patents
Magnesia powder and its productionInfo
- Publication number
- JPH0812321A JPH0812321A JP6164566A JP16456694A JPH0812321A JP H0812321 A JPH0812321 A JP H0812321A JP 6164566 A JP6164566 A JP 6164566A JP 16456694 A JP16456694 A JP 16456694A JP H0812321 A JPH0812321 A JP H0812321A
- Authority
- JP
- Japan
- Prior art keywords
- magnesia
- magnesia powder
- powder
- weight
- surface area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 title claims abstract description 168
- 239000000395 magnesium oxide Substances 0.000 title claims abstract description 83
- 239000000843 powder Substances 0.000 title claims abstract description 69
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 238000000034 method Methods 0.000 claims abstract description 13
- 238000012360 testing method Methods 0.000 claims abstract 2
- 230000029087 digestion Effects 0.000 claims description 28
- 239000002245 particle Substances 0.000 claims description 18
- 150000003961 organosilicon compounds Chemical class 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 16
- 239000000463 material Substances 0.000 abstract description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052710 silicon Inorganic materials 0.000 abstract description 5
- 239000010703 silicon Substances 0.000 abstract description 5
- 239000007858 starting material Substances 0.000 abstract description 4
- 239000011823 monolithic refractory Substances 0.000 abstract 2
- 239000011369 resultant mixture Substances 0.000 abstract 2
- 239000011449 brick Substances 0.000 abstract 1
- 235000012245 magnesium oxide Nutrition 0.000 description 66
- 239000002994 raw material Substances 0.000 description 19
- 238000010438 heat treatment Methods 0.000 description 6
- 229920002545 silicone oil Polymers 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000011819 refractory material Substances 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- 235000019621 digestibility Nutrition 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- -1 methyl hydrogen Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- WOXXJEVNDJOOLV-UHFFFAOYSA-N ethenyl-tris(2-methoxyethoxy)silane Chemical compound COCCO[Si](OCCOC)(OCCOC)C=C WOXXJEVNDJOOLV-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- GQIUQDDJKHLHTB-UHFFFAOYSA-N trichloro(ethenyl)silane Chemical compound Cl[Si](Cl)(Cl)C=C GQIUQDDJKHLHTB-UHFFFAOYSA-N 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- 239000005051 trimethylchlorosilane Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000005050 vinyl trichlorosilane Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F5/00—Compounds of magnesium
- C01F5/02—Magnesia
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/03—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
- C04B35/04—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
- C04B35/043—Refractories from grain sized mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
- C04B35/62615—High energy or reactive ball milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/66—Monolithic refractories or refractory mortars, including those whether or not containing clay
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は耐消化性を必要とする塩
基性定形炉材及び不定形耐火物の原料として好適に使用
しうるマグネシア粉末及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnesia powder which can be suitably used as a raw material for basic shaped furnace materials and amorphous refractory materials requiring digestion resistance, and a method for producing the same.
【0002】[0002]
【従来技術及びその問題点】製鋼用不定形耐火物材料で
ある塩基性吹き付け材及び流し込み材は、近年添加水分
を低減し、材料密度の向上、高温物性の向上を図ること
が検討されている。水分低減に伴い材料の流動性も低下
するため、基材のマグネシア原料についても粒度配合を
変更し、微細粉末の割合を増加する必要が出てきた。2. Description of the Related Art The basic spraying material and casting material, which are amorphous refractory materials for steelmaking, have been studied in recent years to reduce the added water content, improve the material density, and improve the high temperature physical properties. . Since the fluidity of the material decreases as the water content decreases, it has become necessary to change the particle size composition of the magnesia raw material for the base material to increase the proportion of fine powder.
【0003】しかし、マグネシア原料は主要構成鉱物で
あるペリクレースがや空気中の水蒸気と反応して消化す
る欠点を持っており、特に比表面積の大きな微細粉末で
はこの傾向がより顕著に現れる。このため、既存のマグ
ネシアクリンカーを粉砕したマグネシア微粉末は耐消化
性が極端に悪く使用できるレベルではなかった。However, the magnesia raw material has a drawback that periclase, which is the main constituent mineral, is digested by reacting with water vapor in the air, and this tendency becomes more remarkable especially in fine powders having a large specific surface area. For this reason, the magnesia fine powder obtained by pulverizing the existing magnesia clinker has extremely poor digestion resistance and is not at a level at which it can be used.
【0004】そこで、マグネシア粉末の耐消化性を改善
するために、マグネシア粉末にシランなどの無機系カッ
プリング剤による表面処理を施す方法が既に提案されて
いる。しかし、この方法でも耐消化性は実用的なレベル
には至っていない。さらに表面処理後のマグネシア粉末
は顕著な撥水性が認められ、水系の不定形耐火物原料と
しては馴染みが悪く非常に使用しづらい欠点があった。
一方、特開平4−42808号公報には、マグネシア粉
末を1100℃以上に加熱することにより耐消化性を改
善する方法が提案されている。しかし、この方法でも耐
消化性は実用的なレベルには至っていない。Therefore, in order to improve the digestion resistance of the magnesia powder, a method has already been proposed in which the magnesia powder is surface-treated with an inorganic coupling agent such as silane. However, even with this method, the digestion resistance has not reached a practical level. Further, the surface-treated magnesia powder was found to have remarkable water repellency, and was unsuitable as a water-based amorphous refractory raw material and had a drawback that it was very difficult to use.
On the other hand, JP-A-4-42808 proposes a method of improving digestion resistance by heating magnesia powder to 1100 ° C. or higher. However, even with this method, the digestion resistance has not reached a practical level.
【0005】このため、不定形耐火物の高品位化のため
には、不定形耐火物の原料であるマグネシア粉末の消化
反応をさらに抑制して耐消化性を、学振法4(マグネシ
アクリンカーの消化性試験方法)による重量増加率2.
0%以下にまで大幅に向上させ、併せて撥水性が少な
く、かつ流動性の優れた原料の開発が課題であった。Therefore, in order to improve the quality of the amorphous refractory, the digestion reaction of the magnesia powder, which is a raw material of the amorphous refractory, is further suppressed to improve the digestion resistance according to Gakushin method 4 (magnesia clinker). Weight increase rate by digestibility test method 2.
A major challenge was to develop a raw material that was significantly improved to 0% or less and also had low water repellency and excellent fluidity.
【0006】[0006]
【発明の目的】本発明の目的は、前記問題点を解決し、
耐消化性が大幅に向上しており、定形耐火物、不定形耐
火物の原料粉末として、特に流し込み材料用の原料とし
て十分使用が可能であり、しかも撥水性が少なく、水と
馴染みやすく、かつ流動性に優れ、流し込み材料として
使いやすいマグネシア粉末及び該マグネシア粉末を安価
に製造する方法を提供することにある。The object of the present invention is to solve the above problems,
It has significantly improved digestion resistance and can be used as a raw material powder for standard refractory materials and amorphous refractory materials, especially as a raw material for pouring materials, and yet has low water repellency and is easily compatible with water. It is an object of the present invention to provide a magnesia powder having excellent fluidity and easy to use as a pouring material, and a method for producing the magnesia powder at low cost.
【0007】[0007]
【問題点を解決するための手段】本発明者らはマグネシ
ア粉末の消化特性を改善する方法を種々検討した結果、
比表面積5m2/g以下、平均粒径50μm以下のマグ
ネシア粉末に有機珪素化合物を添加した後、加熱処理す
ることにより、耐消化性が大幅に向上し、しかも撥水性
も抑制できることを見い出した。即ち、本発明は、Mg
O含有量90重量%以上、比表面積5m2/g以下、平
均粒径50μm以下であり、学振法4(マグネシアクリ
ンカーの消化性試験方法)による重量増加率が2.0%
以下であることを特徴とするマグネシア粉末に関する。
このようなマグネシア粉末は、MgO含有量98重量%
以上、比表面積5m2/g以下、平均粒径50μm以下
のマグネシア粉末に有機珪素化合物を添加した後、35
0〜600℃で加熱処理することにより得られる。[Means for Solving the Problems] As a result of various investigations by the present inventors on various methods for improving the digestive properties of magnesia powder,
It has been found that, by adding an organosilicon compound to a magnesia powder having a specific surface area of 5 m 2 / g or less and an average particle diameter of 50 μm or less and then performing heat treatment, digestion resistance is significantly improved and water repellency can be suppressed. That is, the present invention relates to Mg
O content is 90% by weight or more, specific surface area is 5 m 2 / g or less, average particle size is 50 μm or less, and the weight increase rate according to Gakushin method 4 (Magnesia clinker digestibility test method) is 2.0%.
The present invention relates to a magnesia powder characterized by the following.
Such magnesia powder has a MgO content of 98% by weight.
As described above, after adding the organosilicon compound to the magnesia powder having a specific surface area of 5 m 2 / g or less and an average particle size of 50 μm or less, 35
It is obtained by heat treatment at 0 to 600 ° C.
【0008】本発明のマグネシア粉末は、MgO含有量
90重量%以上、比表面積5m2/g以下、平均粒径5
0μm以下である。特に、耐消化性の面から、1800
℃以上の温度で焼成して得られる、いわゆる高温焼成マ
グネシアクリンカーを粉砕して得られるマグネシア粉末
であることが望ましい。また、耐火物した場合の特性の
面から、不純物中のCaO/SiO2比が2以上である
ことが好ましい。本発明のマグネシア粉末は、有機珪素
化合物を添加した後、加熱処理されているので、学振法
4(マグネシアクリンカーの消化性試験方法)による重
量増加率が2.0%以下、特に好ましくは1.0%以下
と耐消化性が著しく向上している。また、本発明のマグ
ネシア粉末は、流動性に優れており、ホソカワミクロン
製パウダーテスターによる流動性指数が60以上、好ま
しくは70以上である。The magnesia powder of the present invention has a MgO content of 90% by weight or more, a specific surface area of 5 m 2 / g or less, and an average particle size of 5
It is 0 μm or less. Especially from the aspect of digestion resistance, 1800
A magnesia powder obtained by crushing a so-called high-temperature calcined magnesia clinker, which is obtained by calcining at a temperature of ℃ or more, is desirable. Further, from the viewpoint of the characteristics when the material is a refractory, it is preferable that the CaO / SiO 2 ratio in the impurities is 2 or more. Since the magnesia powder of the present invention is heat-treated after adding the organosilicon compound, the weight increase rate according to Gakushin method 4 (test method for digestibility of magnesia clinker) is 2.0% or less, and particularly preferably 1. When it is less than 0.0%, the digestion resistance is remarkably improved. Further, the magnesia powder of the present invention is excellent in fluidity, and has a fluidity index of 60 or more, preferably 70 or more by a powder tester manufactured by Hosokawa Micron.
【0009】本発明のマグネシア粉末は、MgO含有量
98重量%以上、比表面積5m2/g以下、平均粒径5
0μm以下のマグネシア粉末に有機珪素化合物を添加し
た後、350〜600℃、好ましくは400〜550℃
で加熱処理することにより製造することができる。出発
原料であるMgO含有量98重量%以上、比表面積5m
2/g以下、平均粒径50μm以下のマグネシア粉末と
しては、1800℃以上の温度で焼成して得られる、い
わゆる高温焼成マグネシアクリンカー粉末を破砕・整粒
したものが好ましく用いられる。The magnesia powder of the present invention has a MgO content of 98% by weight or more, a specific surface area of 5 m 2 / g or less, and an average particle size of 5
After adding the organosilicon compound to the magnesia powder of 0 μm or less, 350 to 600 ° C., preferably 400 to 550 ° C.
It can be manufactured by heat-treating. MgO content of the starting material 98% by weight or more, specific surface area 5m
As the magnesia powder having an average particle size of 2 / g or less and 50 μm or less, a so-called high-temperature calcined magnesia clinker powder obtained by calcining at a temperature of 1800 ° C. or higher is preferably used.
【0010】有機珪素化合物としては、シランカップリ
ング剤、アルコキシシラン、シリコーン、シリル化剤等
が挙げられる。シランカップリング剤としては、ビニル
トリクロルシラン、ビニルトリエトキシシラン、ビニル
トリメトキシシラン、ビニルトリス(βメトキシエトキ
シ)シラン、γ−(メタクリロキシプロピル)トリメト
キシシラン、γ−アミノプロピルトリエトキシシラン、
γ−メルカプトプロピルトリメトキシシランなどが挙げ
られる。アルコキシシランとしては、テトラエトキシシ
ラン、テトラメトキシシラン、メチルトリエトキシシラ
ンなどが挙げられる。シリコーンとしては、メチル水素
シリコーンオイル、ジメチルシリコーンオイルなどが挙
げられる。シリル化剤としては、トリメチルクロロシラ
ン、ヘキサメチルジシラザンなどが挙げられる。マグネ
シア粉末に対する有機珪素化合物の添加量は、通常は
0.2〜10.0重量%、好ましくは0.5〜3.0重
量%である。添加量が0.05重量%よりも少ないと耐
消化性の向上効果が認められず、また、10.0重量%
よりも多くしても多くしたことによる効果はなく経済的
でない。Examples of the organosilicon compound include silane coupling agents, alkoxysilanes, silicones, silylating agents and the like. As the silane coupling agent, vinyltrichlorosilane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (βmethoxyethoxy) silane, γ- (methacryloxypropyl) trimethoxysilane, γ-aminopropyltriethoxysilane,
γ-mercaptopropyltrimethoxysilane and the like can be mentioned. Examples of the alkoxysilane include tetraethoxysilane, tetramethoxysilane, and methyltriethoxysilane. Examples of the silicone include methyl hydrogen silicone oil and dimethyl silicone oil. Examples of the silylating agent include trimethylchlorosilane and hexamethyldisilazane. The addition amount of the organosilicon compound to the magnesia powder is usually 0.2 to 10.0% by weight, preferably 0.5 to 3.0% by weight. If the added amount is less than 0.05% by weight, the effect of improving the digestion resistance is not recognized, and 10.0% by weight
It is not economical because there is no effect of adding more than the above.
【0011】本発明においては、マグネシア粉末に有機
珪素化合物を添加した後、350〜600℃、好ましく
は400〜550℃で加熱処理する。加熱処理の温度が
350℃未満では耐消化性の向上が十分ではなく、さら
に有機珪素化合物の添加による撥水性が強く残る。ま
た、600℃よりも高くなると耐消化性が大きく低下す
るので好ましくない。加熱用の装置は、電気炉、ガス炉
などの各種の工業炉が使用可能である。本発明では、流
動層反応器等の非常に特殊な加熱装置を使用する必要が
なく、また、ヘンシェルミキサー等の特殊な混合分散装
置を使用する必要もないため、工程が簡単で容易に運転
でき、低コストで耐消化性に優れた粉末を製造すること
ができる。In the present invention, after adding the organosilicon compound to the magnesia powder, it is heat-treated at 350 to 600 ° C., preferably 400 to 550 ° C. If the temperature of the heat treatment is less than 350 ° C, the digestion resistance is not sufficiently improved, and the water repellency due to the addition of the organosilicon compound remains strong. On the other hand, if the temperature is higher than 600 ° C, the digestion resistance is greatly reduced, which is not preferable. As the heating device, various industrial furnaces such as an electric furnace and a gas furnace can be used. In the present invention, it is not necessary to use a very special heating device such as a fluidized bed reactor, and it is not necessary to use a special mixing and dispersing device such as a Henschel mixer, so that the process is simple and easy to operate. Therefore, it is possible to produce a powder having excellent digestion resistance at low cost.
【0012】[0012]
【実施例】以下、実施例及び比較例を示して本発明をさ
らに詳しく説明する。なお、耐消化性の評価は、学振法
4(マグネシアクリンカーの消化性試験方法)に従って
行った。また、粉末の流動性の評価は、ホソカワミクロ
ン製パウダーテスターの取扱説明書の「粉体の流動性お
よび噴流性の数的評価について」に従って行った。EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. The digestion resistance was evaluated according to Gakushin method 4 (test method for digestion of magnesia clinker). The fluidity of the powder was evaluated in accordance with the instruction manual for the powder tester made by Hosokawa Micron, "Numerical evaluation of fluidity and jettability of powder".
【0013】実施例1 鉱化剤としてSiO2を1重量%添加してロータリーキ
ルンで焼成したMgO含有量98重量%のマグネシアク
リンカーをボールミルで粉砕して得られた平均粒径23
μm、比表面積1m2/gのマグネシア粉末を原料と
し、これにメチル水素シリコーンオイル1重量%を添加
した後、シリコニット電気炉中で400℃で2時間保持
した。得られたマグネシア粉末の耐消化性は重量増加率
0.6%と大幅に向上し、併せて撥水性も認められなか
った。また、パウダーテスターによる流動性指数は73
とかなり良好であった。Example 1 Magnesia clinker having a MgO content of 98% by weight, which was calcined in a rotary kiln with 1% by weight of SiO 2 added as a mineralizer, was crushed with a ball mill to obtain an average particle size of 23.
A magnesia powder having a particle size of 1 μm and a specific surface area of 1 m 2 / g was used as a raw material, and 1% by weight of methylhydrogen silicone oil was added to the raw material, which was then kept at 400 ° C. for 2 hours in a silicon furnace. The digestion resistance of the obtained magnesia powder was significantly improved with a weight increase rate of 0.6%, and no water repellency was observed. In addition, the liquidity index by the powder tester is 73
And was quite good.
【0014】実施例2 MgO含有量99.5重量%のマグネシアクリンカーを
ボールミルで粉砕して得られた平均粒径26μm、比表
面積1m2/gのマグネシア粉末を原料とし、これにメ
チル水素シリコーンオイル1重量%を添加した後、シリ
コニット電気炉中で500℃で2時間保持した。得られ
たマグネシア粉末の耐消化性は重量増加率0.5%と大
幅に向上し、併せて撥水性も認められなかった。また、
パウダーテスターによる流動性指数は70とかなり良好
であった。Example 2 Magnesia powder having an average particle size of 26 μm and a specific surface area of 1 m 2 / g obtained by pulverizing a magnesia clinker having an MgO content of 99.5% by weight with a ball mill is used as a raw material. After adding 1% by weight, the mixture was kept at 500 ° C. for 2 hours in a silicon knit electric furnace. The digestion resistance of the obtained magnesia powder was significantly improved with a weight increase rate of 0.5%, and no water repellency was observed. Also,
The fluidity index measured by the powder tester was 70, which was quite good.
【0015】実施例3 鉱化剤としてSiO2を1重量%添加してロータリーキ
ルンで焼成したMgO含有量98重量%のマグネシアク
リンカーをボールミルで粉砕して得られた平均粒径23
μm、比表面積1m2/gのマグネシア粉末を原料と
し、これにメチル水素シリコーンオイル1重量%を添加
した後、レトルトが200φ×1000lのSUS製の
外熱キルンで最高温度550℃に加熱した。得られたマ
グネシア粉末の耐消化性は重量増加率0.7%と大幅に
向上し、併せて撥水性も認められなかった。また、パウ
ダーテスターによる流動性指数は72とかなり良好であ
った。EXAMPLE 3 Magnesia clinker having a MgO content of 98% by weight, which was calcined in a rotary kiln with 1% by weight of SiO 2 added as a mineralizer, was crushed by a ball mill to obtain an average particle size of 23.
A magnesia powder having a micrometer and a specific surface area of 1 m 2 / g was used as a raw material, 1% by weight of methylhydrogen silicone oil was added thereto, and then heated to a maximum temperature of 550 ° C. in an external heat kiln made of SUS having a retort of 200φ × 1000 l. The digestion resistance of the obtained magnesia powder was significantly improved with a weight increase rate of 0.7%, and no water repellency was observed. In addition, the fluidity index by the powder tester was 72, which was quite good.
【0016】実施例4 鉱化剤としてSiO2を1重量%添加してロータリーキ
ルンで焼成したMgO含有量98重量%のマグネシアク
リンカーをボールミルで粉砕して得られた平均粒径23
μm、比表面積1m2/gのマグネシア粉末を原料と
し、これにメチル水素シリコーンオイル1重量%を添加
した後、シリコニット電気炉中で570℃で2時間保持
した。得られたマグネシア粉末の耐消化性は重量増加率
1.5%と向上し、併せて撥水性も認められなかった。
また、パウダーテスターによる流動性指数は63と良好
であった。EXAMPLE 4 Magnesia clinker having a MgO content of 98% by weight, which was calcined in a rotary kiln with 1% by weight of SiO 2 added as a mineralizer, was crushed by a ball mill to obtain an average particle diameter of 23.
A magnesia powder having a micrometer and a specific surface area of 1 m 2 / g was used as a raw material, and 1% by weight of methylhydrogen silicone oil was added to the raw material, which was then kept at 570 ° C. for 2 hours in a siliconite electric furnace. The digestion resistance of the obtained magnesia powder was improved to a weight increase rate of 1.5%, and no water repellency was observed.
In addition, the fluidity index measured by a powder tester was 63, which was a good result.
【0017】比較例1 鉱化剤としてSiO2を1重量%添加してロータリーキ
ルンで焼成したMgO含有量98重量%のマグネシアク
リンカーをボールミルで粉砕して得られた平均粒径23
μm、比表面積1m2/gのマグネシア粉末について、
耐消化性を評価したところ、重量増加率は25.3%で
あった。また、パウダーテスターによる流動性指数は5
5であった。水性が顕著であった。COMPARATIVE EXAMPLE 1 1% by weight of SiO 2 was added as a mineralizer and calcined in a rotary kiln. Magnesia clinker having a MgO content of 98% by weight was crushed by a ball mill to obtain an average particle size of 23.
Regarding the magnesia powder having a μm and a specific surface area of 1 m 2 / g,
When the digestion resistance was evaluated, the weight increase rate was 25.3%. Also, the fluidity index by the powder tester is 5
It was 5. Aqueous was remarkable.
【0018】比較例2 MgO含有量99.5重量%のマグネシアクリンカーを
ボールミルで粉砕して得られた平均粒径26μm、比表
面積1m2/gのマグネシア粉末を原料とし、これをシ
リコニット電気炉中で1200℃で2時間保持した。得
られたマグネシア粉末の耐消化性は重量増加率5.2%
であった。また、パウダーテスターによる流動性指数は
54であった。Comparative Example 2 Magnesia powder having an average particle size of 26 μm and a specific surface area of 1 m 2 / g obtained by pulverizing a magnesia clinker having an MgO content of 99.5% by weight with a ball mill was used as a raw material, which was used in a siliconite electric furnace. And kept at 1200 ° C for 2 hours. The digestion resistance of the obtained magnesia powder is 5.2% in weight increase rate.
Met. The fluidity index measured by a powder tester was 54.
【0019】比較例3 MgO含有量99.5重量%のマグネシアクリンカーを
ボールミルで粉砕して得られた平均粒径26μm、比表
面積1m2/gのマグネシア粉末を原料とし、これにメ
チル水素シリコーンオイル1重量%を添加した後、シリ
コニット電気炉中で700℃で2時間保持した。得られ
たマグネシア粉末の耐消化性は重量増加率15%であっ
た。また、パウダーテスターによる流動性指数は61で
あった。Comparative Example 3 Magnesia powder having an average particle size of 26 μm and a specific surface area of 1 m 2 / g obtained by crushing a magnesia clinker having an MgO content of 99.5% by weight with a ball mill was used as a raw material. After adding 1% by weight, it was kept at 700 ° C. for 2 hours in a siliconite electric furnace. The digestion resistance of the obtained magnesia powder was 15% in weight increase rate. The fluidity index measured by a powder tester was 61.
【0020】比較例4 金属マグネシウムの加熱蒸気を気相酸化することにより
製造されたMgO含有量98重量%、平均粒径0.2μ
m、比表面積8m2/gのマグネシア粉末を原料とし、
メチル水素シリコーンオイル2重量%を添加した後、シ
リコニット電気炉中で500℃で2時間保持した。得ら
れたマグネシア粉末の耐消化性は重量増加率6.2%で
あった。また、パウダーテスターによる流動性指数は5
6であった。Comparative Example 4 MgO content produced by subjecting heated vapor of magnesium metal to vapor phase oxidation 98% by weight, average particle size 0.2 μ
m, a specific surface area of 8 m 2 / g of magnesia powder as a raw material,
After adding 2% by weight of methyl hydrogen silicone oil, it was kept at 500 ° C. for 2 hours in a silicon knit electric furnace. The digestion resistance of the obtained magnesia powder was 6.2% in weight increase rate. Also, the fluidity index by the powder tester is 5
It was 6.
【0021】[0021]
【発明の効果】本発明のマグネシア粉末は、耐消化性に
優れた性質を有し、水系の流し込み基材との馴染みも良
く、粉末の流動性に優れることから、定型、不定形耐火
物の原料として、特に塩基性流し込み材料の粉末原料と
して極めて有用である。INDUSTRIAL APPLICABILITY The magnesia powder of the present invention has properties of excellent digestion resistance, good compatibility with water-based casting base materials, and excellent flowability of the powder. It is extremely useful as a raw material, particularly as a powder raw material for a basic pouring material.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 克己 山口県宇部市大字小串1985番地 宇部化学 工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsumi Takeuchi Ube Chemical Industry Co., Ltd.
Claims (2)
5m2/g以下、平均粒径50μm以下であり、学振法
4(マグネシアクリンカーの消化性試験方法)による重
量増加率が2.0%以下であることを特徴とするマグネ
シア粉末。1. A MgO content of 90% by weight or more, a specific surface area of 5 m 2 / g or less, an average particle size of 50 μm or less, and a weight increase rate of 2.0 according to Gakken method 4 (method for digestion test of magnesia clinker). % Or less, a magnesia powder.
5m2/g以下、平均粒径50μm以下のマグネシア粉
末に有機珪素化合物を添加し、350〜600℃で加熱
処理することを特徴とする請求項1記載のマグネシア粉
末の製造方法。2. A magnesia powder having a MgO content of 98% by weight or more, a specific surface area of 5 m 2 / g or less, and an average particle size of 50 μm or less is added with an organosilicon compound, and heat-treated at 350 to 600 ° C. The method for producing the magnesia powder according to claim 1.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16456694A JP3188813B2 (en) | 1994-06-23 | 1994-06-23 | Magnesia powder and method for producing the same |
KR1019950016956A KR100373561B1 (en) | 1994-06-23 | 1995-06-22 | Magnesia powder and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16456694A JP3188813B2 (en) | 1994-06-23 | 1994-06-23 | Magnesia powder and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0812321A true JPH0812321A (en) | 1996-01-16 |
JP3188813B2 JP3188813B2 (en) | 2001-07-16 |
Family
ID=15795606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16456694A Expired - Lifetime JP3188813B2 (en) | 1994-06-23 | 1994-06-23 | Magnesia powder and method for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3188813B2 (en) |
KR (1) | KR100373561B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7800844B2 (en) | 2007-06-29 | 2010-09-21 | Olympus Imaging Corp. | Focus detection optical system and imaging apparatus incorporating the same |
US7817912B2 (en) | 2007-05-15 | 2010-10-19 | Hoya Corporation | Optical system of a focus detection apparatus |
JP2015160781A (en) * | 2014-02-28 | 2015-09-07 | 神島化学工業株式会社 | Surface-treated magnesium oxide based heat conduction agent having high acid resistance and resin composition using the same |
WO2023157683A1 (en) * | 2022-02-17 | 2023-08-24 | デンカ株式会社 | Coated magnesia particle, filler for heat dissipation material, resin composition, and method for producing coated magnesia particle |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102581342B1 (en) * | 2023-05-31 | 2023-09-21 | 주식회사 이연이앤디 | Eco-friendly Grout Material and Grouting Method Using the Same |
-
1994
- 1994-06-23 JP JP16456694A patent/JP3188813B2/en not_active Expired - Lifetime
-
1995
- 1995-06-22 KR KR1019950016956A patent/KR100373561B1/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7817912B2 (en) | 2007-05-15 | 2010-10-19 | Hoya Corporation | Optical system of a focus detection apparatus |
US7800844B2 (en) | 2007-06-29 | 2010-09-21 | Olympus Imaging Corp. | Focus detection optical system and imaging apparatus incorporating the same |
JP2015160781A (en) * | 2014-02-28 | 2015-09-07 | 神島化学工業株式会社 | Surface-treated magnesium oxide based heat conduction agent having high acid resistance and resin composition using the same |
WO2023157683A1 (en) * | 2022-02-17 | 2023-08-24 | デンカ株式会社 | Coated magnesia particle, filler for heat dissipation material, resin composition, and method for producing coated magnesia particle |
Also Published As
Publication number | Publication date |
---|---|
KR100373561B1 (en) | 2003-04-21 |
KR960000772A (en) | 1996-01-25 |
JP3188813B2 (en) | 2001-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06171928A (en) | Production of magnesium oxide high in hydration resistance and high in fluidity | |
JPH0812321A (en) | Magnesia powder and its production | |
JPH11314961A (en) | Pigment which becomes reddish brown by firing, its production and its use | |
JP2022105725A (en) | Castable refractory and method for producing the same | |
CN109534700A (en) | A kind of steel slag modifying agent and preparation method thereof | |
KR101945680B1 (en) | Amorphous refractory | |
KR100508521B1 (en) | A castable refractories composition containing carbon | |
JPH08157268A (en) | Magnesia based fire resisting particle | |
JP3496770B2 (en) | Silicon iron nitride and method for producing the same | |
JPH07277819A (en) | Aluminum titanate clinker and refractory using the same | |
CN1262257A (en) | Process for preparing 'Meialong' magnesium ceramics with natural minerals as raw materials | |
JPH02175638A (en) | Alumina cement and low-cement castable binder | |
JP2001247377A (en) | Silicon iron nitride powder, its evaluation method and use | |
JP3128427B2 (en) | Alumina / Spinel amorphous refractories | |
US1910676A (en) | Process of making cement from fluid slag | |
CN101973567A (en) | Preparation method of magnesia-alumina spinel powder | |
JP2004050196A (en) | High thermal shock resistant sliding nozzle plate brick | |
JPS5927731B2 (en) | Method for producing calcia clinker | |
JPH07232956A (en) | Alumina cement composition | |
JPS5913457B2 (en) | Production method of calcia clinker | |
JP3308902B2 (en) | Raw material for carbon-containing refractories and method for producing the same | |
JP3791140B2 (en) | A graphite-containing amorphous refractory for water kneading and its construction method | |
JPH0712960B2 (en) | Silica fumes for cement mixing | |
JP2024119354A (en) | Alumina cement composition and monolithic refractory | |
JPH08259301A (en) | Alumina cement composition and monolithic refractory using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010410 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090511 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100511 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110511 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130511 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140511 Year of fee payment: 13 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |