JPH08114460A - Method for adjusting resonance frequency of vibration-type element - Google Patents
Method for adjusting resonance frequency of vibration-type elementInfo
- Publication number
- JPH08114460A JPH08114460A JP6276989A JP27698994A JPH08114460A JP H08114460 A JPH08114460 A JP H08114460A JP 6276989 A JP6276989 A JP 6276989A JP 27698994 A JP27698994 A JP 27698994A JP H08114460 A JPH08114460 A JP H08114460A
- Authority
- JP
- Japan
- Prior art keywords
- resonance frequency
- vibration
- ion beam
- vibrating
- adjusting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 29
- 239000000463 material Substances 0.000 claims abstract description 12
- 238000004544 sputter deposition Methods 0.000 claims abstract description 6
- 239000000126 substance Substances 0.000 claims description 34
- 238000000151 deposition Methods 0.000 claims description 10
- 238000007740 vapor deposition Methods 0.000 claims description 6
- 239000010409 thin film Substances 0.000 abstract description 10
- 238000005459 micromachining Methods 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 abstract description 3
- 239000010408 film Substances 0.000 abstract description 3
- 238000009966 trimming Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229910001338 liquidmetal Inorganic materials 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
Landscapes
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
- Gyroscopes (AREA)
- Micromachines (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、マイクロマシニング技
術により作製された振動型素子の共振周波数調整方法に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resonance frequency adjusting method for a vibration type element manufactured by a micromachining technique.
【0002】[0002]
【従来の技術】図3は、機械加工による従来の音叉型角
速度センサを示す。この音叉型角速度センサは、矩形板
状の駆動用弾性体12の一端側と検知用弾性体11の一端側
とがジョイント14により直交接合されて振動型素子を構
成しており、駆動用弾性体12の他端側は電極ブロック13
により接続されている。駆動用弾性体12は圧電素子とな
っており、また、検知用弾性体11はバイモルフ素子によ
って形成される。2. Description of the Related Art FIG. 3 shows a conventional tuning fork type angular velocity sensor by machining. In this tuning fork type angular velocity sensor, one end side of a rectangular plate-shaped drive elastic body 12 and one end side of a detection elastic body 11 are orthogonally joined by a joint 14 to form a vibration type element. The other end side of 12 is an electrode block 13
Connected by. The driving elastic body 12 is a piezoelectric element, and the detecting elastic body 11 is formed of a bimorph element.
【0003】この音叉型角速度センサは、駆動用弾性体
12をx軸方向に振動させ、センサをz軸中心にして回転
させると、回転軸方向と振動方向に共に直交する方向、
ここでは、検知用弾性体11の面に垂直な方向(y軸方
向)にコリオリの力Fが発生し、このコリオリの力が検
知用弾性体11に加わると検知用弾性体11にはコリオリ力
の発生方向に振動して歪を生じ、この振幅の大きさに対
応する歪の電気信号を測定することで角速度の大きさを
検知するものである。This tuning fork type angular velocity sensor has a driving elastic body.
When 12 is vibrated in the x-axis direction and the sensor is rotated around the z-axis, a direction orthogonal to both the rotation axis direction and the vibration direction,
Here, a Coriolis force F is generated in a direction (y-axis direction) perpendicular to the surface of the detection elastic body 11, and when this Coriolis force is applied to the detection elastic body 11, the Coriolis force is applied to the detection elastic body 11. Is generated by vibrating in the direction of occurrence of the strain, and the magnitude of the angular velocity is detected by measuring the electrical signal of the strain corresponding to the magnitude of this amplitude.
【0004】ところで、角速度センサに対する感度を高
めるためには、駆動用弾性体12に与える振幅速度Vを速
めてその振幅を大きくすることが要求され、また、角速
度センサに対する感度を一定にするためには、振幅速度
Vを一定にしなければならない。そのためには、設計時
に定めた一定の共振周波数で振動し、かつ、一定振幅の
振動型素子を製造することが必要である。ところが、左
右の振動型素子の形状寸法や質量を完全に等しく作製す
ることは困難である。また、センサ間のばらつきも考慮
すれば不可能である。その結果、振動型素子の左右形状
の不整合、センサ間の共振周波数の違い、共振インピー
ダンスの違いから感度やノイズ特性のばらつきが生じる
という問題がある。この問題を解決するために、検知用
弾性体11の自由端15をレーザビームやサンドプラストを
用いて切断や研磨し、振動型素子の共振周波数を調整す
る方法が採られていた。By the way, in order to increase the sensitivity to the angular velocity sensor, it is required to increase the amplitude velocity V to be given to the driving elastic body 12 to increase its amplitude, and to keep the sensitivity to the angular velocity sensor constant. Must keep the amplitude velocity V constant. For that purpose, it is necessary to manufacture a vibrating element that vibrates at a constant resonance frequency determined at the time of design and has a constant amplitude. However, it is difficult to manufacture the right and left vibrating elements with completely the same shape and size. In addition, it is impossible if variations among sensors are taken into consideration. As a result, there is a problem in that variations in sensitivity and noise characteristics occur due to a mismatch between the left and right shapes of the vibration type element, a difference in resonance frequency between sensors, and a difference in resonance impedance. In order to solve this problem, a method of adjusting the resonance frequency of the vibrating element by cutting or polishing the free end 15 of the detection elastic body 11 using a laser beam or sand plast has been adopted.
【0005】[0005]
【発明が解決しようとする課題】近年、マイクロマシニ
ング技術の進歩により微細な振動型センサが作製される
ようになってきた。従来の音叉型角速度センサ等の振動
型センサは、弾性体11,12の振動型素子が大きいことか
らレーザビーム等による目的の共振周波数を得るための
トリミング加工による調整が可能であったが、マイクロ
マシニング技術を用いて作製された微細な振動型センサ
では、振動型素子のトリミング領域( 例えば数10μm)
に対してのレーザビームのスポット径(10〜数10μm)
が大きく、トリミング領域の微小な部分をトリミング
し、素子の共振周波数を設計値に精度よく調整すること
が極めて困難である。In recent years, advances in micromachining technology have led to the production of fine vibration-type sensors. In the conventional vibration type sensor such as the tuning fork type angular velocity sensor, since the vibration type elements of the elastic bodies 11 and 12 are large, adjustment by trimming processing to obtain a target resonance frequency by the laser beam or the like is possible. In the fine vibration type sensor manufactured by using the machining technology, the trimming area of the vibration type element (for example, several 10 μm)
Laser beam spot diameter for (10 to several tens of μm)
Is large, it is extremely difficult to trim a minute portion of the trimming area and adjust the resonance frequency of the element to a design value with high precision.
【0006】本発明は上記従来の課題を解決するために
なされたものであり、その目的は、微細な振動型素子の
共振周波数を高精度に調整する方法を提供することにあ
る。The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a method for adjusting the resonance frequency of a fine vibration element with high accuracy.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に、本発明は次のように構成されている。すなわち、第
1の発明は、振動型素子の表面に予め加工用物質を付着
形成しておき、この加工用物質にレーザビーム又は集束
イオンビームを当てて加工用物質をスパッタ除去し、振
動型素子の共振周波数を高くする方向に調整することを
特徴として構成されている。In order to achieve the above object, the present invention is constructed as follows. That is, the first aspect of the present invention is that the processing substance is attached and formed in advance on the surface of the vibration-type element, and the processing substance is irradiated with a laser beam or a focused ion beam to remove the processing substance by sputtering. It is characterized in that the resonance frequency is adjusted so as to increase.
【0008】また、第2の発明は、振動型素子の表面に
成膜物質の蒸着又は成膜物質の集束イオンビーム照射に
よって成膜物質を付着し、振動型素子の共振周波数を低
くする方向に調整することを特徴として構成されてい
る。A second aspect of the invention is directed to a method of depositing a film-forming substance on the surface of the vibration-type element or irradiating a focused ion beam of the film-forming substance with the film-forming substance to lower the resonance frequency of the vibration-type element. It is characterized by adjusting.
【0009】また、第3の発明は、振動型素子の表面に
予め加工用物質を付着形成しておき、この加工用物質に
レーザビーム又は集束イオンビームを当てて加工用物質
をスパッタ除去する工程と、振動型素子の表面に成膜物
質の蒸着又は成膜物質の集束イオンビーム照射によって
成膜物質を付着する工程とを適宜繰り返すことによって
振動素子の共振周波数を高低所望方向に調整することを
特徴として構成されている。A third aspect of the present invention is a step of depositing a processing substance in advance on the surface of the vibrating element and applying a laser beam or a focused ion beam to the processing substance to remove the processing substance by sputtering. And the step of depositing the film-forming substance on the surface of the vibrating element by vapor deposition of the film-forming substance or irradiation of a focused ion beam of the film-forming substance to adjust the resonance frequency of the vibrating element in a desired high or low direction. It is configured as a feature.
【0010】[0010]
【作用】上記構成の本発明において、例えば、角速度セ
ンサ等に設けられる微細な振動型素子の共振周波数は、
予め素子表面に付着形成した加工用物質にレーザビーム
又は集束イオンビームを当ててスパッタ除去して振動型
素子の共振周波数を高くしたり、あるいは、素子表面に
成膜物質を蒸着又は集束イオンビーム照射で付着するこ
とで振動型素子の共振周波数を低くしたりして調整され
る。In the present invention having the above structure, for example, the resonance frequency of the fine vibration type element provided in the angular velocity sensor is
A laser beam or focused ion beam is applied to the processing material that has been deposited on the surface of the device in advance to remove the spatter to increase the resonance frequency of the vibration-type device, or a film-forming substance is vapor-deposited or focused on the device surface. It is adjusted by lowering the resonance frequency of the vibrating element by adhering with.
【0011】[0011]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1はマイクロマシニング技術を用いて作製され
た櫛形電極構造を持つ微細な振動型角速度センサを示
す。また、図2は、図1における(A−A)部分の断面
図である。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a fine vibration type angular velocity sensor having a comb-shaped electrode structure manufactured by using a micromachining technique. Further, FIG. 2 is a sectional view of a portion (A-A) in FIG.
【0012】図1、図2において、シリコン基板1上に
は、ポリシリコン2が形成されており、そのポリシリコ
ン2を異方性エッチング処理等のマイクロマシニング技
術による加工で櫛形の固定電極5や、櫛形の可動電極6
が両持振動梁8に連接され構成されている振動型素子が
作製され、振動型素子(可動電極6および両持振動梁
8)とシリコン基板1との間には隙間7が形成されてい
る。固定電極5はシリコン基板1に固定され、固定電極
5と可動電極6は噛み合う状態で配置されている。ま
た、固定電極5および可動電極6に駆動用導体パターン
層4を介して交流電圧が印加されると固定電極5と可動
電極6間に静電力が発生し、この静電力で振動型素子が
x軸方向(矢印方向)に振動する。In FIGS. 1 and 2, a polysilicon 2 is formed on a silicon substrate 1, and the polysilicon 2 is processed by a micromachining technique such as anisotropic etching treatment to form a comb-shaped fixed electrode 5 or , Comb-shaped movable electrode 6
A vibrating element having a structure in which is connected to a doubly supported vibrating beam 8 is produced, and a gap 7 is formed between the vibrating element (the movable electrode 6 and the doubly supporting vibrating beam 8) and the silicon substrate 1. . The fixed electrode 5 is fixed to the silicon substrate 1, and the fixed electrode 5 and the movable electrode 6 are arranged in a meshed state. Further, when an AC voltage is applied to the fixed electrode 5 and the movable electrode 6 via the drive conductor pattern layer 4, an electrostatic force is generated between the fixed electrode 5 and the movable electrode 6, and this electrostatic force causes the vibration-type element to move. It vibrates in the axial direction (arrow direction).
【0013】この角速度センサは、振動型素子をx軸方
向に振動させ、z軸を中心として回転すると、図1では
紙面に垂直な方向にコリオリの力Fが発生し、このコリ
オリ力が振動型素子に加わり、振動型素子がコリオリ力
の発生方向に振動し、この振幅の大きさに対応する静電
容量の変化を測定し、角速度の大きさを検知するもので
ある。In this angular velocity sensor, when the vibrating element is vibrated in the x-axis direction and rotated about the z-axis, a Coriolis force F is generated in the direction perpendicular to the paper surface in FIG. 1, and this Coriolis force is the vibrating type. In addition to the element, the vibrating element vibrates in the direction in which the Coriolis force is generated, changes in electrostatic capacitance corresponding to the magnitude of this amplitude are measured, and the magnitude of angular velocity is detected.
【0014】ところで、角速度センサの感度に大きく関
与する振動型素子の共振周波数frと、振動型素子の質
量mの関係は次式で表される。By the way, the relationship between the resonance frequency fr of the vibration-type element, which greatly affects the sensitivity of the angular velocity sensor, and the mass m of the vibration-type element is expressed by the following equation.
【0015】(2πfr)2 =k/m(2πfr) 2 = k / m
【0016】ここでは、kはバネ定数である。上式は、
質量mを小さくすれば共振周波数frはそれに伴い高く
なり、質量mを大きくすれば共振周波数frは低くなる
ことを表しており、また、共振周波数frの調整には質
量mの微小な増減が必要であることが分かる。そこで、
本発明者は、この点に着目し、振動型素子の質量を増減
することにより振動型素子の共振周波数の調整を行う方
法を発明した。Here, k is a spring constant. The above equation is
It is shown that when the mass m is reduced, the resonance frequency fr is correspondingly increased, and when the mass m is increased, the resonance frequency fr is lowered, and a slight increase or decrease in the mass m is necessary for adjusting the resonance frequency fr. It turns out that Therefore,
Focusing on this point, the present inventor invented a method of adjusting the resonance frequency of the vibration element by increasing or decreasing the mass of the vibration element.
【0017】本発明の第1の実施例の共振周波数調整方
法において特徴的なことは、図1に示す角速度センサの
振動型素子の共振周波数を調整するために、両持振動梁
8の中央部の比較的大きな面積を有する部分9に加工し
易い物質、ここではAu薄膜3を蒸着したことである。A characteristic of the resonance frequency adjusting method of the first embodiment of the present invention is that the central portion of the both-end vibrating beam 8 is used for adjusting the resonance frequency of the vibration type element of the angular velocity sensor shown in FIG. Is a material that is easy to process, that is, the Au thin film 3 is deposited on the portion 9 having a relatively large area.
【0018】次に、この加工用物質(Au薄膜3)を蒸
着した振動型素子の共振周波数調整方法を説明する。Next, a method of adjusting the resonance frequency of the vibration type element in which the processing substance (Au thin film 3) is vapor-deposited will be described.
【0019】まず、高倍率観察装置を備えた集束イオン
ビーム装置内に、角速度センサを駆動させるための配線
および振動型素子の共振特性を測るための配線を角速度
センサに施して設置する。ここで集束イオンビーム装置
とは、ビームのスポット径を0.1 μm程度に絞ることが
できるイオンビームを、対象物に照射させる装置であ
り、また、イオンビームの照射により発生した二次電子
を検出して高倍率の像が観察でき、サブミクロン加工が
可能な装置である。First, a wire for driving the angular velocity sensor and a wire for measuring the resonance characteristics of the vibration-type element are installed in the focused ion beam apparatus equipped with the high-magnification observation apparatus. Here, the focused ion beam device is a device that irradiates an object with an ion beam that can narrow the beam spot diameter to about 0.1 μm, and also detects secondary electrons generated by the irradiation of the ion beam. It is a device that can observe high-magnification images and can perform submicron processing.
【0020】次に電極5,6に交流電圧を印加して振動
型素子を振動させながら、交流電圧の周波数を可変して
行って共振周波数を測定し、振動型素子が設計値より低
い共振周波数を持っていることが分かった場合には、イ
オンビームの引き出し電圧により液体金属イオン源から
イオンを引き出し、これを静電レンズによって集束させ
イオンビームを発生し、Au薄膜3に当て、振動型素子
の共振特性を測定しながら設計の共振周波数で振幅が最
大となるようにAu薄膜3をスパッタ除去(蒸発)し、
振動型素子の共振周波数を調整設定する。Next, while applying an AC voltage to the electrodes 5 and 6 to vibrate the vibrating element, the frequency of the AC voltage is varied to measure the resonance frequency. If the ion beam is extracted, the ions are extracted from the liquid metal ion source by the extraction voltage of the ion beam, the ions are focused by the electrostatic lens to generate the ion beam, and the ion beam is applied to the Au thin film 3 to cause the vibration type element. While measuring the resonance characteristics of, the Au thin film 3 is sputter-removed (evaporated) so that the amplitude becomes maximum at the designed resonance frequency.
The resonance frequency of the vibration element is adjusted and set.
【0021】なお、両持振動梁中央部9の表面にAu薄
膜3を付着形成し、設計の共振周波数よりやや低い共振
周波数を持つ振動型素子を予め作製しておけば、本実施
例を用いて振動型素子の共振周波数調整を行うことで全
ての振動型素子を設計された共振周波数に調整できる。If the Au thin film 3 is adhered and formed on the surface of the central portion 9 of the both-end vibrating beam and a vibration type element having a resonance frequency slightly lower than the designed resonance frequency is prepared in advance, this embodiment is used. By adjusting the resonance frequency of the vibration element, all the vibration elements can be adjusted to the designed resonance frequency.
【0022】従来のレーザビームを使用し素子をトリミ
ング加工する調整方法では、マイクロマシニング技術で
作製された微細な素子を高精度に共振周波数調整を行う
のが不可能であった。それは、トリミング領域に対して
レーザビームのスポット径が大きく、トリミング領域の
微小な部分をトリミングすることができず、微妙な質量
の増減が困難であるためである。そこで、スポット径が
小さくできる集束イオンビームと、高倍率で像が観察で
きる装置を使用して、振動型素子に付着させた加工し易
い物質の質量を調節するという振動型素子の本実施例の
共振周波数調整を行うことで、精度よく振動型素子の共
振周波数を調整することが可能となり、感度やノイズ特
性のセンサ間のばらつきがない角速度センサが作製でき
る。In the conventional adjusting method of trimming the element using the laser beam, it is impossible to adjust the resonance frequency of the fine element manufactured by the micromachining technique with high accuracy. This is because the spot diameter of the laser beam is large with respect to the trimming area, and it is difficult to trim a minute portion of the trimming area, and it is difficult to slightly increase or decrease the mass. Therefore, in the present embodiment of the vibrating element, a focused ion beam that can reduce the spot diameter and a device that can observe an image at high magnification are used to adjust the mass of the easily processable substance attached to the vibrating element. By adjusting the resonance frequency, the resonance frequency of the vibration-type element can be adjusted with high accuracy, and an angular velocity sensor having no variation in sensitivity or noise characteristics between sensors can be manufactured.
【0023】次に、第2の実施例を説明する。第2の実
施例は振動型素子の共振周波数を低い方向に調整する方
法である。なお、本実施例の説明において、第1の実施
例と同一の名称には同一符号を付し、その詳細な説明は
省略する。Next, a second embodiment will be described. The second embodiment is a method of adjusting the resonance frequency of the vibration element in the lower direction. In the description of this embodiment, the same names as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
【0024】まず、第1の実施例と同様に、高倍率観察
装置を備えた集束イオンビーム装置に、図1に示される
ような振動型角速度センサ(但し、Au薄膜3は付着形
成されていない。)を設置する。First, as in the first embodiment, a vibration type angular velocity sensor as shown in FIG. 1 (however, the Au thin film 3 is not attached to the focused ion beam apparatus equipped with the high magnification observation apparatus). ) Is installed.
【0025】次に第1の実施例と同様に振動型素子の共
振特性を測定し、振動型素子が設計値より高い共振周波
数を持っていることが分かった場合、イオンビームの引
き出し電圧により振動型素子の共振周波数を調整する成
膜物質である、例えばタングステン等の液体金属のイオ
ン源からイオンを引き出し、これを静電レンズによって
集束させイオンビームを発生し、振動型素子の共振特性
を測定しながら設計の共振周波数で振幅が最大となるよ
うに両持振動梁8の比較的大きな面積を有する部分9に
タングステン等の金属イオンを照射して付着させ、振動
型素子の共振周波数を設計値の共振周波数に正しく調整
する。Next, as in the first embodiment, the resonance characteristics of the vibrating element were measured, and when it was found that the vibrating element had a resonance frequency higher than the designed value, vibration was caused by the extraction voltage of the ion beam. Ion is extracted from an ion source of liquid metal such as tungsten, which is a film-forming substance that adjusts the resonance frequency of the die element, and focused by an electrostatic lens to generate an ion beam to measure the resonance characteristics of the vibrating element. However, metal ions such as tungsten are irradiated and attached to the portion 9 having a relatively large area of the both-end vibrating beam 8 so that the amplitude becomes maximum at the designed resonant frequency, and the resonant frequency of the vibrating element is set to the design value. Correctly adjust to the resonance frequency of.
【0026】なお、振動型素子を設計の共振周波数より
やや高い周波数で共振するように作製しておけば、本実
施例を用い共振周波数を低くする方向に調整すること
で、全ての振動型素子を設計値の共振周波数に調整する
ことができる。If the vibrating element is made to resonate at a frequency slightly higher than the designed resonance frequency, all the vibrating elements can be adjusted by adjusting the resonance frequency to a lower value using this embodiment. Can be adjusted to the designed resonance frequency.
【0027】第2の実施例は上述のように成膜物質を付
着形成し、微細な素子の共振周波数を調整する方法であ
り、第1の実施例と同様に高精度な調整が可能となり、
精度のよい角速度センサを作製できる。The second embodiment is a method for adjusting the resonance frequency of a fine element by depositing a film-forming substance as described above, and as in the first embodiment, high-precision adjustment is possible,
An accurate angular velocity sensor can be manufactured.
【0028】なお、本発明は上記実施例に限定されるこ
とはなく、様々な実施の形態を採り得る。例えば、上記
実施例では、振動型素子が両持振動梁8で構成されてい
たが、片持振動梁で構成してもよい。The present invention is not limited to the above embodiment, and various embodiments can be adopted. For example, in the above-described embodiment, the vibrating element is constituted by the both-end vibrating beam 8, but it may be constituted by the cantilever vibrating beam.
【0029】また、第1の実施例で、振動型素子表面に
加工用物質としてAu薄膜3を付着形成していたが、A
u以外の加工し易い物質を加工用物質として振動型素子
表面に付着してもよい。Further, in the first embodiment, the Au thin film 3 was adhered and formed as the processing substance on the surface of the vibration type element.
A substance other than u that is easy to process may be attached to the surface of the vibration-type element as a substance for processing.
【0030】さらに、第1の実施例では集束イオンビー
ムを使用して共振周波数を調整したが、YAGレーザや
Co2 レーザ等を用い共振周波数調整を行ってもよい。
ここでは、従来のように素子をレーザビームでトリミン
グする調整方法ではなく、加工し易い物質を蒸発させる
方法で調整するものであり、レーザ出力の調節で加工用
物質の質量増減の微調整が可能である由による。また、
第2の実施例でも集束イオンビームを使用せず、Au等
蒸着しても調整できる。Further, although the focused ion beam is used to adjust the resonance frequency in the first embodiment, the resonance frequency may be adjusted using a YAG laser, a Co 2 laser or the like.
Here, instead of the conventional adjustment method of trimming the element with a laser beam, it is adjusted by a method of evaporating a substance that is easy to process, and it is possible to finely adjust the increase or decrease in the mass of the processing substance by adjusting the laser output. It depends on the reason. Also,
Also in the second embodiment, adjustment can be made by vapor deposition of Au or the like without using the focused ion beam.
【0031】また、例えば、振動型素子の共振周波数が
設定値より低いときには、第1の実施例のように、予め
振動型素子の表面に付着形成されている加工用物質をス
パッタ除去して共振周波数を高くする方向に調整する
が、この除去量が多すぎると、今度は逆に共振周波数が
設定値より高くなってしまう場合が生じる。この場合に
は、第2の実施例のように振動型素子の表面に成膜物質
を付着させ、振動型素子の共振周波数を低くする方向の
調整を行う。このように、素子表面の加工用物質をスパ
ッタ除去して素子の共振周波数を高くする工程と、素子
表面に成膜物質を付着させ素子の共振周波数を低くする
工程とを適宜に繰り返して、振動型素子の共振周波数を
設定値に一致させるようにしてもよい。このような調整
方式をとる場合には、上記各実施例のように、振動型素
子を予め設計の共振周波数より高く又は低く作製する必
要がなく、振動型素子の共振周波数が設定値より高低い
ずれの方向にずれているかにかかわらず、振動型素子の
共振周波数を調整することができる。Further, for example, when the resonance frequency of the vibrating element is lower than the set value, as in the first embodiment, the machining substance previously deposited on the surface of the vibrating element is removed by sputtering to resonate. Although the frequency is adjusted to be higher, if the amount of removal is too large, then the resonance frequency may become higher than the set value. In this case, as in the second embodiment, a film-forming substance is attached to the surface of the vibration element to adjust the resonance frequency of the vibration element to be lowered. As described above, the step of increasing the resonance frequency of the element by removing the processing material on the element surface by sputtering and the step of lowering the resonance frequency of the element by depositing a film forming material on the element surface are repeated as appropriate. You may make it match the resonance frequency of a mold element with a setting value. When such an adjustment method is adopted, it is not necessary to make the vibration element higher or lower than the designed resonance frequency in advance, as in the above-described embodiments, and the resonance frequency of the vibration element is higher or lower than the set value. It is possible to adjust the resonance frequency of the vibrating element regardless of the deviation in the direction.
【0032】また、上記各実施例では角速度センサの振
動型素子の共周波数の調整を例に挙げて説明したが、本
発明は共振子等の同様な振動型素子の共振周波数の調整
にも適用することができる。In each of the above embodiments, the adjustment of the co-frequency of the vibration type element of the angular velocity sensor has been described as an example, but the present invention is also applied to the adjustment of the resonance frequency of a similar vibration type element such as a resonator. can do.
【0033】[0033]
【発明の効果】第1の発明によれば、予め振動型素子表
面に付着させた加工し易い加工用物質にレーザビーム又
は集束イオンビームを当ててスパッタ除去することで、
振動型素子の共振周波数を高くする方向に調整できる。
しかも、集束イオンビームはスポット径を0.1 μm程度
に小さくすることができるので、微小な質量の減少調整
が可能となり、微妙な共振周波数の調整が可能である。
また、レーザビームにおても、振動型素子表面に加工し
易い加工用物質を付着しているため、レーザ出力の調整
で同様に加工用物質の質量減少の微調整が可能となる。According to the first aspect of the present invention, by subjecting the easy-to-process working substance previously attached to the surface of the vibrating element to the work, a laser beam or a focused ion beam is applied to remove the spatter,
The resonance frequency of the vibrating element can be adjusted in a direction of increasing it.
Moreover, since the focused ion beam can reduce the spot diameter to about 0.1 μm, it is possible to finely adjust the mass reduction and finely adjust the resonance frequency.
Further, also in the laser beam, since the processing substance which is easy to process is attached to the surface of the vibrating element, the mass reduction of the processing substance can be finely adjusted by adjusting the laser output.
【0034】また、第2の発明によれば、蒸着又は集束
イオンビームを照射して成膜物質を振動型素子の表面に
付着することで振動型素子の共振周波数を低くする方向
に調整できる。集束イオンビームはスポット径が小さ
く、微小の成膜物質を振動型素子表面に付着でき、蒸着
の場合も、蒸着条件を制御することで、成膜物質の微小
な成膜付着量の調整ができ、振動型素子の共振周波数の
微妙な調整が共に可能となる。According to the second aspect of the invention, the resonance frequency of the vibrating element can be lowered by irradiating the film forming material on the surface of the vibrating element by irradiating vapor deposition or a focused ion beam. The focused ion beam has a small spot diameter, and a minute film-forming substance can be attached to the surface of the vibrating element. Even in the case of vapor deposition, the deposition amount can be adjusted by controlling the vapor deposition conditions. It is possible to finely adjust the resonance frequency of the vibration element.
【0035】さらに、第3の発明によれば、第1の発明
を用いた振動型素子の共振周波数を高くする工程と、第
2の発明を用いた振動型素子の共振周波数を低くする工
程とを繰り返すことによって、振動型素子の共振周波数
が設定の共振周波数より高い方向又は低い方向のいずれ
にずれているかにかかわらず、振動型素子の共振周波数
を調整することができる。Further, according to the third invention, the step of increasing the resonance frequency of the vibration element according to the first invention and the step of decreasing the resonance frequency of the vibration element according to the second invention. By repeating the above, the resonance frequency of the vibration-type element can be adjusted regardless of whether the resonance frequency of the vibration-type element is higher or lower than the set resonance frequency.
【0036】したがって、マイクロマシニング技術によ
り作製された微細な振動型素子においても、共振周波数
の微調整を確実に行うことができる。Therefore, fine adjustment of the resonance frequency can be surely performed even in the case of a fine vibration type element manufactured by the micromachining technique.
【図1】マイクロマシニング技術により作製された角速
度センサの一例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of an angular velocity sensor manufactured by a micromachining technique.
【図2】図1のA−A断面を示す説明図である。FIG. 2 is an explanatory view showing a cross section taken along the line AA of FIG.
【図3】従来例の音叉型角速度センサを示す説明図であ
る。FIG. 3 is an explanatory view showing a conventional tuning fork type angular velocity sensor.
3 Au薄膜 8 両持振動梁 3 Au thin film 8 Doubly supported vibrating beam
───────────────────────────────────────────────────── フロントページの続き (72)発明者 厚地 健一 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 (72)発明者 田中 克彦 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenichi Atsuji Kenji Atsuji 2 26-10 Tenjin, Nagaokakyo City, Kyoto Prefecture Murata Manufacturing Co., Ltd. (72) Inventor Katsuhiko Tanaka 2 26-10 Tenjin, Nagaokakyo City, Kyoto Murata Manufacturing
Claims (3)
着形成しておき、この加工用物質にレーザビーム又は集
束イオンビームを当てて加工用物質をスパッタ除去し、
振動型素子の共振周波数を高くする方向に調整する振動
型素子の共振周波数調整方法。1. A working substance is previously deposited on the surface of the vibration type element, and the working substance is sputtered away by applying a laser beam or a focused ion beam to the working substance,
A resonance frequency adjusting method for a vibration element, which adjusts the resonance frequency of the vibration element in a direction of increasing the resonance frequency.
成膜物質の集束イオンビーム照射によって成膜物質を付
着し、振動型素子の共振周波数を低くする方向に調整す
る振動型素子の共振周波数調整方法。2. A vibrating element for adjusting the resonance frequency of the vibrating element to a low frequency by depositing the film forming material on the surface of the vibrating element by vapor deposition of the film forming material or irradiation of a focused ion beam of the film forming material. Resonance frequency adjustment method.
着形成しておき、この加工用物質にレーザビーム又は集
束イオンビームを当てて加工用物質をスパッタ除去する
工程と、振動型素子の表面に成膜物質の蒸着又は成膜物
質の集束イオンビーム照射によって成膜物質を付着する
工程とを適宜繰り返すことによって振動素子の共振周波
数を高低所望方向に調整する振動型素子の共振周波数調
整方法。3. A step of depositing a processing substance in advance on the surface of the vibration type element, and applying a laser beam or a focused ion beam to the processing substance to remove the processing substance by sputtering. Resonant frequency adjusting method of vibrating element for adjusting the resonance frequency of the vibrating element in a desired direction by repeating the steps of depositing the film forming material on the surface or depositing the film forming material by focused ion beam irradiation of the film forming material. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6276989A JPH08114460A (en) | 1994-10-17 | 1994-10-17 | Method for adjusting resonance frequency of vibration-type element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6276989A JPH08114460A (en) | 1994-10-17 | 1994-10-17 | Method for adjusting resonance frequency of vibration-type element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08114460A true JPH08114460A (en) | 1996-05-07 |
Family
ID=17577223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6276989A Pending JPH08114460A (en) | 1994-10-17 | 1994-10-17 | Method for adjusting resonance frequency of vibration-type element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08114460A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007209000A (en) * | 2007-02-21 | 2007-08-16 | Infineon Technologies Ag | Method for producing a layer having a predetermined layer thickness characteristic |
CN112653408A (en) * | 2020-12-11 | 2021-04-13 | 电子科技大学 | TPoS resonator with real-time fine-tuning working frequency and processing method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5051685A (en) * | 1973-09-07 | 1975-05-08 | ||
JPS5448190A (en) * | 1977-09-22 | 1979-04-16 | Matsushima Kogyo Kk | Method of regulating frequency |
JPS63151103A (en) * | 1986-12-15 | 1988-06-23 | Nippon Dempa Kogyo Co Ltd | Piezoelectric vibrator frequency adjustment method and device |
JPH04196610A (en) * | 1990-11-26 | 1992-07-16 | Seiko Epson Corp | Frequency adjustment method for piezoelectric vibrator |
-
1994
- 1994-10-17 JP JP6276989A patent/JPH08114460A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5051685A (en) * | 1973-09-07 | 1975-05-08 | ||
JPS5448190A (en) * | 1977-09-22 | 1979-04-16 | Matsushima Kogyo Kk | Method of regulating frequency |
JPS63151103A (en) * | 1986-12-15 | 1988-06-23 | Nippon Dempa Kogyo Co Ltd | Piezoelectric vibrator frequency adjustment method and device |
JPH04196610A (en) * | 1990-11-26 | 1992-07-16 | Seiko Epson Corp | Frequency adjustment method for piezoelectric vibrator |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007209000A (en) * | 2007-02-21 | 2007-08-16 | Infineon Technologies Ag | Method for producing a layer having a predetermined layer thickness characteristic |
CN112653408A (en) * | 2020-12-11 | 2021-04-13 | 电子科技大学 | TPoS resonator with real-time fine-tuning working frequency and processing method thereof |
CN112653408B (en) * | 2020-12-11 | 2022-12-27 | 电子科技大学 | TPoS resonator with real-time fine-tuning working frequency and processing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6358426B1 (en) | Method of fabricating probe force atomic force microscope | |
US8505358B2 (en) | Method for adjusting resonance frequencies of a vibrating microelectromechanical device | |
DE69102590T2 (en) | Inertial sensors. | |
CN101031775B (en) | Vibrating gyroscope and method of manufacturing vibrating gyroscope | |
CN1828224B (en) | Vibrating gyroscopic sensor and method of adjusting vibrating gyroscopic sensor | |
JPS6232641B2 (en) | ||
EP4140941A1 (en) | Fabrication of mems structures from fused silica for inertial sensors | |
US20070120449A1 (en) | Angular velocity sensor and method for manufacturing the same | |
JP5185787B2 (en) | Piezoelectric vibrator and manufacturing method thereof | |
JPH08114460A (en) | Method for adjusting resonance frequency of vibration-type element | |
JP3230347B2 (en) | Angular velocity sensor | |
JPH08105748A (en) | Angular velocity sensor, its resonance-frequency adjusting method and its manufacture | |
JP3230359B2 (en) | Resonant vibration element | |
JPH11271064A (en) | Angular velocity sensor | |
JP3188929B2 (en) | Adjustment method of vibrating body resonance frequency of vibrating gyroscope | |
JPH11160074A (en) | Piezoelectric vibration angular velocity sensor | |
JP4554118B2 (en) | Method of manufacturing tuning fork type angular velocity sensor element | |
JP2001141463A (en) | Microstructure and its manufacturing method | |
JP2000055668A (en) | Angular velocity detection sensor | |
JP2009055092A (en) | Piezoelectric vibrator and method of manufacturing the same | |
JP2008107336A (en) | Manufacturing method of sensor and manufacturing method of resonator | |
JP2016178263A (en) | Dry etching method and metal mask manufacturing method | |
JP2017203692A (en) | Physical quantity sensor manufacturing method and method for adjusting frequency of vibration element | |
JP2010073898A (en) | Method for manufacturing piezoelectric element and method for manufacturing gyro sensor | |
JPH0439233B2 (en) |