JPH08114389A - Furnace for melting waste - Google Patents
Furnace for melting wasteInfo
- Publication number
- JPH08114389A JPH08114389A JP6277209A JP27720994A JPH08114389A JP H08114389 A JPH08114389 A JP H08114389A JP 6277209 A JP6277209 A JP 6277209A JP 27720994 A JP27720994 A JP 27720994A JP H08114389 A JPH08114389 A JP H08114389A
- Authority
- JP
- Japan
- Prior art keywords
- refractory
- furnace
- waste
- melting
- zro2
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002699 waste material Substances 0.000 title claims abstract description 36
- 238000002844 melting Methods 0.000 title claims abstract description 30
- 230000008018 melting Effects 0.000 title claims abstract description 30
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 62
- 239000007788 liquid Substances 0.000 claims abstract description 10
- 239000011819 refractory material Substances 0.000 claims description 43
- 239000000155 melt Substances 0.000 claims description 25
- 230000003628 erosive effect Effects 0.000 abstract description 18
- 239000000463 material Substances 0.000 abstract description 7
- 239000013078 crystal Substances 0.000 abstract description 2
- 229910018404 Al2 O3 Inorganic materials 0.000 abstract 2
- 239000012768 molten material Substances 0.000 abstract 2
- 238000005323 electroforming Methods 0.000 abstract 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- 239000011651 chromium Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000002956 ash Substances 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 239000010881 fly ash Substances 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 239000010801 sewage sludge Substances 0.000 description 5
- 239000011362 coarse particle Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- -1 and further Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000289 melt material Substances 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
- Gasification And Melting Of Waste (AREA)
- Processing Of Solid Wastes (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は廃棄物を溶融する炉に関
し、さらに具体的には、少なくとも部分的にジルコニア
耐火物を用いた廃棄物溶融炉に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waste melting furnace, and more particularly to a waste melting furnace at least partially using zirconia refractory.
【0002】[0002]
【従来の技術】近年、都市ゴミ、産業廃棄物、下水汚泥
などの廃棄物は増加の一途をたどってている。2. Description of the Related Art In recent years, the amount of waste such as municipal waste, industrial waste, and sewage sludge has been increasing.
【0003】これら廃棄物の処分方法の一つとして、廃
棄物を焼却や乾燥処理によって減容化させることが行わ
れている。その際、焼却処理で生じた焼却灰および焼却
飛灰や、乾燥処理で生じた下水汚泥ケーキは、埋め立て
処分されている。As one of the methods for disposing of these wastes, the volume of the wastes is reduced by incineration or drying. At that time, the incinerated ash and incinerated fly ash produced by the incineration process and the sewage sludge cake produced by the drying process are landfilled.
【0004】しかし、最近では埋め立て地の不足や公害
の問題が予想されるようになってきた。このため、焼却
灰、焼却飛灰、下水汚泥ケーキなどの廃棄物を高温で溶
融してから固化して減容化・無害化をはかり、さらに再
利用することが考えられている。However, recently, a shortage of landfill sites and pollution problems have been expected. Therefore, it is considered that wastes such as incineration ash, incineration fly ash, and sewage sludge cake are melted at high temperature and then solidified to reduce the volume and detoxify, and further reuse.
【0005】廃棄物を溶融する炉は、すでにいくつかが
稼動している。例えば、バーナー、電気抵抗、アーク、
プラズマ、コークス混合等の加熱方法による各種溶融炉
がある。Some furnaces for melting waste are already in operation. For example, burner, electric resistance, arc,
There are various melting furnaces using heating methods such as plasma and coke mixing.
【0006】プラズマにより加熱するプラズマ炉はコン
パクトなプラズマトーチとよばれる水冷電極を用いるの
で、炉の設置面積を小さくできる利点がある。プラズマ
トーチによる加熱方式では、高温部で2〜3万℃、比較
的低い外周部でも3000℃以上の極めて高い温度が得
られるので、溶融物を均質にできる。炉の内張には、A
l2 O3 −SiC系、MgO−Cr2 O3 系、SiC系
などの耐火物が使用されている。Since a plasma furnace heated by plasma uses a water-cooled electrode called a compact plasma torch, there is an advantage that the installation area of the furnace can be reduced. In the heating method using a plasma torch, an extremely high temperature of 20,000 to 30,000 ° C. can be obtained at a high temperature portion and 3000 ° C. or more at a relatively low outer peripheral portion, so that the melt can be homogenized. A for the lining of the furnace
Refractory materials such as 1 2 O 3 —SiC type, MgO—Cr 2 O 3 type, and SiC type are used.
【0007】焼却灰、焼却飛灰および下水汚泥ケーキの
化学組成は、一般にSiO2 15〜45重量%、Al2
O3 10〜20重量%、Na2 O1〜15重量%、Ca
O5〜45重量%である。この他にS、Clなどの揮発
成分が含まれている。焼却灰や焼却飛灰には、特にF
e、Cd、Pb、Zn、Cu、As、Cr、Hgなどの
金属が含まれている。The chemical composition of incinerated ash, incinerated fly ash and sewage sludge cake is generally 15 to 45% by weight of SiO 2 , Al 2
O 3 10 to 20 wt%, Na 2 O1~15 wt%, Ca
O is 5 to 45% by weight. In addition to this, volatile components such as S and Cl are contained. Especially for incinerated ash and incinerated fly ash, F
Metals such as e, Cd, Pb, Zn, Cu, As, Cr and Hg are included.
【0008】焼却飛灰は、廃棄物の焼却時に発生する排
ガス中の硫黄酸化物、塩素ガスなどを除去する目的で排
ガスをアルカリやアルカリ土類成分剤により処理した際
に生成する灰である。従って、焼却飛灰にはアルカリや
アルカリ土類成分、特にCaOが多く含まれている。ま
た、下水汚泥ケーキにはアルカリ土類成分はもちろん、
P2 O5 が多く含まれている。The incineration fly ash is an ash produced when the exhaust gas is treated with an alkali or alkaline earth component agent for the purpose of removing sulfur oxides, chlorine gas and the like in the exhaust gas generated when the waste is incinerated. Therefore, the incinerated fly ash contains a large amount of alkali and alkaline earth components, especially CaO. Also, of course, the sewage sludge cake contains not only alkaline earth components,
It contains a large amount of P 2 O 5 .
【0009】[0009]
【発明が解決しようとする課題】これらの成分を含む廃
棄物を溶融する際に、異物による摩耗、灰の特異な侵食
性の強さ、さらには灰に含まれる金属が炉底に溜まるこ
となどから、炉の内張に使用される耐火物は侵食および
摩耗が激しい。特に取出口や溶融物の液面と接する部分
は温度が高くなる。また、そのような部分は溶融物の流
動による物理的侵食も受けやすい場所である。それゆ
え、耐火物が激しく損傷される。When melting a waste containing these components, abrasion due to foreign matter, peculiar erosive strength of ash, and further, metal contained in ash is accumulated on the bottom of the furnace. Therefore, the refractory used for the lining of the furnace is highly eroded and worn. In particular, the temperature of the portion coming into contact with the outlet or the liquid surface of the melt becomes high. Further, such a portion is a place that is easily subject to physical erosion due to the flow of the melt. Therefore, the refractory is severely damaged.
【0010】プラズマ炉では溶解温度が通常1500℃
前後になり、時には1900℃に達する場合がある。こ
のように高温になるために、比較的耐食性が高いとされ
るAl2 O3 −SiC系、MgO−Cr2 O3 系やSi
C系の焼成耐火物でも著しく侵食される。In a plasma furnace, the melting temperature is usually 1500 ° C.
It may be around, and sometimes reaches 1900 ° C. Due to such high temperature, Al 2 O 3 —SiC system, MgO—Cr 2 O 3 system, Si and Si, which are considered to have relatively high corrosion resistance.
Even C-based fired refractories are significantly corroded.
【0011】本発明は、廃棄物の溶融に際して十分な耐
侵食性、耐摩耗性を有し、長時間の使用に耐える廃棄物
溶融炉を提供することを目的としている。It is an object of the present invention to provide a waste melting furnace which has sufficient erosion resistance and wear resistance when melting waste and can withstand long-term use.
【0012】[0012]
【課題を解決するための手段】この目的を達成するため
に種々の研究を重ねた結果、本発明は、少なくとも溶融
物の液面に接触する部分と取出口の溶融物が流れ出ると
きに接触する部分を、ZrO2 を85重量%以上含有す
るジルコニア耐火物で構成したことを特徴とする廃棄物
を溶融する炉を要旨としている。As a result of various studies to achieve this object, the present invention makes contact with at least a portion of the melt that contacts the liquid surface and the melt at the outlet when the melt flows out. The gist is a furnace for melting waste, which is characterized in that a part thereof is made of a zirconia refractory material containing 85% by weight or more of ZrO 2 .
【0013】[0013]
【作用】一般に前述のような廃棄物はその化学組成から
1300〜1400℃で溶融状態となる。この溶融状態
の廃棄物と各耐火物の反応性は次のとおりである。In general, the above-mentioned waste is in a molten state at 1300 to 1400 ° C because of its chemical composition. The reactivity of the molten waste with each refractory is as follows.
【0014】Al2 O3 を多く含む耐火物は、耐火物中
のAl2 O3 が溶融中のCaOと反応して1360℃付
近で溶融物に溶け出す。そして、溶け出して空洞化した
耐火物組織内に溶融物が浸透し、侵食が助長される。[0014] Al 2 O 3-rich refractories have Al 2 O 3 in the refractory from dissolving into the melt in the vicinity of the reaction to 1360 ° C. and CaO in the molten. Then, the melt penetrates into the refractory structure that has melted and hollowed out, and erosion is promoted.
【0015】これに対し、ZrO2 を多く含む耐火物の
ZrO2 は、1900℃でも溶融物と反応せず、溶解は
おこらない。また、ZrO2 の結晶は硬度が大きく、特
に電鋳耐火物は組織の緻密さから焼成耐火物に比べて一
層耐摩耗性に優れている。On the other hand, ZrO 2 which is a refractory containing a large amount of ZrO 2 does not react with the melt even at 1900 ° C. and does not dissolve. Further, the crystal of ZrO 2 has a large hardness, and especially the electroformed refractory has a more excellent wear resistance than the fired refractory because of the dense structure.
【0016】ZrO2 の含有量は、85重量%以上特に
90%以上が好ましい。ZrO2 含有量が85重量%よ
りも少ないと、その利点が生かせない。The ZrO 2 content is preferably 85% by weight or more, and particularly preferably 90% or more. If the ZrO 2 content is less than 85% by weight, the advantage cannot be utilized.
【0017】[0017]
【実施例】本発明者等は、焼却灰および焼却飛灰中にS
iO2 、CaOやアルカリ酸化物成分が含有されている
ことに着目して、廃棄物の溶融炉に使用する耐火物とし
てジルコニア耐火物が使用可能であることを発明した。EXAMPLES The present inventors have found that S in ash and fly ash.
Focusing on the fact that iO 2 , CaO and alkali oxide components are contained, the inventors have invented that a zirconia refractory can be used as a refractory used for a waste melting furnace.
【0018】廃棄物の組成はアルカリ酸化物、アルカリ
土類酸化物成分が10〜40重量%であり、通常のガラ
ス組成とは大きく異なり、非常に特殊である。このた
め、一般に使用されているガラス溶融用耐火物が廃棄物
溶融炉に使用できるか否かを検討した。The composition of the waste is 10-40% by weight of alkali oxide and alkaline earth oxide components, which is very different from the ordinary glass composition and is very special. Therefore, it was examined whether or not the commonly used refractory material for glass melting can be used in a waste melting furnace.
【0019】先ず、Al2 O3 を多く含有する耐火物、
例えばAl2 O3 系、Al2 O3 −SiO2 系、Al2
O3 −ZrO2 −SiO2 系、Al2 O3 −Cr2 O3
系耐火物について検討を加えた。First, a refractory material containing a large amount of Al 2 O 3 ,
For example, Al 2 O 3 system, Al 2 O 3 —SiO 2 system, Al 2
O 3 -ZrO 2 -SiO 2 system, Al 2 O 3 -Cr 2 O 3
A study was conducted on refractory materials.
【0020】これらの耐火物はその製法上の如何を問わ
ず、廃棄物の溶融物に耐する侵食量が著しく多く、使用
できない。すなわち、これらの耐火物の溶融炉に使用す
ると、溶融物により耐火物が容易に侵食または溶解して
しまう。Regardless of the manufacturing method, these refractories cannot be used because they have a significantly large amount of erosion that resists the melt of waste. That is, when used in a melting furnace for these refractory materials, the refractory material is easily eroded or melted by the melt material.
【0021】そこで、次に、Al2 O3 をほとんど含ま
ない耐火物について検討した。Then, a refractory containing almost no Al 2 O 3 was examined next.
【0022】Al2 O3 を含まない耐火物としては、S
iO2 系、ZrO2 −SiO2 系、SnO2 系、ZrO
2 系、Cr2 O3 系、MgO−Cr2 O3 系、MgO系
の耐火物などがある。As a refractory containing no Al 2 O 3 , S
iO 2 system, ZrO 2 —SiO 2 system, SnO 2 system, ZrO
There are 2 series, Cr 2 O 3 series, MgO—Cr 2 O 3 series, and MgO series refractories.
【0023】SiO2 系耐火物は耐侵食性の面で劣るた
め使用できない。ZrO2 −SiO2 系耐火物の場合
は、耐火物中のSiO2 が溶融物中に溶解して、耐火物
の組織が崩れ、耐侵食性が極めて低くなる。Since SiO 2 refractory is inferior in corrosion resistance, it cannot be used. In the case of a ZrO 2 —SiO 2 -based refractory, SiO 2 in the refractory dissolves in the melt, the structure of the refractory collapses, and the erosion resistance becomes extremely low.
【0024】SnO2 系の耐火物はその電気抵抗の低さ
と熱的ポーリングに対して弱いことから使用は困難であ
る。The SnO 2 type refractory is difficult to use because of its low electric resistance and weakness against thermal poling.
【0025】Cr2 O3 を含む耐火物は溶融物に対する
耐侵食性が少なく、かつクロム自身の毒性による環境問
題もある。The refractory material containing Cr 2 O 3 has a low erosion resistance to the melt, and has environmental problems due to the toxicity of chromium itself.
【0026】MgOを含む耐火物は、耐火物中のMgO
が溶融物に溶出したり、溶解したりすることによって、
耐火物の組織が崩れ、耐侵食性が極めて悪い。The refractory containing MgO is the MgO in the refractory.
Is eluted into the melt or dissolved,
The structure of the refractory is collapsed and the erosion resistance is extremely poor.
【0027】以上の結果は、本発明者等の行った数多く
の試験から判明したものである。The above results are found from many tests conducted by the present inventors.
【0028】[0028]
【表1】 表1に試験に用いたAl2 O3 系耐火物の化学組成を比
較例1〜5として示し、Cr2 O3 系耐火物の化学組成
を比較例6、7として示し、MgO−Cr2 O3 系耐火
物の化学組成を比較例8として示し、Al2 O3 −Si
C系耐火物の化学組成を比較例9、10として示す。[Table 1] Table 1 shows the chemical compositions of Al 2 O 3 -based refractories used in the tests as Comparative Examples 1 to 5, and the chemical compositions of Cr 2 O 3 -based refractory materials as Comparative Examples 6 and 7, and MgO-Cr 2 O. The chemical composition of the 3 type refractory is shown as Comparative Example 8, and Al 2 O 3 —Si
The chemical compositions of C-based refractories are shown as Comparative Examples 9 and 10.
【0029】[0029]
【表2】 表2に比較例1〜10の溶融物に対する侵食量を示す。
比較例2、6、8、9、10は焼成耐火物の例である。
その他の比較例は電鋳耐火物の例である。[Table 2] Table 2 shows the amount of corrosion of the melts of Comparative Examples 1 to 10.
Comparative Examples 2, 6, 8, 9, 10 are examples of fired refractories.
Other comparative examples are examples of electroformed refractories.
【0030】侵食量の試験方法は次の通りであった。各
耐火物からそれぞれ直径20mm、長さ80mmの大き
さの試験片を取り出し、廃棄物をいれた内容積1600
ccのルツボに、これらの試験片を、試験片が溶融物に
浸るように設置し、1550℃の炉内で48時間保持し
た。加熱後、試験片を半切して断面に現れた凹部の深さ
をノギスで測定した。それを侵食量としてmm単位で表
し、評価した。The test method for the amount of erosion was as follows. A test piece with a diameter of 20 mm and a length of 80 mm was taken out from each refractory, and the waste was put into an internal volume of 1600.
These test pieces were placed in a crucible of cc such that the test pieces were immersed in the melt, and kept in a furnace at 1550 ° C. for 48 hours. After heating, the test piece was cut in half and the depth of the recess appearing in the cross section was measured with a caliper. The erosion amount was expressed in mm and evaluated.
【0031】この試験に使用した溶融物の化学組成は表
7のとおりである。The chemical composition of the melt used in this test is shown in Table 7.
【0032】[0032]
【表7】 次に、本発明者等は、最近、特殊なガラスを溶解するた
めに耐侵食性や荷重軟化特性に優れた耐火物として提案
されて使用されているジルコニア電鋳耐火物に着目して
検討した。その結果、ジルコニア電鋳耐火物は廃棄物の
溶融炉用耐火物として十分使用し得ることを見出した。[Table 7] Next, the present inventors have recently studied by focusing on a zirconia electroformed refractory that is proposed and used as a refractory having excellent erosion resistance and load softening characteristics for melting a special glass. . As a result, they have found that zirconia electroformed refractories can be sufficiently used as refractories for waste melting furnaces.
【0033】[0033]
【表3】 表3はZrO2 を85重量%以上含有する電鋳耐火物4
例(実施例1〜4)の化学組成を示す。[Table 3] Table 3 shows electroformed refractories containing 85% by weight or more of ZrO 2.
The chemical composition of the examples (Examples 1 to 4) is shown.
【0034】[0034]
【表4】 表4は安定化ジルコニア粒を配合したZrO2 85重量
%以上の焼成耐火物の4例(実施例5〜8)の化学組成
を示す。[Table 4] Table 4 shows the chemical compositions of four examples (Examples 5 to 8) of fired refractories containing 85% by weight or more of ZrO 2 containing stabilized zirconia grains.
【0035】[0035]
【表5】 表5は高ジルコニア電鋳耐火物の粒を配合したZrO2
85重量%以上の焼成耐火物の2例(実施例9、10)
の化学組成を示す。[Table 5] Table 5 shows ZrO 2 blended with high zirconia electroformed refractory particles.
Two examples of fired refractories of 85% by weight or more (Examples 9 and 10)
The chemical composition of
【0036】[0036]
【表6】 表6に実施例1〜10の耐火物の溶融物に対する侵食性
(単位mm)を示す。[Table 6] Table 6 shows the erosion resistance (unit: mm) of the refractories of Examples 1 to 10 to the melt.
【0037】侵食量の試験方法は前述した比較例1〜1
0の時と同様である。The test method for the amount of erosion is the above-mentioned Comparative Examples 1 to 1.
It is the same as when 0.
【0038】表6の結果から明らかなように、実施例1
〜4の耐火物は、廃棄物の溶融物に対して、ほとんど侵
食されない。一方、実施例5〜8の、MgO、Y
2 O3 、CaOなどで安定化した焼成耐火物も、溶融物
に対して強い耐侵食性を示す。しかし、安定化剤が溶融
物の中へ溶け込んでしまうことから電鋳耐火物に比較す
ると組成的に多少劣る。実施例9、10の耐火物は実施
例5〜8と同程度の強い耐侵食性を示す。As is clear from the results of Table 6, Example 1
Refractories of ~ 4 are hardly eroded by the waste melt. On the other hand, MgO, Y of Examples 5-8
Fired refractories stabilized with 2 O 3 , CaO, etc. also show strong erosion resistance to the melt. However, since the stabilizer dissolves into the melt, the composition is slightly inferior to that of the electroformed refractory. The refractories of Examples 9 and 10 show strong erosion resistance comparable to that of Examples 5 to 8.
【0039】前述の実施例1〜10及び比較例1〜10
の実験結果により、ZrO2 を85重量%以上含有する
ジルコニア耐火物を廃棄物溶融炉の液面接触部分や取出
口に用いると、種々の効果が得られることが判明した。
この耐火物はプラズマ炉に使用すると特に効果的であ
る。The above Examples 1 to 10 and Comparative Examples 1 to 10
From the experimental results, it was found that various effects can be obtained by using the zirconia refractory containing 85 wt% or more of ZrO 2 in the liquid surface contact portion and the outlet of the waste melting furnace.
This refractory is especially effective when used in a plasma furnace.
【0040】図示例 図1は廃棄物を溶融するプラズマ炉の模型の縦断面図で
ある。炉1は、シェル2の内側全体に断熱材3と高耐食
性材4の耐火物が2層になるように内張してある。この
ように耐火物を内張した炉1の天井にプラズマトーチ1
1が垂直に設けてある。それに対応して炉底に電極12
が垂直に設けてある。図の左上の投入口17から炉1に
入れられた廃棄物(図示せず)は炉内で溶融されて、炉
1の下部に溜まる。この溶融物14は適宜、炉1の側部
に形成された取出口15から排出される。そのとき溶融
物14と接触する取出口15の所定部分13(図の斜線
部分)および溶融物14の液面16に接する部分19
(図の斜線部分)には、ZrO2 85重量%以上のジル
コニア耐火物が内張りしてある。炉1の天井には、必要
に応じてガス排出口18が設けてある。Illustrative Example FIG. 1 is a vertical sectional view of a model of a plasma furnace for melting waste. The furnace 1 is lined with a refractory material consisting of a heat insulating material 3 and a high corrosion resistant material 4 in two layers on the entire inside of the shell 2. A plasma torch 1 is attached to the ceiling of the furnace 1 lined with refractory material in this way.
1 is provided vertically. Correspondingly, the electrode 12 on the bottom of the furnace
Is provided vertically. The waste (not shown) put in the furnace 1 through the charging port 17 at the upper left of the figure is melted in the furnace and accumulated in the lower part of the furnace 1. The melt 14 is appropriately discharged from an outlet 15 formed in the side portion of the furnace 1. At that time, a predetermined portion 13 of the outlet 15 that contacts the melt 14 (hatched portion in the drawing) and a portion 19 that contacts the liquid surface 16 of the melt 14.
A zirconia refractory material containing 85% by weight or more of ZrO 2 is lined in the shaded area in the figure. A gas outlet 18 is provided on the ceiling of the furnace 1 as needed.
【0041】図2に示されているように、本発明の炉に
使用する実施例9、10のジルコニア耐火物は、高ジル
コニア電鋳耐火物の粗粒5と、高ジルコニア電鋳耐火物
の中粒6と、高ジルコニア電鋳耐火物の小粒7と、粘土
及びタブラーアルミナ微粒からなるマトリックス部8か
らなり、マトリックス部8には微小な気孔(図示せず)
が含まれている。As shown in FIG. 2, the zirconia refractory materials of Examples 9 and 10 used in the furnace of the present invention were the coarse particles 5 of high zirconia electroformed refractory material and the high zirconia electroformed refractory material. It consists of medium particles 6, small particles 7 of high zirconia electroformed refractory, and matrix portion 8 made of clay and tabular alumina fine particles, and the matrix portion 8 has minute pores (not shown).
It is included.
【0042】図3に示されているように、粗粒5、中粒
6及び小粒7のいずれも、各粒子はジルコニア粒子aと
ガラスマトリックスbから成る。As shown in FIG. 3, in each of the coarse particles 5, the medium particles 6 and the small particles 7, each particle is composed of a zirconia particle a and a glass matrix b.
【0043】液面16や取出口15は酸化雰囲気になり
やすいため、Al2 O3 −SiC系の耐火物は酸化され
て使用に耐えず、酸化雰囲気において比較的耐食性の高
いとされるMgO−Cr2 O3 系の耐火物でさえ前記侵
食試験の結果の通り不十分であった。Since the liquid surface 16 and the outlet 15 are likely to be in an oxidizing atmosphere, the Al 2 O 3 --SiC refractory material is oxidized and cannot be used, and MgO--which has a relatively high corrosion resistance in an oxidizing atmosphere. Even Cr 2 O 3 -based refractories were inadequate as indicated by the results of the erosion test.
【0044】ZrO2 85重量%以上のジルコニア耐火
物は酸化雰囲気でも還元雰囲気でも物理的および化学的
に極めて安定しているので、液面や取出口以外の部位に
使用してもよい。Since zirconia refractory containing 85% by weight or more of ZrO 2 is extremely stable physically and chemically in an oxidizing atmosphere and a reducing atmosphere, it may be used at a portion other than the liquid surface and the outlet.
【0045】[0045]
【発明の効果】本発明の廃棄物溶融炉、特に高温で運転
されるプラズマ炉は、廃棄物の溶融物による激しい侵食
作用や磨耗にも十分に耐えて化学的安定性を有してい
る。そして、長期にわたって炉の内張の溶損が少なくな
り、耐久性を持ち合わせており、炉の寿命が飛躍的に伸
びて実用上極めて有利である。INDUSTRIAL APPLICABILITY The waste melting furnace of the present invention, in particular, the plasma furnace operated at a high temperature has sufficient chemical resistance to withstand severe erosion and wear due to waste melting. Further, the melting loss of the inner lining of the furnace is reduced over a long period of time, and it has durability, and the life of the furnace is dramatically extended, which is extremely advantageous in practical use.
【図1】本発明による廃棄物溶融炉の最適例として示す
プラズマ炉の縦断面図。FIG. 1 is a vertical sectional view of a plasma furnace as an optimum example of a waste melting furnace according to the present invention.
【図2】本発明による廃棄物溶融炉の内張に使用するジ
ルコニア耐火物の一部を概略的に示す断面図。FIG. 2 is a sectional view schematically showing a part of a zirconia refractory used for lining a waste melting furnace according to the present invention.
【図3】図2のジルコニア耐火物中の粗粒の1つを詳細
に示す拡大断面図。3 is an enlarged cross-sectional view showing in detail one of the coarse particles in the zirconia refractory material of FIG.
1 炉 2 シェル 3 断熱材 4 高耐食性材 5 高ジルコニア電鋳耐火物の粗粒 6 高ジルコニア電鋳耐火物の中粒 7 高ジルコニア電鋳耐火物の小粒 8 粘土とタブラーアルミナ微粒からなるマトリッ
クス(気孔を含む) a ジルコニア粒子 b ガラスマトリックス 11 プラズマトーチ 12 電極 13 ジルコニア耐火物で内張りした取出口の部分 14 溶融物 15 取出口 16 液面 17 投入口 18 ガス排出口 19 ジルコニア耐火物で内張りした炉の部分1 furnace 2 shell 3 heat insulating material 4 high corrosion resistance material 5 coarse particles of high zirconia electroformed refractory material 6 medium particles of high zirconia electroformed refractory material 7 small particles of high zirconia electroformed refractory material 8 matrix composed of clay and tabular alumina fine particles ( A) Zirconia particles b Glass matrix 11 Plasma torch 12 Electrode 13 Portion of outlet lined with zirconia refractory material 14 Melt 15 Outlet port 16 Liquid level 17 Charge port 18 Gas outlet 19 Furnace lined with zirconia refractory material Part of
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F27B 3/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area F27B 3/14
Claims (3)
と取出口の溶融物が流れ出るときに接触する部分を、Z
rO2 を85重量%以上含有するジルコニア耐火物で構
成したことを特徴とする廃棄物を溶融する炉。1. At least a portion that comes into contact with the liquid surface of the melt and a portion that comes into contact with the melt at the outlet when the melt flows out are Z
A furnace for melting waste, which is composed of a zirconia refractory material containing 85% by weight or more of rO 2 .
する請求項1記載の廃棄物を溶融する炉。2. The furnace for melting waste according to claim 1, wherein the furnace is a plasma furnace.
ることを特徴とする請求項1または請求項2の廃棄物を
溶融する炉。3. The furnace for melting waste according to claim 1, wherein the zirconia refractory material is an electroformed refractory material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27720994A JP3375758B2 (en) | 1994-10-18 | 1994-10-18 | Furnace for melting waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27720994A JP3375758B2 (en) | 1994-10-18 | 1994-10-18 | Furnace for melting waste |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08114389A true JPH08114389A (en) | 1996-05-07 |
JP3375758B2 JP3375758B2 (en) | 2003-02-10 |
Family
ID=17580337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27720994A Expired - Lifetime JP3375758B2 (en) | 1994-10-18 | 1994-10-18 | Furnace for melting waste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3375758B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013043811A (en) * | 2011-08-25 | 2013-03-04 | Asahi Glass Co Ltd | Stabilized zirconia sintered refractory and manufacturing method therefor |
JP2017075063A (en) * | 2015-10-13 | 2017-04-20 | 黒崎播磨株式会社 | Method for producing zirconia precast refractory for waste melting furnace |
-
1994
- 1994-10-18 JP JP27720994A patent/JP3375758B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013043811A (en) * | 2011-08-25 | 2013-03-04 | Asahi Glass Co Ltd | Stabilized zirconia sintered refractory and manufacturing method therefor |
JP2017075063A (en) * | 2015-10-13 | 2017-04-20 | 黒崎播磨株式会社 | Method for producing zirconia precast refractory for waste melting furnace |
Also Published As
Publication number | Publication date |
---|---|
JP3375758B2 (en) | 2003-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3375758B2 (en) | Furnace for melting waste | |
JP3496690B2 (en) | Melting furnace and its zirconia refractories | |
JP3814449B2 (en) | Discharge port member for melting furnace and manufacturing method thereof | |
EP0608257B1 (en) | Method of vitrification of dusty waste, especially of fly ash from the incinerators | |
JP3375722B2 (en) | Apparatus and method for melting incinerated ash and incinerated fly ash | |
EP1042238B1 (en) | Apparatus and method for the production of man-made vitreous fibres | |
JPH09318275A (en) | Structure of furnace wall of melting furnace for incinerated residue | |
JP3778698B2 (en) | Incineration residue melting furnace | |
JP3139663B2 (en) | Apparatus and method for melting incinerated ash and incinerated fly ash | |
JP3307751B2 (en) | Heat treatment furnace | |
JP3138133B2 (en) | Apparatus and method for melting incinerated ash and incinerated fly ash | |
JP2003227603A (en) | Direct melting furnace | |
JP3278760B2 (en) | ZrO2-based molten cast refractories for melting furnaces such as incineration ash and method for producing the same | |
JP3404626B2 (en) | Coating method for refractory wall in rotary melting furnace | |
JP4216160B2 (en) | Industrial waste treatment equipment | |
JP2706333B2 (en) | High temperature processing equipment for materials | |
US5501431A (en) | Melting furnace for residues from waste incineration plants | |
JP2700064B2 (en) | Fire resistant material | |
JP4843414B2 (en) | Raw material composition for chrome-based amorphous refractory material and refractory material using the same | |
JP2001132932A (en) | Melting furnace and melting method | |
JP2000283448A (en) | Slag hole and method for replacing the same | |
JP2005314189A (en) | Carbon-containing refractory for incinerator and furnace structure made thereof | |
JP3857089B2 (en) | Ash melting treatment method and ash melting treatment apparatus | |
KR100284719B1 (en) | Incorruptible alloy for furnace and its accessory | |
JP2002130645A (en) | Method for melting treatment of burned ash |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071129 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081129 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091129 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091129 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101129 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111129 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121129 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121129 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131129 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |