JPH08115880A - Method for manufacturing p-type gallium nitride compound semiconductor - Google Patents
Method for manufacturing p-type gallium nitride compound semiconductorInfo
- Publication number
- JPH08115880A JPH08115880A JP25054094A JP25054094A JPH08115880A JP H08115880 A JPH08115880 A JP H08115880A JP 25054094 A JP25054094 A JP 25054094A JP 25054094 A JP25054094 A JP 25054094A JP H08115880 A JPH08115880 A JP H08115880A
- Authority
- JP
- Japan
- Prior art keywords
- gallium nitride
- compound semiconductor
- hydrogen
- type
- type gallium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
- H10H20/8252—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN characterised by the dopants
Landscapes
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Abstract
(57)【要約】
【目的】 MOVPE成長で発光素子のダブルヘテロ接合に
用いることが可能な低抵抗のp型窒化ガリウム系化合物
半導体の製造方法を提供する。
【構成】 窒素原料としてアンモニアを用いた気相成長
法で、p型不純物であるMgをドープした窒化ガリウム系
半導体を堆積した後、冷却時において600℃以上の温度
域で冷却雰囲気をアンモニアから水素または窒素の混合
雰囲気に切り替える。この方法によれば 600℃以上の
温度域で冷却雰囲気を切り替えることによりアンモニア
から供給される原子状水素の供給を回避できるので、水
素パッシベーションが起きず低抵抗なp型窒化ガリウム
系化合物半導体が得られる。
(57) [Summary] [Object] To provide a method for manufacturing a low-resistance p-type gallium nitride-based compound semiconductor that can be used for a double heterojunction of a light emitting device by MOVPE growth. [Structure] After a gallium nitride-based semiconductor doped with p-type impurity Mg was deposited by a vapor phase growth method using ammonia as a nitrogen source, the cooling atmosphere was cooled from ammonia to hydrogen in a temperature range of 600 ° C or higher during cooling. Alternatively, switch to a mixed atmosphere of nitrogen. According to this method, the supply of atomic hydrogen supplied from ammonia can be avoided by switching the cooling atmosphere in the temperature range of 600 ° C or higher, so that hydrogen-passivation does not occur and a low-resistance p-type gallium nitride-based compound semiconductor is obtained. To be
Description
【0001】[0001]
【産業上の利用分野】本発明は青色または紫色発光半導
体レーザダイオード、青色または紫色発光ダイオードの
デバイスの製造方法、及び前記発光デバイスに用いられ
るp型窒化ガリウム系化合物半導体の製造方法に係わ
り、特に気相成長によりp型窒化ガリウム系化合物半導
体を全体または部分的に低抵抗にする製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blue or violet light emitting semiconductor laser diode, a method for manufacturing a blue or violet light emitting diode device, and a method for manufacturing a p-type gallium nitride-based compound semiconductor used in the light emitting device, The present invention relates to a method of manufacturing a p-type gallium nitride-based compound semiconductor having a low resistance wholly or partially by vapor phase growth.
【0002】[0002]
【従来の技術】青色発光素子はフルカラーディスプレー
や高密度記録可能な光ディスク用光源として期待されて
おり、ZnSe等のII-VI族化合物半導体やSiC、GaN等のIII
-V族化合物半導体等を用いて盛んに研究がなされてい
る。2. Description of the Related Art A blue light emitting device is expected as a light source for a full color display or an optical disk capable of high density recording, and is a II-VI group compound semiconductor such as ZnSe or III such as SiC or GaN.
-Research is actively conducted using group V compound semiconductors.
【0003】特に最近AlGaN、GaN等を用いて青色の発光
ダイオードが実現され窒化ガリウム系化合物半導体を用
いた発光素子は注目されている。窒化ガリウム系化合物
半導体の積層方法としては有機金属気相成長法(MOVPE
法)や分子線エピタキシー法(MBE法)等が一般的に用
いられている。In particular, a blue light emitting diode has recently been realized by using AlGaN, GaN, etc., and a light emitting element using a gallium nitride-based compound semiconductor has attracted attention. As a stacking method for gallium nitride-based compound semiconductors, metal organic chemical vapor deposition (MOVPE
Method) and molecular beam epitaxy method (MBE method) are generally used.
【0004】例えば、MOVPE法を用いた成長方法につい
て説明すると、サファイア基板を設置した反応炉に有機
金属であるトリメチルガリウム(TMG)、トリメチルア
ルミニウム(TMA)、アンモニア等を水素ガスをキャリ
アガスとして供給し、600℃程度の低温でGaNやAlN等の
バッファ層を積層した後、1000℃程度の高温でGaN、AlG
aN等の窒化ガリウム系化合物半導体を堆積する。この時
必要に応じ、不純物をドープしてp型、i型、n型層を作
製しダブルヘテロ構造等のデバイス構造を作製する。p
型不純物としてはMg、Znが知られている。For example, a growth method using the MOVPE method will be described. A reaction furnace equipped with a sapphire substrate is supplied with hydrogen gas such as trimethylgallium (TMG), trimethylaluminum (TMA), and ammonia which are organic metals as a carrier gas. Then, after stacking a buffer layer such as GaN or AlN at a low temperature of about 600 ° C, GaN or AlG at a high temperature of about 1000 ° C.
A gallium nitride compound semiconductor such as aN is deposited. At this time, if necessary, impurities are doped to form p-type, i-type, and n-type layers to form a device structure such as a double hetero structure. p
Mg and Zn are known as type impurities.
【0005】しかしながら従来のMOVPE成長では低抵抗
なp型窒化ガリウム系化合物半導体を得ることはでき
ず、MgやZnをドープしても高抵抗な半絶縁性の層しかで
きない。そこで例えば高抵抗なMgドープのp型窒化ガリ
ウム系化合物半導体基板に加速電圧が6〜30kV程度の電
子線を照射したり、特開平5-183189号公報にあるように
窒化ガリウム系化合物半導体の分解圧以上に加圧した窒
素雰囲気において400℃以上でアニーリングすることに
より低抵抗なp型窒化ガリウム系化合物半導体を作製し
ていた。このように低抵抗なp型窒化ガリウム系化合物
半導体を作製するためには、MOVPE成長後に何等かの処
理を行う工程が必要である。However, it is not possible to obtain a p-type gallium nitride compound semiconductor having a low resistance by the conventional MOVPE growth, and even if Mg or Zn is doped, only a semi-insulating layer having a high resistance can be obtained. Therefore, for example, a high-resistance Mg-doped p-type gallium nitride compound semiconductor substrate is irradiated with an electron beam with an accelerating voltage of about 6 to 30 kV, or decomposition of a gallium nitride compound semiconductor as disclosed in JP-A-5-183189. A low-resistance p-type gallium nitride compound semiconductor was produced by annealing at 400 ° C or higher in a nitrogen atmosphere pressurized above the pressure. In order to manufacture a p-type gallium nitride-based compound semiconductor having such a low resistance, a step of performing some treatment after MOVPE growth is necessary.
【0006】[0006]
【発明が解決しようとする課題】このように低抵抗なp
型窒化ガリウム系化合物半導体を得るためには結晶成長
後にアニールを行うのでさらに付加的な工程が必要であ
る。As described above, p having a low resistance is used.
In order to obtain a type gallium nitride-based compound semiconductor, annealing is performed after crystal growth, so that an additional step is required.
【0007】また低抵抗なp型窒化ガリウム系化合物半
導体を得るために電子線の照射があるが、この方法では
電子が侵入できる極表面のみしか低抵抗にならず、また
電子線を照射した部分だけが低抵抗になるという利点が
あるものの基板全体を低抵抗にするためには基板に一様
に電子線を照射する必要があり均一性に難があった。Further, electron beam irradiation is used to obtain a p-type gallium nitride-based compound semiconductor having a low resistance. However, in this method, only the extreme surface where electrons can enter has a low resistance, and a portion irradiated with an electron beam is used. However, in order to reduce the resistance of the entire substrate, it was necessary to uniformly irradiate the substrate with an electron beam, and thus the uniformity was poor.
【0008】また電子線の照射によるダメージで表面に
欠陥が生じることがあり、結晶性の低下に問題があっ
た。Further, a defect may occur on the surface due to damage caused by electron beam irradiation, and there is a problem of deterioration of crystallinity.
【0009】一方、窒素雰囲気中のアニーリングでは基
板全体に低抵抗なp型窒化ガリウム系化合物半導体が得
られるものの選択的に低抵抗な層は得られずデバイス作
製上の自由度が小さい。On the other hand, by annealing in a nitrogen atmosphere, a low resistance p-type gallium nitride compound semiconductor can be obtained over the entire substrate, but a low resistance layer cannot be selectively obtained, and the degree of freedom in device fabrication is small.
【0010】従って本発明の第一の目的は低抵抗なp型
窒化ガリウム系化合物半導体を得るための工程を簡略化
するため、MOVPE成長そのもので低抵抗なp型窒化ガリウ
ム系化合物半導体層を製造することであり、第二の目的
は表面だけでなく厚み全体にわたって基板のある位置に
選択的に低抵抗なp型窒化ガリウム系化合物半導体層を
結晶性を損なうこと無く製造する方法を提供することに
ある。Therefore, the first object of the present invention is to manufacture a low resistance p-type gallium nitride compound semiconductor layer by MOVPE growth itself in order to simplify the process for obtaining a low resistance p-type gallium nitride compound semiconductor. The second object is to provide a method for manufacturing a p-type gallium nitride compound semiconductor layer having a low resistance selectively at a certain position of the substrate not only on the surface but also over the entire thickness without impairing the crystallinity. It is in.
【0011】[0011]
【課題を解決するための手段】本発明の第一の成長方法
は気相成長により基板上にバッファ層を介してp型窒化
ガリウム系化合物半導体層を堆積した後、その冷却時に
気相雰囲気を切り替えることにより低抵抗のp型窒化ガ
リウム系化合物半導体層を成長させることを特徴とす
る。According to a first growth method of the present invention, a p-type gallium nitride compound semiconductor layer is deposited on a substrate by vapor phase growth via a buffer layer, and then a vapor phase atmosphere is applied during cooling. It is characterized in that a low resistance p-type gallium nitride compound semiconductor layer is grown by switching.
【0012】詳しく述べると、この成長方法は気相成長
法により反応炉内に原料ガスを供給し、p型窒化ガリウ
ム系化合物半導体をエピタキシャル成長させる方法であ
ってサファイア基板上にGaxAl1-xN(0≦x≦1)で表される
バッファ層を600℃で成長した後、MgやZn等のp型不純物
をドープした窒化ガリウム系化合物半導体を1000℃前後
でエピタキシャル成長する。More specifically, this growth method is a method in which a source gas is supplied into the reaction furnace by a vapor phase growth method to epitaxially grow a p-type gallium nitride compound semiconductor, and Ga x Al 1-x is formed on a sapphire substrate. After growing a buffer layer represented by N (0 ≦ x ≦ 1) at 600 ° C., a gallium nitride-based compound semiconductor doped with p-type impurities such as Mg and Zn is epitaxially grown at around 1000 ° C.
【0013】窒素原料としてアンモニアを用いた場合、
気相成長後の冷却時の600℃以上の温度域においてアン
モニアの供給を停止し、それ以下の温度では原料のキャ
リアガスである水素または窒素雰囲気で室温まで冷却す
る。When ammonia is used as the nitrogen source,
The supply of ammonia is stopped in a temperature range of 600 ° C. or higher during cooling after vapor phase growth, and at a temperature lower than that, it is cooled to room temperature in a hydrogen or nitrogen atmosphere that is a carrier gas of the raw material.
【0014】本発明の第二の成長方法は窒素の原料とし
てエチルアジドをキャリアガスとして水素を用いて供給
した場合、気相成長後の冷却時の600℃以上の温度域に
おいてキャリアガスを水素から窒素に切り替えそれ以下
の温度域では窒素雰囲気で室温まで冷却し、低抵抗なp
型窒化ガリウム系化合物半導体層を製造することを特徴
とする。In the second growth method of the present invention, when ethyl azide is used as a nitrogen source and hydrogen is used as a carrier gas, the carrier gas is changed from hydrogen to nitrogen in a temperature range of 600 ° C. or higher during cooling after vapor phase growth. In the temperature range below that, cool to room temperature in a nitrogen atmosphere, and
A gallium nitride-based compound semiconductor layer is manufactured.
【0015】本発明の第三の成長方法は気相成長により
基板上にバッファ層を介してp型窒化ガリウム系化合物
半導体層を堆積した後、前記エピタキシャル成長層上に
誘電体膜を選択的に堆積し、これを600℃以上の水素化
物ガスまたは水素をキャリアガスとする有機窒素雰囲気
中で熱処理した後、前記雰囲気のままで室温まで冷却す
ることを特徴とする。In the third growth method of the present invention, a p-type gallium nitride compound semiconductor layer is deposited on a substrate by vapor phase growth via a buffer layer, and then a dielectric film is selectively deposited on the epitaxial growth layer. Then, after heat-treating this in an organic nitrogen atmosphere having a hydride gas of 600 ° C. or higher or hydrogen as a carrier gas, it is cooled to room temperature in the above atmosphere.
【0016】詳しく述べると、この成長方法はまず前記
第一の成長方法同様、気相成長法により反応炉内に原料
ガスを供給し、p型窒化ガリウム系化合物半導体をエピ
タキシャル成長させる方法であってサファイア基板上に
GaxAl1-xN(0≦x≦1)で表されるバッファ層を600℃で成
長した後、1000℃前後でMgやZn等のp型不純物をドープ
したp型窒化ガリウム系化合物半導体単層をエピタキシ
ャル成長する。気相成長の冷却時における原料ガスの供
給方法は必ずしも第一の成長方法と同一である必要はな
く、例えば窒素原料としてアンモニアを用いた場合これ
を室温まで供給しながら冷却しても良い。More specifically, like the first growth method, this growth method is a method of supplying a source gas into the reaction furnace by a vapor phase growth method to epitaxially grow a p-type gallium nitride-based compound semiconductor. On board
After growing the buffer layer represented by Ga x Al 1-x N (0 ≤ x ≤ 1) at 600 ℃, p-type gallium nitride compound semiconductor doped with p-type impurities such as Mg and Zn at around 1000 ℃ Epitaxially grow a single layer. The method of supplying the source gas at the time of cooling the vapor phase growth does not necessarily have to be the same as the first growth method. For example, when ammonia is used as the nitrogen source, it may be cooled while being supplied to room temperature.
【0017】次に前記エピタキシャル成長層上にSiO2、
SiN等から成る誘電体膜を選択的に400nm程度堆積する。
次に600℃以上でアンモニア、アルシン、ホスフィン等
の水素化物ガスの何れか一つあるいはこれらの混合雰囲
気で熱処理し、そのままの雰囲気を保って室温まで冷却
する。Next, SiO 2 on the epitaxial growth layer,
A dielectric film made of SiN or the like is selectively deposited to a thickness of about 400 nm.
Next, heat treatment is performed at 600 ° C. or higher in any one of hydride gases such as ammonia, arsine, and phosphine or a mixed atmosphere thereof, and the temperature is kept to be cooled to room temperature.
【0018】本発明の第四の成長方法は、前記誘電体膜
を堆積したp型窒化ガリウム系化合物半導体基板を600℃
以上で水素をキャリアガスとするエチルアジド雰囲気中
で熱処理し、そのままの雰囲気を保って室温まで冷却す
ることを特徴とする。A fourth growth method of the present invention is a method of growing a p-type gallium nitride compound semiconductor substrate having the dielectric film deposited thereon at 600 ° C.
As described above, the heat treatment is performed in an ethyl azide atmosphere using hydrogen as a carrier gas, and the atmosphere is maintained and the temperature is cooled to room temperature.
【0019】本発明の第五の成長方法は気相成長法によ
り反応炉内に原料ガスを供給し、p型窒化ガリウム系化
合物半導体をエピタキシャル成長させる方法であってサ
ファイア基板上にGaxAl1-xN(0≦x≦1)で表されるバッフ
ァ層を600℃で成長した後、1000℃前後でMgやZn等のp型
不純物をドープしたp型窒化ガリウム系化合物半導体のp
型層、ドーピング無しのi層、さらにSiやSn等のn型不純
物をドープしたn型層から成るダブルヘテロ構造をエピ
タキシャル成長した後、気相成長の冷却時において窒素
原料としてアンモニアを用いた場合これを室温まで供給
しながら冷却し、前記エピタキシャル成長層上にSiO2、
SiN等から成る誘電体膜を選択的に400nm程度堆積する。
次に600℃以上でアンモニア、アルシン、ホスフィン等
の水素化物ガスの何れか一つあるいはこれらの混合雰囲
気で熱処理し、そのままの雰囲気を保って室温まで冷却
することを特徴とする。A fifth growth method of the present invention is a method of supplying a source gas into a reaction furnace by a vapor phase growth method to epitaxially grow a p-type gallium nitride-based compound semiconductor, which is Ga x Al 1- After growing the buffer layer represented by x N (0 ≤ x ≤ 1) at 600 ℃, p of p-type gallium nitride compound semiconductor doped with p-type impurities such as Mg and Zn at around 1000 ℃.
Type epitaxial layer, an undoped i-layer, and an n-type layer doped with an n-type impurity such as Si or Sn after epitaxial growth of a double heterostructure, using ammonia as a nitrogen source during cooling of vapor phase growth. While cooling to room temperature, SiO 2 , on the epitaxial growth layer,
A dielectric film made of SiN or the like is selectively deposited to a thickness of about 400 nm.
Next, it is characterized in that it is heat-treated at 600 ° C. or higher in any one of hydride gases such as ammonia, arsine, phosphine, or a mixed atmosphere thereof, and cooled to room temperature while keeping the atmosphere as it is.
【0020】本発明の第六の成長方法は、前記誘電体膜
を選択的に堆積したp型窒化ガリウム系化合物半導体のp
型層、ドーピング無しのi層、さらにSiやSn等のn型不純
物をドープしたn型層から成るダブルヘテロ構造を含む
基板を600℃以上で水素をキャリアガスとするエチルア
ジド雰囲気中で熱処理し、そのままの雰囲気を保って室
温まで冷却することを特徴とする。A sixth growth method of the present invention is the p-type gallium nitride compound semiconductor p-type semiconductor in which the dielectric film is selectively deposited.
Type layer, an undoped i layer, and a substrate including a double heterostructure consisting of an n type layer doped with an n type impurity such as Si or Sn are heat-treated at 600 ° C. or higher in an ethyl azide atmosphere using hydrogen as a carrier gas, It is characterized by cooling to room temperature while maintaining the same atmosphere.
【0021】[0021]
【作用】本発明によって低抵抗なp型窒化ガリウム系化
合物半導体が得られる理由は以下の通りであると推察さ
れる。即ち通常のp型窒化ガリウム系化合物半導体の気
相成長においては窒素源として一般にアンモニア(NH3)
が用いられており、成長中はこのアンモニアが分解して
原子状水素が結晶中に侵入または結晶中から放出され
る。The reason why a low resistance p-type gallium nitride compound semiconductor is obtained by the present invention is presumed to be as follows. That is, in vapor phase growth of ordinary p-type gallium nitride compound semiconductors, ammonia (NH 3 ) is generally used as the nitrogen source.
Is used, and during the growth, this ammonia decomposes and atomic hydrogen penetrates into or is released from the crystal.
【0022】成長後の冷却中に室温までアンモニアを供
給し続けると、600℃付近でp型不純物であるMgやZnの周
辺で窒素と原子状水素の結合が安定となり、N-H結合が
できてホールの供給が阻止されるので高抵抗なp型窒化
ガリウム系化合物半導体になる(水素パッシベーショ
ン)。すなわち気相成長の際にp型窒化ガリウム系化合
物半導体が高抵抗になるのは主に気相成長後の冷却過程
で決まると考えられる。従って、気相成長後の冷却時に
おいてMgやZnに隣接するN-H結合が不安定で解離してい
る600℃以上で原子状水素の供給を停止し、600℃では容
易に分解しない水素ガスや水素を含まない窒素ガス雰囲
気で室温まで冷却すれば原子状水素は結晶中から気相中
に拡散放出されて、低抵抗なp型窒化ガリウム系化合物
半導体が得られるものと考えられる。If ammonia is continuously supplied to room temperature during the cooling after the growth, the bond between nitrogen and atomic hydrogen becomes stable around the p-type impurities Mg and Zn at around 600 ° C., and the NH bond is formed, so that the hole is formed. As a result, the p-type gallium nitride compound semiconductor with high resistance is obtained (hydrogen passivation). That is, it is considered that the high resistance of the p-type gallium nitride compound semiconductor during vapor phase growth is mainly determined by the cooling process after vapor phase growth. Therefore, during cooling after vapor phase growth, NH bonds adjacent to Mg and Zn are unstable and dissociated. The supply of atomic hydrogen is stopped at 600 ° C or higher, and hydrogen gas or hydrogen that does not easily decompose at 600 ° C is released. It is considered that when cooled to room temperature in a nitrogen gas atmosphere containing no hydrogen, atomic hydrogen is diffused and released from the crystal into the gas phase, and a low-resistance p-type gallium nitride compound semiconductor is obtained.
【0023】従って、本発明の成長方法によれば、p型
窒化ガリウム系化合物半導体の気相成長で窒素原料とし
てアンモニアを用いた場合、冷却時に600℃以上でアン
モニアの供給を停止すれば、結晶中の水素が外部に放出
され低抵抗化する。Therefore, according to the growth method of the present invention, when ammonia is used as a nitrogen source in vapor phase growth of a p-type gallium nitride compound semiconductor, if the supply of ammonia is stopped at 600 ° C. or more during cooling, the crystal Hydrogen inside is released to the outside and the resistance is lowered.
【0024】また、気相成長中に原子状水素が侵入する
のを避けるために、水素と窒素の直接結合を含まない原
料のエチルアジド(EtN3)が考えられる。しかしなが
ら、この原料は原料のキャリアガスである水素と反応す
ることによって結晶成長に寄与できるため、エチルアジ
ドと水素雰囲気のまま室温まで冷却すると水素パッシベ
ーションが起こる。Further, in order to avoid intrusion of atomic hydrogen during vapor phase growth, ethyl azide (EtN 3 ) as a raw material containing no direct bond between hydrogen and nitrogen can be considered. However, this raw material can contribute to crystal growth by reacting with hydrogen, which is a carrier gas of the raw material, and therefore hydrogen passivation occurs when it is cooled to room temperature in the hydrogen atmosphere with ethyl azide.
【0025】そこで本発明の成長方法によれば気相成長
後の冷却過程において600℃以上の温度域でキャリアガ
スを水素から窒素に切り替えることにより、結晶中から
原子状水素を放出できるので低抵抗なp型窒化ガリウム
系化合物半導体が得られる。Therefore, according to the growth method of the present invention, by changing the carrier gas from hydrogen to nitrogen in the temperature range of 600 ° C. or higher in the cooling process after vapor phase growth, atomic hydrogen can be released from the crystal, so that the resistance is low. A p-type gallium nitride-based compound semiconductor is obtained.
【0026】次に本発明により選択的に低抵抗なp型窒
化ガリウム系化合物半導体が得られる理由は以下の通り
である。気相成長後の冷却過程で室温までアンモニアを
供給し続けると600℃付近でp型窒化ガリウム系化合物半
導体内のN-H結合が安定でかつ気相中のアンモニア内のN
-H結合が分解するので水素パッシベーションが起こるも
のと考えられる。アンモニアの分解は窒化ガリウム系化
合物半導体表面の触媒反応で起こる。そこで窒化ガリウ
ム系化合物半導体表面にSiO2やSi3N4等の誘電体膜を堆
積するとこの触媒効果がなくなりアンモニアの分解効率
が激減する。したがって600℃付近では気相雰囲気から
の原子状水素の供給はなくなり低抵抗なp型窒化ガリウ
ム系化合物半導体が得られる。従って、本発明の成長方
法によれば前記誘電体膜のマスクを基板上に選択的に堆
積し、アンモニアやアルシン、ホスフィン等の水素化物
ガスで室温まで冷却するとマスク部分は低抵抗でそれ以
外は高抵抗なp型窒化ガリウム系化合物半導体が得られ
る。The reason why the p-type gallium nitride-based compound semiconductor having a low resistance is selectively obtained by the present invention is as follows. When ammonia was continuously supplied to room temperature during the cooling process after vapor phase growth, NH bonds in the p-type gallium nitride compound semiconductor were stable at around 600 ° C and N in the ammonia in the gas phase was stable.
It is considered that hydrogen passivation occurs because the -H bond is decomposed. Decomposition of ammonia occurs by a catalytic reaction on the surface of the gallium nitride-based compound semiconductor. Therefore, if a dielectric film such as SiO 2 or Si 3 N 4 is deposited on the surface of the gallium nitride-based compound semiconductor, this catalytic effect disappears and the decomposition efficiency of ammonia is drastically reduced. Therefore, at around 600 ° C., the supply of atomic hydrogen from the gas phase atmosphere is stopped and a low resistance p-type gallium nitride compound semiconductor is obtained. Therefore, according to the growth method of the present invention, when the mask of the dielectric film is selectively deposited on the substrate and cooled to room temperature with a hydride gas such as ammonia, arsine, or phosphine, the mask portion has low resistance and is otherwise A high resistance p-type gallium nitride compound semiconductor is obtained.
【0027】本発明の成長方法によれば、前記誘電体膜
のマスクをp型窒化ガリウム系化合物半導体基板上に選
択的に堆積し、エチルアジドを水素をキャリアガスとし
て600℃以上の温度で熱処理を行うと、600℃以上では前
記原料の反応により結晶中に水素が侵入し、室温までこ
の雰囲気を保って冷却するとマスクを堆積した部分では
水素の侵入が無いので低抵抗化し、それ以外の部分では
水素パッシベーションのため高抵抗化する。According to the growth method of the present invention, the mask of the dielectric film is selectively deposited on the p-type gallium nitride compound semiconductor substrate, and heat treatment is performed at a temperature of 600 ° C. or higher with ethyl azide as a carrier gas. When it is carried out, at 600 ° C or higher, hydrogen penetrates into the crystal due to the reaction of the raw material, and when this atmosphere is cooled to room temperature and cooled, there is no penetration of hydrogen at the part where the mask is deposited, so that the resistance becomes low, and at other parts. High resistance due to hydrogen passivation.
【0028】また、本発明の製造方法によれば、p型窒
化ガリウム系化合物半導体を含むダブルヘテロ構造を有
する基板上に誘電体マスクを選択的に堆積しアンモニア
やアルシン、ホスフィン等の水素化物ガスで室温まで冷
却すると前記理由と同様に触媒効果が働いて誘電体マス
ク以外が高抵抗化されるので、誘電体マスクを堆積した
部分のみに電流が流れ、電流狭窄される。本発明の成長
方法によれば、前記誘電体膜を選択的に堆積したp型窒
化ガリウム系化合物半導体を含むダブルヘテロ構造を有
する基板を600℃以上でエチルアジドと水素雰囲気で熱
処理すると、前記原料が反応して原子状水素が発生す
る。この雰囲気を保って室温まで冷却すると600℃以下
でN-H結合が安定となると、誘電体膜を堆積した領域で
は、前記反応が抑制されそれ以外では基板の触媒効果に
より促進されるので、誘電体膜を堆積した領域以外の以
外のp型窒化ガリウム系半導体層が高抵抗化され、デバ
イスにして電流を注入した場合、電流狭窄される。According to the manufacturing method of the present invention, a dielectric mask is selectively deposited on a substrate having a double hetero structure containing a p-type gallium nitride compound semiconductor, and a hydride gas such as ammonia, arsine, phosphine, etc. is deposited. When cooled to room temperature, the catalytic effect works for the same reason as described above to increase the resistance except for the dielectric mask, so that the current flows only in the portion where the dielectric mask is deposited, and the current is constricted. According to the growth method of the present invention, when a substrate having a double hetero structure containing a p-type gallium nitride compound semiconductor selectively deposited with the dielectric film is heat-treated at 600 ° C. or higher in an ethyl azide and hydrogen atmosphere, the raw material is The reaction produces atomic hydrogen. If the NH bond becomes stable at 600 ° C or less when cooled to room temperature while maintaining this atmosphere, the reaction is suppressed in the region where the dielectric film is deposited, and otherwise the catalyst effect of the substrate accelerates the reaction. The p-type gallium nitride-based semiconductor layer other than the region where the is deposited has a high resistance, and when a current is injected into the device, the current is constricted.
【0029】[0029]
【実施例】以下、実施例で本発明を詳細に説明する。EXAMPLES The present invention will be described in detail below with reference to examples.
【0030】(実施例1)まず、サファイア基板を反応
炉内のサセプター上に設置し真空排気した後、大気圧の
水素雰囲気において1150℃で10分間加熱し基板のクリー
ニングを行う。次に、600℃まで冷却し、TMAを3μモル/
分、NH3を1.3l/分、キャリア水素を2.5l/分流してAlNバ
ッファ層を約40nm成長させる。次にTMAの供給のみを停
止し温度を1030℃まで上昇させた後、TMGを60μモル/
分、CP2Mgを5μモル/分流してMgをドープしたGaN層を約
1μmの膜厚で成長させる。Example 1 First, a sapphire substrate is placed on a susceptor in a reaction furnace and evacuated, and then heated at 1150 ° C. for 10 minutes in a hydrogen atmosphere at atmospheric pressure to clean the substrate. Next, cool to 600 ° C. and add TMA at 3 μmol /
, NH 3 at 1.3 l / min and carrier hydrogen at 2.5 l / min to grow an AlN buffer layer of about 40 nm. Next, after stopping only the supply of TMA and raising the temperature to 1030 ° C, TMG is added at 60 μmol /
, CP2Mg of 5 μmol / min and the Mg-doped GaN layer
Grow with a film thickness of 1 μm.
【0031】次にTMG及びCP2Mgの供給を停止して成長を
終了した後加熱ヒータを切り、アンモニアと水素の混合
雰囲気で自然冷却する。600℃になるとアンモニアの供
給を停止し、水素のみの雰囲気に切り替えてそのまま室
温まで冷却する。Next, after stopping the supply of TMG and CP 2 Mg to complete the growth, the heater is turned off and the mixture is naturally cooled in a mixed atmosphere of ammonia and hydrogen. When the temperature reaches 600 ° C, the supply of ammonia is stopped, the atmosphere is switched to hydrogen only, and the temperature is cooled to room temperature.
【0032】図1は気相成長後の冷却時にアンモニアと
水素の混合雰囲気から水素のみの雰囲気に切り替える温
度を変えてMgドープGaN層の抵抗率を測定した結果であ
る。600℃以上でアンモニアの供給を停止することによ
り抵抗率1.5Ωcmと極めて低抵抗なp型GaNが得られた。FIG. 1 shows the results of measuring the resistivity of the Mg-doped GaN layer while changing the temperature at which the mixed atmosphere of ammonia and hydrogen is switched to the atmosphere containing only hydrogen during cooling after vapor phase growth. By stopping the supply of ammonia at 600 ℃ or higher, p-type GaN with a resistivity of 1.5 Ωcm and extremely low resistance was obtained.
【0033】同様に、気相成長後の冷却時においてアン
モニアと水素の混合雰囲気から窒素または窒素と水素の
混合雰囲気に切り替える温度を変えてMgドープGaN層の
抵抗率を測定する実験を行ったところ、アンモニアから
水素への切り替えの実験と同様に、400℃から600℃の間
で急激な変化が起こり、600℃以上でアンモニアと水素
の混合雰囲気から窒素または窒素と水素の混合雰囲気に
切り替えることにより、いずれの場合においても抵抗率
が1.0Ωcmと極めて低抵抗なp-GaNが得られた。Similarly, an experiment was conducted to measure the resistivity of the Mg-doped GaN layer by changing the temperature at which the mixed atmosphere of ammonia and hydrogen was switched to nitrogen or the mixed atmosphere of nitrogen and hydrogen during cooling after vapor phase growth. , Similar to the experiment of switching from ammonia to hydrogen, a rapid change occurs between 400 ° C and 600 ° C, and by switching from the mixed atmosphere of ammonia and hydrogen to nitrogen or the mixed atmosphere of nitrogen and hydrogen at 600 ° C or higher, In each case, p-GaN having a resistivity as low as 1.0 Ωcm was obtained.
【0034】このようにいずれの雰囲気でもアンモニア
の供給を600℃以上で停止すると低抵抗が得られた。以
上の結果から気相成長後の冷却時において600℃以上で
アンモニアの供給を停止し、水素、窒素、アルゴン等の
不活性ガス単独または混合雰囲気で室温まで冷却を行う
と低抵抗なp型窒化ガリウム系化合物半導体が得られる
ことがわかった。As described above, low resistance was obtained when the supply of ammonia was stopped at 600 ° C. or higher in any atmosphere. From the above results, when cooling after vapor phase growth, stopping the supply of ammonia at 600 ° C or higher and cooling to room temperature in an inert gas such as hydrogen, nitrogen, or argon alone or in a mixed atmosphere, low resistance p-type nitriding is performed. It was found that a gallium compound semiconductor can be obtained.
【0035】尚、本実施例では低抵抗なp型窒化物系化
合物半導体を得るために最高の効果が得られる600℃以
上で冷却雰囲気の切り替えを行ったが、実験から明らか
なように400℃以上なら程度の差はあるが低抵抗化の効
果が得られる。In this example, the cooling atmosphere was switched at 600 ° C. or higher at which the maximum effect was obtained in order to obtain a p-type nitride compound semiconductor having a low resistance. If it is more than the above, the effect of lowering the resistance can be obtained although there is a degree of difference.
【0036】さらに、本発明によれば結晶中においてN-
H結合が安定となる温度以上で原子状水素の供給を停止
しているので、p型GaNに限らずAlGaN、AlGaInN、InGaN
等すべてのp型窒化物系化合物半導体を低抵抗化するの
に有効であることは明らかである。Further, according to the present invention, N-
Since the supply of atomic hydrogen is stopped above the temperature at which the H bond becomes stable, it is not limited to p-type GaN, but AlGaN, AlGaInN, InGaN
It is clear that it is effective in reducing the resistance of all p-type nitride compound semiconductors.
【0037】(実施例2)まず、サファイア基板を反応
炉内のサセプター上に設置し真空排気した後、大気圧の
水素雰囲気において1150℃で10分間加熱し基板のクリー
ニングを行う。次に、600℃まで冷却し、TMAを3μモル/
分、NH3を1.3l/分、キャリア水素を2.5l/分流してAlNバ
ッファ層を約40nm成長させる。(Example 2) First, a sapphire substrate was placed on a susceptor in a reaction furnace and evacuated, and then heated at 1150 ° C for 10 minutes in a hydrogen atmosphere at atmospheric pressure to clean the substrate. Next, cool to 600 ° C. and add TMA at 3 μmol /
, NH 3 at 1.3 l / min and carrier hydrogen at 2.5 l / min to grow an AlN buffer layer of about 40 nm.
【0038】次に、TMAの供給を停止した後温度を700℃
に上昇させた後アンモニアの供給を停止しエチルアジド
(EtN3)を6mモル/分供給する。次にTMGを60μモル/
分、CP2Mgを5μモル/分流してMgをドープしたGaN層を約
1μmの膜厚で成長させる。次にTMG及びCP2Mgの供給を停
止して成長を終了した後加熱ヒータを切り、エチルアジ
ドと水素の混合雰囲気で自然冷却する。600℃になると
キャリア水素の供給を停止し、キャリアガスとして窒素
を供給し、エチルアジドと窒素の混合雰囲気で室温まで
冷却する。エチルアジドを用いてGaNのエピタキシャル
成長を行うとエチルアジドとキャリア水素が反応してエ
チルアジドの分解が起こり成長が行われる。従って、成
長中は原子状水素が結晶内外に存在することになる。冷
却時結晶中でN-H結合が安定となる前、すなわち600℃以
上でキャリアガスを水素から窒素に切り替えるとエチル
アジドの分解が抑制され気相中に水素原子が存在しなく
なり、結晶中から水素原子が放出されて低抵抗なp型GaN
が得られる。Next, after stopping the supply of TMA, the temperature is set to 700 ° C.
Then, the ammonia supply is stopped and ethyl azide (EtN 3 ) is supplied at 6 mmol / min. Next, TMG is 60 μmol /
, CP2Mg of 5 μmol / min and the Mg-doped GaN layer
Grow with a film thickness of 1 μm. Next, after stopping the supply of TMG and CP 2 Mg to complete the growth, the heater is turned off and the mixture is naturally cooled in a mixed atmosphere of ethyl azide and hydrogen. When the temperature reaches 600 ° C., the supply of carrier hydrogen is stopped, nitrogen is supplied as a carrier gas, and the mixture is cooled to room temperature in a mixed atmosphere of ethyl azide and nitrogen. When GaN is epitaxially grown using ethyl azide, ethyl azide reacts with carrier hydrogen to decompose ethyl azide and grow. Therefore, atomic hydrogen exists inside and outside the crystal during the growth. Before the NH bond becomes stable in the crystal during cooling, that is, when the carrier gas is switched from hydrogen to nitrogen at 600 ° C or higher, the decomposition of ethyl azide is suppressed and the hydrogen atom does not exist in the gas phase. Emitted and low resistance p-type GaN
Is obtained.
【0039】エチルアジドを用いてp型GaNのエピタキシ
ャル成長を行った場合、MgドープGaN層の抵抗率を冷却
時におけるキャリアガス切り替え温度に対してプロット
した結果を図2に示す。結果から明らかなように400℃以
上でキャリアガスを水素から窒素に切り替えることによ
ってMgドープGaN層の低抵抗化が得られており600℃以上
でほぼ完全に水素パッシベーションが回避できる。FIG. 2 shows the results of plotting the resistivity of the Mg-doped GaN layer against the carrier gas switching temperature during cooling when p-type GaN was epitaxially grown using ethyl azide. As is clear from the results, by lowering the resistance of the Mg-doped GaN layer by switching the carrier gas from hydrogen to nitrogen at 400 ° C or higher, hydrogen passivation can be almost completely avoided at 600 ° C or higher.
【0040】なお、本発明においても結晶中においてN-
H結合が安定となる温度以上で原子状水素の供給を停止
しているので、p型GaNに限らずAlGaN、AlGaInN、InGaN
等すべてのp型窒化物系化合物半導体を低抵抗化するの
に有効であることは明らかである。In the present invention, N- in the crystal is also used.
Since the supply of atomic hydrogen is stopped above the temperature at which the H bond becomes stable, it is not limited to p-type GaN, but AlGaN, AlGaInN, InGaN
It is clear that it is effective in reducing the resistance of all p-type nitride compound semiconductors.
【0041】さらに、窒素原料としてはエチルアジドに
限らず、ヒドラジン(N2H4)等の有機窒素原料であれば
同様の効果が得られる。Further, the nitrogen source is not limited to ethyl azide, and the same effect can be obtained if it is an organic nitrogen source such as hydrazine (N 2 H 4 ).
【0042】(実施例3)図3に示すように実施例1また
は実施例2のようにしてエピタキシャル成長したMgドー
プのp-GaN2上に、ホトリソグラフィー技術により10μ×
10μ角のSiO2膜1を10μ間隔ごとに選択的に堆積する。S
iO2膜の厚みは400nmである。次に、前記基板を反応炉内
のサセプター上に設置し真空排気した後アンモニアと水
素を供給し大気圧とする。アンモニアの供給は1.3l/分
の割合で行う。次に炉内の温度を1000℃まで上昇させ、
30分間一定温度に保つ。最後にアンモニアと水素を供給
し続けたまま、室温まで自然冷却する。Example 3 As shown in FIG. 3, 10 μ × was formed on the Mg-doped p-GaN 2 epitaxially grown as in Example 1 or Example 2 by photolithography.
A 10 μ square SiO 2 film 1 is selectively deposited at intervals of 10 μ. S
The thickness of the iO 2 film is 400 nm. Next, the substrate is placed on a susceptor in a reaction furnace, vacuum exhausted, and then ammonia and hydrogen are supplied to bring to atmospheric pressure. Ammonia is supplied at a rate of 1.3 l / min. Next, raise the temperature in the furnace to 1000 ° C,
Keep at constant temperature for 30 minutes. Finally, while supplying ammonia and hydrogen continuously, it is naturally cooled to room temperature.
【0043】Mgをドープしたp-GaNはアンモニアによっ
て供給される水素で不活性化されることはよく知られて
いるが、この水素パッシベーションは実施例1で示した
ように成長または熱処理後の冷却時、特に400-600℃の
温度域で起こる。従って、Mgをドープしたp-GaN上にSiO
2やSiN等の誘電体膜を堆積すれば、その上でのアンモニ
アの分解効率が下がり結晶中への水素原子の侵入がなく
なるので、水素パッシベーションが起きずp-GaNの低抵
抗化が図れる。It is well known that Mg-doped p-GaN is passivated by hydrogen supplied by ammonia, but this hydrogen passivation is performed after growth or cooling after heat treatment as shown in Example 1. Occurs, especially in the temperature range of 400-600 ℃. Therefore, SiO on Mg-doped p-GaN
When a dielectric film such as 2 or SiN is deposited, the decomposition efficiency of ammonia on the film is lowered and hydrogen atoms do not penetrate into the crystal, so that hydrogen passivation does not occur and the resistance of p-GaN can be reduced.
【0044】図4はそれぞれ実施例1のようにしてエピタ
キシャル成長したMgドープのp-GaN2上の全面に4000Åの
SiO2膜1を堆積した試料(with SiO2)及びSiO2膜を堆積
していない試料(without SiO2)を、大気圧のアンモニ
アと水素の混合雰囲気中で熱処理した後、冷却時におい
てアンモニアの供給を停止する温度を変化させて、その
時の抵抗率を観測した結果を示す。アンモニアの供給は
1.3l/分の割合で行った。SiO2膜を堆積した試料ではい
ずれの条件でも低い抵抗率が得られるのに対し、SiO2膜
を堆積していない試料では、600℃以下までアンモニア
を供給し続けると高抵抗化し、400℃でほぼ限界までい
くことがわかる。アンモニアの供給量を増やして分圧を
増大させると、SiO2膜を堆積していない試料ではさらに
低抵抗化される。従って選択的にSiO2膜を堆積してアン
モニア等の水素化物ガス雰囲気において熱処理を行うと
任意の場所を任意の程度に高抵抗化できる。また、本発
明では成長または熱処理の冷却時における400-600℃の
温度域だけが問題であるので、熱処理前のMgドープのp-
GaNは必ずしも実施例1または実施例2のようにもともと
低抵抗である必要はなく、高抵抗の膜でも一旦600℃以
上に昇温することによってN-H結合が切られるので問題
はない。FIG. 4 is a graph showing the total surface area of 4000 Å on the Mg-doped p-GaN 2 epitaxially grown as in Example 1.
Samples with SiO 2 film 1 deposited (with SiO 2 ) and samples without SiO 2 film deposited (without SiO 2 ) were heat treated in a mixed atmosphere of ammonia and hydrogen at atmospheric pressure, and then ammonia was supplied during cooling. The results of observing the resistivity at that time are shown by changing the temperature at which to stop. Ammonia supply
It was performed at a rate of 1.3 l / min. The sample with the SiO 2 film deposited has a low resistivity under all conditions, whereas the sample without the SiO 2 film has a high resistance when the ammonia is continuously supplied to 600 ° C or lower, and the resistivity becomes higher at 400 ° C. You can see that you are almost at the limit. When the supply amount of ammonia is increased and the partial pressure is increased, the resistance is further lowered in the sample in which the SiO 2 film is not deposited. Therefore, if a SiO 2 film is selectively deposited and heat treatment is performed in an atmosphere of hydride gas such as ammonia, the resistance can be increased to an arbitrary degree at an arbitrary place. Further, in the present invention, since only the temperature range of 400-600 ° C. during cooling of growth or heat treatment is a problem, the Mg-doped p-
GaN does not necessarily have to have low resistance as in Example 1 or Example 2, and even a high-resistance film does not have a problem because the NH bond is broken by once raising the temperature to 600 ° C. or higher.
【0045】次に、選択的にp-GaNを高抵抗化する別の
方法について説明する。SiO2膜を選択的に堆積した前記
ウエハを、反応炉内のサセプター上に設置し真空排気し
た後エチルアジドと水素を供給し大気圧とする。エチル
アジドの供給は6mモル/分の割合で行う。次に炉内の温
度を700℃まで上昇させ、30分間一定温度に保つ。最後
にエチルアジドと水素を供給し続けたまま、室温まで自
然冷却する。700℃の熱処理中においてはエチルアジド
と水素が反応してNHやNH2等の中間生成物ができる。こ
れらはSiO2膜を堆積していないGaN上ではその触媒反応
のためにさらに分解して水素原子ができMgアクセプタの
水素パッシベーションが起こる。一方SiO2膜を堆積した
領域では、NHやNH2等の中間生成物の分解効率が下が
り、水素パッシベーションが抑制される。従ってSiO2膜
を選択的に堆積することにより、GaN上の任意の位置に
高抵抗層と低抵抗層が得られる。Next, another method for selectively increasing the resistance of p-GaN will be described. The wafer on which a SiO 2 film is selectively deposited is placed on a susceptor in a reaction furnace, vacuum exhausted, and then ethyl azide and hydrogen are supplied to attain atmospheric pressure. Ethyl azide is fed at a rate of 6 mmol / min. Next, the temperature inside the furnace is raised to 700 ° C and kept at a constant temperature for 30 minutes. Finally, while continuously supplying ethyl azide and hydrogen, the mixture is naturally cooled to room temperature. During the heat treatment at 700 ° C, ethyl azide reacts with hydrogen to form intermediate products such as NH and NH 2 . On the GaN on which the SiO 2 film is not deposited, these are further decomposed due to the catalytic reaction to form hydrogen atoms, and hydrogen passivation of the Mg acceptor occurs. On the other hand, in the region where the SiO 2 film is deposited, the decomposition efficiency of intermediate products such as NH and NH 2 is lowered, and hydrogen passivation is suppressed. Therefore, by selectively depositing a SiO 2 film, a high resistance layer and a low resistance layer can be obtained at arbitrary positions on GaN.
【0046】なお本実施例ではp-GaNで説明したが、p型
GaNに限らずAlGaN、AlGaInN、InGaN等すべてのp型窒化
物系化合物半導体を低抵抗化するのに有効であることは
明らかである。In this embodiment, p-GaN is used, but p-type
Not only GaN but also AlGaN, AlGaInN, InGaN, and all other p-type nitride-based compound semiconductors are clearly effective in reducing the resistance.
【0047】さらに、窒素原料としてはエチルアジドに
限らず、ヒドラジン(N2H4)等の有機窒素原料であれば
同様の効果が得られる。Further, the nitrogen raw material is not limited to ethyl azide, and the same effect can be obtained if it is an organic nitrogen raw material such as hydrazine (N 2 H 4 ).
【0048】また、本実施例ではSiO2膜を用いて説明し
たが、水素化物ガスや有機窒素原料の分解効率を低下さ
せる膜なら、SiN等の誘電体や他の半導体でも同様の効
果が得られることは明らかである。Although the SiO 2 film is used in this embodiment, the same effect can be obtained with a dielectric such as SiN or another semiconductor as long as the film reduces the decomposition efficiency of the hydride gas and the organic nitrogen raw material. It is obvious that
【0049】(実施例4)まず、サファイア基板3を反
応炉内のサセプター上に設置し真空排気した後、大気圧
の水素雰囲気において1150℃で10分間加熱し基板のクリ
ーニングを行う。次に、600℃まで冷却し、TMAを3μモ
ル/分、NH3を1.3l/分、キャリア水素を2.5l/分流してAl
Nバッファ層4を約40nm成長させる。次にTMAの供給のみ
を停止し温度を1030℃まで上昇させた後、TMGを60μモ
ル/分、SiH4を1μモル/分、供給してn-GaN層5を堆積す
る。さらにTMAを60μモル/分の供給を加えてn-Al0.1Ga
0.9N6を堆積した後、アンモニアと水素の混合雰囲気で
温度を800℃までさげ、アンモニアの流量を10l/分に上
げる。次にTMGを60μモル/分、TMIを500μモル/分供給
してアンドープIn0.1Ga0.9N層7を堆積した後、TMG、TMI
の供給を停止して、アンモニアの流量を1.3l/分にさげ
て温度を1030℃に上げた後、さらにCP2Mgを5μモル/
分、TMGを60μモル/分、TMAを60μモル/分流してMgをド
ープしたp-Al0.1Ga0.9N層8を成長させる。次に、TMAの
供給を停止してp-GaN層9を成長させる。(Embodiment 4) First, the sapphire substrate 3 is placed on a susceptor in a reaction furnace and evacuated, and then heated at 1150 ° C. for 10 minutes in a hydrogen atmosphere at atmospheric pressure to clean the substrate. Next, it is cooled to 600 ° C., TMA is flowed at 3 μmol / min, NH 3 is flown at 1.3 l / min, and carrier hydrogen is flown at 2.5 l / min to flow Al.
The N buffer layer 4 is grown to about 40 nm. Next, only the supply of TMA is stopped and the temperature is raised to 1030 ° C., then TMG is supplied at 60 μmol / min and SiH 4 is supplied at 1 μmol / min to deposit the n-GaN layer 5. Furthermore, TMA was added at a rate of 60 μmol / min to add n-Al 0.1 Ga.
After depositing 0.9 N6, the temperature is lowered to 800 ° C. in a mixed atmosphere of ammonia and hydrogen, and the flow rate of ammonia is increased to 10 l / min. Next, after supplying TMG at 60 μmol / min and TMI at 500 μmol / min to deposit an undoped In 0.1 Ga 0.9 N layer 7, TMG, TMI
Supply was stopped, the flow rate of ammonia was reduced to 1.3 l / min and the temperature was raised to 1030 ° C, and then CP2Mg was further added at 5 μmol / min.
, TMG at 60 μmol / min and TMA at 60 μmol / min to grow the Mg-doped p-Al 0.1 Ga 0.9 N layer 8. Next, the supply of TMA is stopped and the p-GaN layer 9 is grown.
【0050】次にTMG及びCP2Mgの供給を停止して成長を
終了した後加熱ヒータを切り、アンモニアと水素の混合
雰囲気で自然冷却する。600℃になるとアンモニアの供
給を停止し、水素のみの雰囲気に切り替えてそのまま室
温まで冷却する(図5a)。次に、ホトリソグラフィー技
術を用いて、厚さ4000Åで幅5μmのSiO2ストライプ10を
350μm周期で堆積する(図5b)。次に、前記基板を反応
炉内のサセプター上に設置し真空排気した後アンモニア
と水素を供給し大気圧とする。アンモニアの供給は1.3l
/分の割合で行う。次に炉内の温度を1000℃まで上昇さ
せ、30分間一定温度に保つ。最後にアンモニアと水素を
供給し続けたまま、室温まで自然冷却する。Next, after stopping the supply of TMG and CP 2 Mg to complete the growth, the heater is turned off and the mixture is naturally cooled in a mixed atmosphere of ammonia and hydrogen. When the temperature reached 600 ° C, the supply of ammonia was stopped, the atmosphere was switched to hydrogen only, and the temperature was cooled to room temperature (Fig. 5a). Next, a photolithography technique is used to form a SiO 2 stripe 10 having a thickness of 4000 Å and a width of 5 μm.
It is deposited at 350 μm intervals (Fig. 5b). Next, the substrate is placed on a susceptor in a reaction furnace, vacuum exhausted, and then ammonia and hydrogen are supplied to bring to atmospheric pressure. Ammonia supply is 1.3 l
/ Min. Next, the temperature inside the furnace is raised to 1000 ° C and kept at a constant temperature for 30 minutes. Finally, while supplying ammonia and hydrogen continuously, it is naturally cooled to room temperature.
【0051】最後の熱処理によりSiO2ストライプ10以外
のp型層(R領域)は水素パッシベーションで高抵抗化さ
れる(図5c)。従って熱処理の後、SiO2を除去して、陽
電極、陰電極を付けた後、ウエハを共振構造を持った半
導体レーザチップに分解した後p-GaNからホールを、n-G
aNから電子を供給すれば、電流はストライプ状の低抵抗
を流れて活性層にホールが供給されることになり、電流
狭窄が行われ、横モード制御型の青色半導体レーザが製
造できる。By the final heat treatment, the p-type layer (R region) other than the SiO 2 stripe 10 is made highly resistive by hydrogen passivation (FIG. 5c). Therefore, after heat treatment, SiO 2 is removed, positive and negative electrodes are attached, and the wafer is disassembled into semiconductor laser chips with a resonant structure.
When electrons are supplied from aN, current flows through the stripe-shaped low resistance and holes are supplied to the active layer, current confinement occurs, and a lateral mode control type blue semiconductor laser can be manufactured.
【0052】また、熱処理を実施例3と同様にエチルア
ジドと水素を用いて行ってもSiO2ストライプ以外のp型
層を高抵抗化することが可能であり、同様の効果が得ら
れる。窒素原料としてはエチルアジドに限らず、ヒドラ
ジン(N2H4)等の有機窒素原料であれば同様の効果が得
られる。Even if the heat treatment is performed using ethyl azide and hydrogen as in the case of Example 3, the p-type layer other than the SiO 2 stripe can have a high resistance, and the same effect can be obtained. The nitrogen raw material is not limited to ethyl azide, and similar effects can be obtained as long as it is an organic nitrogen raw material such as hydrazine (N 2 H 4 ).
【0053】なお、本実施例ではSiO2膜を用いて説明し
たが、水素化物ガスや有機窒素原料の分解効率を低下さ
せる膜なら、SiN等の誘電体や他の半導体でも同様の効
果が得られることは実施例3と同様に明らかである。Although the SiO 2 film is used in this embodiment, the same effect can be obtained with a dielectric such as SiN or another semiconductor as long as the film reduces the decomposition efficiency of the hydride gas or the organic nitrogen raw material. What can be done is clear as in the third embodiment.
【0054】[0054]
【発明の効果】以上述べてきたように本発明の製造方法
によれば、従来のように低抵抗なp型窒化ガリウム系化
合物半導体を得るために気相成長後基板を室温に冷却し
た後アニールするという複雑な工程を行うことなく、気
相成長後の冷却雰囲気の切り替えのみという簡素な工程
で低抵抗なp型窒化ガリウム系化合物半導体が得られ
る。As described above, according to the manufacturing method of the present invention, in order to obtain a p-type gallium nitride compound semiconductor having a low resistance as in the conventional case, after the vapor phase growth the substrate is cooled to room temperature and then annealed. The p-type gallium nitride-based compound semiconductor having low resistance can be obtained by a simple process of only switching the cooling atmosphere after vapor phase growth without performing the complicated process of performing.
【0055】さらに、基板の触媒効果を利用して原料の
熱分解による原子状水素の発生を選択的に制御できるの
で、従来電子線照射やアニールではできなかったエピタ
キシャル成長層の深さ方向全般に渡り、基板上に選択的
に低抵抗部と高抵抗部の作製が実現できる。したがっ
て、ダブルヘテロ構造を持つ基板に対して選択的に抵抗
を変化させられるので、青色半導体レーザの電流狭窄が
可能となる。Further, since the production of atomic hydrogen due to the thermal decomposition of the raw material can be selectively controlled by utilizing the catalytic effect of the substrate, the depth direction of the epitaxial growth layer, which was not possible by conventional electron beam irradiation or annealing, can be controlled over the entire depth direction. It is possible to selectively manufacture the low resistance portion and the high resistance portion on the substrate. Therefore, since the resistance can be selectively changed with respect to the substrate having the double hetero structure, the current confinement of the blue semiconductor laser becomes possible.
【図1】気相成長後の冷却時にアンモニアと水素の混合
雰囲気から水素のみの雰囲気に切り替える温度を変えて
MgドープGaN層の抵抗率を測定した結果を示す図[FIG. 1] Changing the temperature at which the mixed atmosphere of ammonia and hydrogen is switched to the atmosphere containing only hydrogen during cooling after vapor phase growth
Diagram showing the results of measuring the resistivity of the Mg-doped GaN layer
【図2】エチルアジドを用いてp型GaNのエピタキシャル
成長を行い、冷却時においてキャリアガスの水素を窒素
に切り替える温度を変えてMgドープGaN層の抵抗率を測
定した結果を示す図FIG. 2 is a diagram showing the results of measuring the resistivity of a Mg-doped GaN layer by performing epitaxial growth of p-type GaN using ethyl azide and changing the temperature at which hydrogen in the carrier gas is switched to nitrogen during cooling.
【図3】p-GaN上に、ホトリソグラフィー技術により10
μ×10μ角のSiO2膜を10μ間隔ごとに選択的に堆積した
図[Fig. 3] 10 on p-GaN by photolithography technology
Diagram showing selective deposition of μ × 10 μ square SiO 2 films at intervals of 10 μ
【図4】Mgドープのp-GaN上の全面に4000ÅのSiO2膜を
堆積した試料及びSiO2膜を堆積していない試料を、大気
圧のアンモニアと水素の混合雰囲気中で熱処理した後、
冷却時においてアンモニアの供給を停止する温度を変化
させて、その時の抵抗率を観測した結果を示す図FIG. 4 shows a sample in which a 4000 Å SiO 2 film is deposited on the entire surface of Mg-doped p-GaN and a sample in which no SiO 2 film is deposited are heat-treated in a mixed atmosphere of ammonia and hydrogen at atmospheric pressure.
Diagram showing the results of observing the resistivity at that time by changing the temperature at which the supply of ammonia is stopped during cooling
【図5】(a)は窒化物系青色半導体レーザの素子断面図
でSiO2膜を用いて熱処理を行い電流狭窄を行う製造方法
の一工程図 (b)は窒化物系青色半導体レーザの素子断面図でSiO2膜
を用いて熱処理を行い電流狭窄を行う製造方法の一工程
図 (c)は窒化物系青色半導体レーザの素子断面図でSiO2膜
を用いて熱処理を行い電流狭窄を行う製造方法の一工程
図FIG. 5A is a cross-sectional view of a nitride blue semiconductor laser device, showing one step of a manufacturing method in which heat treatment is performed using an SiO 2 film to confine current. FIG. 5B is a nitride blue semiconductor laser device. performing current constriction was heat-treated with SiO 2 film in a single step diagram (c) the element cross-sectional view of a nitride based blue semiconductor laser manufacturing method for performing current constriction was heat-treated with SiO 2 film in cross section Manufacturing process
1 SiO2 2 p-GaN 3 サファイア基板 4 AlN 5 n-GaN 6 n-AlGaN 7 InGaN 8 p-AlGaN 9 p-GaN 10 SiO2 1 SiO 2 2 p-GaN 3 Sapphire substrate 4 AlN 5 n-GaN 6 n-AlGaN 7 InGaN 8 p-AlGaN 9 p-GaN 10 SiO 2
Claims (14)
合物半導体の気相成長冷却時に、400℃以上の温度で水
素化物ガスを含む雰囲気から水素または窒素の雰囲気に
切り替えることを特徴とするp型窒化ガリウム系化合物
半導体の製造方法。1. A p-type which is characterized in that an atmosphere containing a hydride gas is switched to an atmosphere of hydrogen or nitrogen at a temperature of 400 ° C. or more during vapor phase growth cooling of a gallium nitride-based compound semiconductor doped with p-type impurities. Method of manufacturing gallium nitride compound semiconductor.
徴とする請求項1に記載のp型窒化ガリウム系化合物半
導体の製造方法。2. The method for producing a p-type gallium nitride-based compound semiconductor according to claim 1, wherein the hydride gas is ammonia.
を用いたp型不純物をドープした窒化ガリウム系化合物
半導体の気相成長冷却時に、400℃以上の温度でキャリ
アガスを水素から窒素雰囲気に切り替えることを特徴と
するp型窒化ガリウム系化合物半導体の製造方法。3. A carrier gas from hydrogen to nitrogen at a temperature of 400 ° C. or higher during vapor phase growth cooling of a gallium nitride-based compound semiconductor doped with a p-type impurity using an organic group V raw material containing no bond between nitrogen and hydrogen. A method of manufacturing a p-type gallium nitride-based compound semiconductor, characterized by switching to an atmosphere.
ることを特徴とする請求項3に記載のp型窒化ガリウム
系化合物半導体の製造方法。4. The method for producing a p-type gallium nitride-based compound semiconductor according to claim 3, wherein the organic group V raw material is ethyl azide (EtN 3 ).
合物半導体の一部に選択的に誘電体膜を堆積する工程
と、400℃以上の温度域で熱処理を行う工程を有するこ
とを特徴とするp型窒化ガリウム系化合物半導体の製造
方法。5. A step of selectively depositing a dielectric film on a portion of a gallium nitride-based compound semiconductor doped with p-type impurities, and a step of performing heat treatment in a temperature range of 400 ° C. or higher. A method for manufacturing a p-type gallium nitride-based compound semiconductor.
キャリアガスとする有機V族であることを特徴とする請
求項5に記載のp型窒化ガリウム系化合物半導体の製造
方法。6. The method for producing a p-type gallium nitride based compound semiconductor according to claim 5, wherein the heat treatment atmosphere is a hydride gas or an organic group V containing hydrogen as a carrier gas.
エチルアジド(EtN3)であることを特徴とする請求項6
に記載のp型窒化ガリウム系化合物半導体の製造方法。7. The hydride gas is ammonia and the organic group V is ethyl azide (EtN 3 ).
The method for producing a p-type gallium nitride-based compound semiconductor according to item 1.
であることを特徴とする請求項6に記載のp型窒化ガリ
ウム系化合物半導体の製造方法。8. The method for producing a p-type gallium nitride-based compound semiconductor according to claim 6, wherein the hydride gas is arsine or phosphine.
求項5に記載のp型窒化ガリウム系化合物半導体の製造
方法。9. The method for producing a p-type gallium nitride compound semiconductor according to claim 5, wherein the dielectric film is SiO 2 .
化合物半導体層をクラッド層とする窒化ガリウム系化合
物半導体層からなるダブルヘテロ構造を有する基板の一
部に選択的に誘電体膜を堆積する工程と、400℃以上の
温度域で熱処理を行う工程を有することを特徴とするp
型窒化ガリウム系化合物半導体の製造方法。10. A step of selectively depositing a dielectric film on a portion of a substrate having a double hetero structure composed of a gallium nitride compound semiconductor layer having a gallium nitride compound semiconductor layer doped with a p-type impurity as a cladding layer. And a step of performing heat treatment in a temperature range of 400 ° C. or higher, p
Type gallium nitride compound semiconductor manufacturing method.
をキャリアガスとする有機V族であることを特徴とする
請求項10に記載のp型窒化ガリウム系化合物半導体の
製造方法。11. The method for producing a p-type gallium nitride-based compound semiconductor according to claim 10, wherein the heat treatment atmosphere is a hydride gas or an organic group V containing hydrogen as a carrier gas.
がエチルアジド(EtN3)であることを特徴とする請求項
11に記載のp型窒化ガリウム系化合物半導体の製造方
法。12. The method for producing a p-type gallium nitride compound semiconductor according to claim 11, wherein the hydride gas is ammonia and the organic group V is ethyl azide (EtN 3 ).
請求項10に記載のp型窒化ガリウム系化合物半導体の
製造方法。13. The method for producing a p-type gallium nitride compound semiconductor according to claim 10, wherein the dielectric film is SiO 2 .
化合物半導体の気相成長冷却時に、400℃以上の温度で
水素化物ガスを含む雰囲気から、水素原子を発生しない
ガス雰囲気に切り替えることを特徴とするp型窒化ガリ
ウム系化合物半導体の製造方法。14. An atmosphere containing a hydride gas at a temperature of 400 ° C. or higher is switched to a gas atmosphere that does not generate hydrogen atoms during vapor phase growth cooling of a gallium nitride-based compound semiconductor doped with p-type impurities. A method of manufacturing a p-type gallium nitride compound semiconductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25054094A JP3254931B2 (en) | 1994-10-17 | 1994-10-17 | Method for producing p-type gallium nitride-based compound semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25054094A JP3254931B2 (en) | 1994-10-17 | 1994-10-17 | Method for producing p-type gallium nitride-based compound semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08115880A true JPH08115880A (en) | 1996-05-07 |
JP3254931B2 JP3254931B2 (en) | 2002-02-12 |
Family
ID=17209434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25054094A Expired - Fee Related JP3254931B2 (en) | 1994-10-17 | 1994-10-17 | Method for producing p-type gallium nitride-based compound semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3254931B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0940490A (en) * | 1995-07-27 | 1997-02-10 | Hitachi Cable Ltd | Method for producing gallium nitride crystal |
JPH11274083A (en) * | 1998-03-24 | 1999-10-08 | Sumitomo Electric Ind Ltd | Compound semiconductor device and method of manufacturing the same |
JP2000323751A (en) * | 1999-05-10 | 2000-11-24 | Pioneer Electronic Corp | Method for manufacturing group III nitride semiconductor device |
US6200827B1 (en) * | 1998-01-08 | 2001-03-13 | Pioneer Electronic Corporation | Method for manufacturing a semiconductor light emitting device |
US6258617B1 (en) | 1995-08-31 | 2001-07-10 | Kabushiki Kaisha Toshiba | Method of manufacturing blue light emitting element |
KR100329117B1 (en) * | 1998-07-16 | 2002-08-21 | 광주과학기술원 | Manufacturing method of p-type gallium nitride (GaN) thin film doped with Mg |
JP2002319743A (en) * | 2001-04-20 | 2002-10-31 | Ricoh Co Ltd | P-type iii-group nitride semiconductor and semiconductor device and its manufacturing method |
JP2005159035A (en) * | 2003-11-26 | 2005-06-16 | Sumitomo Electric Ind Ltd | Light emitting diode and light emitting device |
JP2007311661A (en) * | 2006-05-19 | 2007-11-29 | Sumitomo Electric Ind Ltd | Method for growing group III nitride semiconductor and method for manufacturing group III nitride semiconductor device |
JP2009177219A (en) * | 2009-05-15 | 2009-08-06 | Mitsubishi Chemicals Corp | METHOD FOR MANUFACTURING GaN-BASED SEMICONDUCTOR DEVICE |
JP2010021576A (en) * | 2009-10-19 | 2010-01-28 | Ricoh Co Ltd | Method of manufacturing semiconductor device |
WO2010041485A1 (en) | 2008-10-07 | 2010-04-15 | 住友電気工業株式会社 | Method for fabricating p-type gallium nitride-based semiconductor, method for fabricating nitride-based semiconductor element, and method for fabricating epitaxial wafer |
JP2010093275A (en) * | 2009-11-20 | 2010-04-22 | Sumitomo Electric Ind Ltd | Method for manufacturing p-type gallium nitride based semiconductor, method for manufacturing nitride based semiconductor element, and method for manufacturing epitaxial wafer |
JP2011084469A (en) * | 1997-10-30 | 2011-04-28 | Sumitomo Electric Ind Ltd | METHOD AND INGOT FOR MANUFACTURING GaN SINGLE CRYSTAL SUBSTRATE |
JP2016054321A (en) * | 2015-12-08 | 2016-04-14 | 株式会社リコー | Semiconductor device |
CN106299060A (en) * | 2015-05-28 | 2017-01-04 | 苏州新纳晶光电有限公司 | A kind of p-type GaN epitaxial layer preparation method having low-resistance |
CN112331752A (en) * | 2020-12-03 | 2021-02-05 | 至芯半导体(杭州)有限公司 | Deep ultraviolet LED epitaxial manufacturing method with low-resistivity P-type layer |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05109636A (en) * | 1991-07-23 | 1993-04-30 | Toshiba Corp | Method for manufacturing thin film |
JPH05183189A (en) * | 1991-11-08 | 1993-07-23 | Nichia Chem Ind Ltd | Manufacture of p-type gallium nitride based compound semiconductor |
JPH06209120A (en) * | 1992-11-20 | 1994-07-26 | Nichia Chem Ind Ltd | Blue colored light emitting element |
JPH06232451A (en) * | 1993-02-05 | 1994-08-19 | Nichia Chem Ind Ltd | Growing method of p-type gallium nitride |
JPH06268259A (en) * | 1993-03-12 | 1994-09-22 | Nichia Chem Ind Ltd | Gallium nitride compound semiconductor light emitting element |
JPH06314821A (en) * | 1993-04-28 | 1994-11-08 | Nichia Chem Ind Ltd | Formation of p-type gallium nitride compound semiconductor |
JPH07249795A (en) * | 1994-03-09 | 1995-09-26 | Toshiba Corp | Semiconductor device |
-
1994
- 1994-10-17 JP JP25054094A patent/JP3254931B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05109636A (en) * | 1991-07-23 | 1993-04-30 | Toshiba Corp | Method for manufacturing thin film |
JPH05183189A (en) * | 1991-11-08 | 1993-07-23 | Nichia Chem Ind Ltd | Manufacture of p-type gallium nitride based compound semiconductor |
JPH06209120A (en) * | 1992-11-20 | 1994-07-26 | Nichia Chem Ind Ltd | Blue colored light emitting element |
JPH06232451A (en) * | 1993-02-05 | 1994-08-19 | Nichia Chem Ind Ltd | Growing method of p-type gallium nitride |
JPH06268259A (en) * | 1993-03-12 | 1994-09-22 | Nichia Chem Ind Ltd | Gallium nitride compound semiconductor light emitting element |
JPH06314821A (en) * | 1993-04-28 | 1994-11-08 | Nichia Chem Ind Ltd | Formation of p-type gallium nitride compound semiconductor |
JPH07249795A (en) * | 1994-03-09 | 1995-09-26 | Toshiba Corp | Semiconductor device |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0940490A (en) * | 1995-07-27 | 1997-02-10 | Hitachi Cable Ltd | Method for producing gallium nitride crystal |
US6258617B1 (en) | 1995-08-31 | 2001-07-10 | Kabushiki Kaisha Toshiba | Method of manufacturing blue light emitting element |
JP2011084469A (en) * | 1997-10-30 | 2011-04-28 | Sumitomo Electric Ind Ltd | METHOD AND INGOT FOR MANUFACTURING GaN SINGLE CRYSTAL SUBSTRATE |
US6200827B1 (en) * | 1998-01-08 | 2001-03-13 | Pioneer Electronic Corporation | Method for manufacturing a semiconductor light emitting device |
JPH11274083A (en) * | 1998-03-24 | 1999-10-08 | Sumitomo Electric Ind Ltd | Compound semiconductor device and method of manufacturing the same |
KR100329117B1 (en) * | 1998-07-16 | 2002-08-21 | 광주과학기술원 | Manufacturing method of p-type gallium nitride (GaN) thin film doped with Mg |
JP2000323751A (en) * | 1999-05-10 | 2000-11-24 | Pioneer Electronic Corp | Method for manufacturing group III nitride semiconductor device |
JP2002319743A (en) * | 2001-04-20 | 2002-10-31 | Ricoh Co Ltd | P-type iii-group nitride semiconductor and semiconductor device and its manufacturing method |
JP2005159035A (en) * | 2003-11-26 | 2005-06-16 | Sumitomo Electric Ind Ltd | Light emitting diode and light emitting device |
JP2007311661A (en) * | 2006-05-19 | 2007-11-29 | Sumitomo Electric Ind Ltd | Method for growing group III nitride semiconductor and method for manufacturing group III nitride semiconductor device |
KR101146024B1 (en) * | 2008-10-07 | 2012-05-14 | 스미토모덴키고교가부시키가이샤 | Method for fabricating p-type gallium nitride-based semiconductor, method for fabricating nitride-based semiconductor element, and method for fabricating epitaxial wafer |
WO2010041485A1 (en) | 2008-10-07 | 2010-04-15 | 住友電気工業株式会社 | Method for fabricating p-type gallium nitride-based semiconductor, method for fabricating nitride-based semiconductor element, and method for fabricating epitaxial wafer |
US7879636B2 (en) | 2008-10-07 | 2011-02-01 | Sumitomo Electric Industries, Ltd. | Method of forming p-type gallium nitride based semiconductor, method of forming nitride semiconductor device, and method of forming epitaxial wafer |
US8815621B2 (en) | 2008-10-07 | 2014-08-26 | Sumitomo Electric Industries, Ltd. | Method of forming p-type gallium nitride based semiconductor, method of forming nitride semiconductor device, and method of forming epitaxial wafer |
JP2009177219A (en) * | 2009-05-15 | 2009-08-06 | Mitsubishi Chemicals Corp | METHOD FOR MANUFACTURING GaN-BASED SEMICONDUCTOR DEVICE |
JP2010021576A (en) * | 2009-10-19 | 2010-01-28 | Ricoh Co Ltd | Method of manufacturing semiconductor device |
JP2010093275A (en) * | 2009-11-20 | 2010-04-22 | Sumitomo Electric Ind Ltd | Method for manufacturing p-type gallium nitride based semiconductor, method for manufacturing nitride based semiconductor element, and method for manufacturing epitaxial wafer |
CN106299060A (en) * | 2015-05-28 | 2017-01-04 | 苏州新纳晶光电有限公司 | A kind of p-type GaN epitaxial layer preparation method having low-resistance |
CN106299060B (en) * | 2015-05-28 | 2018-05-01 | 苏州新纳晶光电有限公司 | A kind of p-type GaN epitaxial layer preparation method for having low-resistance |
JP2016054321A (en) * | 2015-12-08 | 2016-04-14 | 株式会社リコー | Semiconductor device |
CN112331752A (en) * | 2020-12-03 | 2021-02-05 | 至芯半导体(杭州)有限公司 | Deep ultraviolet LED epitaxial manufacturing method with low-resistivity P-type layer |
Also Published As
Publication number | Publication date |
---|---|
JP3254931B2 (en) | 2002-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3688843B2 (en) | Nitride semiconductor device manufacturing method | |
JP2540791B2 (en) | A method for manufacturing a p-type gallium nitride-based compound semiconductor. | |
US7714350B2 (en) | Gallium nitride based semiconductor device and method of manufacturing same | |
JP3866540B2 (en) | Nitride semiconductor device and manufacturing method thereof | |
JP3754120B2 (en) | Semiconductor light emitting device | |
US7550368B2 (en) | Group-III nitride semiconductor stack, method of manufacturing the same, and group-III nitride semiconductor device | |
JP3438674B2 (en) | Method for manufacturing nitride semiconductor device | |
JP3254931B2 (en) | Method for producing p-type gallium nitride-based compound semiconductor | |
US20120064653A1 (en) | Nitride semiconductor device and method for growing nitride semiconductor crystal layer | |
JPH0964477A (en) | Semiconductor light emitting device and manufacturing method thereof | |
US20110177678A1 (en) | Method for manufacturing nitride semiconductor device | |
JP2008263023A (en) | III-V compound semiconductor manufacturing method, Schottky barrier diode, light emitting diode, laser diode, and manufacturing method thereof | |
WO2000017972A1 (en) | Process for producing nitride semiconductor device | |
JP3243111B2 (en) | Compound semiconductor device | |
JP3269344B2 (en) | Crystal growth method and semiconductor light emitting device | |
JP4581198B2 (en) | Heat treatment method for nitride compound semiconductor layer and method for manufacturing semiconductor device | |
JP2009021638A (en) | Gallium nitride compound semiconductor light emitting device | |
JP2002057161A5 (en) | ||
JP3987985B2 (en) | Manufacturing method of semiconductor device | |
JP4305982B2 (en) | Manufacturing method of semiconductor light emitting device | |
JPH0832113A (en) | Manufacture of p-type gan semiconductor | |
JP4103309B2 (en) | Method for manufacturing p-type nitride semiconductor | |
JP2007189028A (en) | Method for manufacturing p-type gallium nitride semiconductor and method for manufacturing AlGaInN light-emitting element | |
JP3340415B2 (en) | Compound semiconductor device and method of manufacturing the same | |
JPH08213656A (en) | Gallium nitride based compound semiconductor light emitting element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071130 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081130 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091130 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091130 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101130 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111130 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121130 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121130 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131130 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |