[go: up one dir, main page]

JPH08111539A - Manufacture of photovoltaic type hgcdte infrared ray detector - Google Patents

Manufacture of photovoltaic type hgcdte infrared ray detector

Info

Publication number
JPH08111539A
JPH08111539A JP6270310A JP27031094A JPH08111539A JP H08111539 A JPH08111539 A JP H08111539A JP 6270310 A JP6270310 A JP 6270310A JP 27031094 A JP27031094 A JP 27031094A JP H08111539 A JPH08111539 A JP H08111539A
Authority
JP
Japan
Prior art keywords
type
hgcdte
layer
substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6270310A
Other languages
Japanese (ja)
Inventor
Narihito Sasaki
得人 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6270310A priority Critical patent/JPH08111539A/en
Publication of JPH08111539A publication Critical patent/JPH08111539A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE: To provide the title manufacturing method in which a spatial element is completely isolated, and P-type and N-type layers can be formed simultaneously using a doping source only. CONSTITUTION: A non-flat substrate 1, on which two types of orientations are displayed, is used as a substrate where an HgCdTe layer is formed. A GaAs substrate 1 is formed. A P-type HgCdTe layer 3 is formed on the surface where the (100) direction on a buffer layer 2 is shown by an arrow, and an N-type HgCdTe layer 4 is formed on the surface of the <111>B direction shown by an arrow. A surface protective film 5 and a P-type electrode 6 are formed. The uptake quantity of extrinsic impurities and an electric activation factor differ when orientation differs as above-mentioned. A P-type and an N-type can be formed simultanously by doping one kind of impurities, if a non-flat substrate, on which the orientation having a larger difference doping efficiency are appearing, is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光起電力型(もしくは
PV型)HgCdTe赤外線検出器の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a photovoltaic (or PV type) HgCdTe infrared detector.

【0002】[0002]

【従来の技術】従来の光起電力型HgCdTe赤外線検
出器は、その構造の形成方法において2種類に分類され
ていた。これについて図2、図3に示す。その1つは、
図2に示すようにプレーナ(平坦)型と呼ばれる構造で
ある(例えば、シン等:アプライド・フィジクス・レタ
ー40巻、1982年965−967頁)。この構造は
基板(1)、バッファ層(2)の上に形成されたp型H
gCdTe層(3)にボロンなどの元素をイオン注入な
どの方法により打ち込み、部分的にn型HgCdTe層
(4)を形成するものであった。そして、保護表面膜
(5)、p型電極(6)が形成されているものである。
2. Description of the Related Art Conventional photovoltaic HgCdTe infrared detectors are classified into two types according to the method of forming their structure. This is shown in FIGS. 2 and 3. One of them is
As shown in FIG. 2, it is a structure called a planar (flat) type (for example, Shin et al .: Applied Physics Letter 40, 1982, 965-967). This structure has a p-type H formed on the substrate (1) and the buffer layer (2).
An element such as boron is implanted into the gCdTe layer (3) by a method such as ion implantation to partially form the n-type HgCdTe layer (4). Then, the protective surface film (5) and the p-type electrode (6) are formed.

【0003】あるいは、アリアス等(アプライド・フィ
ジクス・レター62巻、1993年976−978頁)
によれば、インジウムなどのn型不純物をドープするこ
とによりn型HgCdTe層を形成し、さらに不純物を
ドープしないHgCdTe層を形成した後に、表面保護
膜にエッチングにより窓を開け、部分的に砒素などのp
型不純物を注入して形成するものである。これらは、p
/n接合部分が大気中に露呈せず、かつHgCdTe層
が平坦であることが特徴であった。
Alternatively, Arias et al. (Applied Physics Letter Vol. 62, pp. 976-978, 1993)
According to the method, an n-type HgCdTe layer is formed by doping an n-type impurity such as indium, and a HgCdTe layer that is not doped with impurities is further formed. Then, a window is opened in the surface protective film by etching to partially form arsenic or the like. P
It is formed by implanting type impurities. These are p
The feature was that the / n junction portion was not exposed to the atmosphere and the HgCdTe layer was flat.

【0004】また、もう1つは、図3に示すような構造
のもので、例えばアリアス等(ジーナル・オブ・アプラ
イド・フィジクス69巻、1991年、2143−21
48頁)が示したメサ型と呼ばれるものである。すなわ
ち、基板(1)、バッファ層(2)の上にインジウムな
どのn型不純物によるn型HgCdTe層(4)を形成
後、砒素などのp型不純物によるp型HgCdTe層
(3)をさらに形成し、表面からエッチングによりn型
層(4)まで開口し素子分離を行い、界面・表面の保護
膜(5)を形成して作られていた。
The other one has a structure as shown in FIG. 3, for example, Arias et al. (Genar of Applied Physics Vol. 69, 1991, 2143-21).
It is called the mesa type shown in page 48). That is, after the n-type HgCdTe layer (4) made of n-type impurities such as indium is formed on the substrate (1) and the buffer layer (2), the p-type HgCdTe layer (3) made of p-type impurities such as arsenic is further formed. Then, the n-type layer (4) was opened from the surface by etching to perform element isolation, and a protective film (5) for the interface / surface was formed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来技術で示した図2のプレーナ型構造では、隣接するn
型層同士がp型層を介して電気的に導通しているため、
電気的に分離されておらずp型領域で生成した光キャリ
アはどちらのn型層でも迷走してしまうという問題があ
った。したがって、素子分離が完全でないため、赤外線
の画像を同検出器から得る場合、空間分解能を低下させ
る原因となっていた。また、イオン注入を用いて形成す
る場合には、HgCdTe層の結晶にダメージを与える
ことになり、電気特性の向上は望めなかった。
However, in the planar structure of FIG. 2 shown in the above-mentioned prior art, the adjacent n
Since the mold layers are electrically connected to each other through the p-type layer,
There is a problem that photo carriers generated in the p-type region which are not electrically separated from each other stray in both n-type layers. Therefore, since the element separation is not perfect, when the infrared image is obtained from the same detector, it causes a decrease in spatial resolution. In addition, when it is formed by using ion implantation, the crystals of the HgCdTe layer are damaged, and improvement of the electrical characteristics cannot be expected.

【0006】また、上述した図3のメサ型構造では、画
素分離は確実に実施できるがエッチングによる加工精度
が悪く、エッチングによりHgCdTe層の結晶にダメ
ージが入っていた。また、製造工程数についても、図2
の製造方法に比べて多くなるという問題があった。本発
明の目的は、上記課題を解決し、画素分離が完全であ
り、p/n接合の形成工程も1つの工程でできる光起電
力型HgCdTe赤外線検出器の製造方法を提供するこ
とにある。
Further, in the above-described mesa structure of FIG. 3, the pixel separation can be surely performed, but the processing accuracy by etching is poor, and the crystals of the HgCdTe layer are damaged by the etching. Also, regarding the number of manufacturing steps, FIG.
There is a problem in that the number is larger than that in the manufacturing method. An object of the present invention is to solve the above problems, and to provide a method for manufacturing a photovoltaic HgCdTe infrared detector that has a perfect pixel separation and can perform a p / n junction formation step in one step.

【0007】[0007]

【課題を解決するための手段】本発明は、光起電力型H
gCdTe赤外線検出器の製造方法において、HgCd
Te層を形成する基板の表面が2種類の結晶方位面を有
する非平坦基板を用いることを特徴とする光起電力型H
gCdTe赤外線検出器の製造方法である。また、本発
明は、光起電力型HgCdTe赤外線検出器の製造方法
において、HgCdTe層の形成時に4族元素、あるい
は5族元素のどちらか1種類の元素を用いて、HgCd
Te層を形成する基板の表面が2種類の結晶方位面を有
する非平坦基板上に電気特性がp型である領域とn型で
ある領域を同時に形成することを特徴とする光起電力型
HgCdTe赤外線検出器の製造方法であり、そしてこ
こで用いる4族元素としては、例えばSiが、5族元素
としては、例えばAsが用いられる。このように上記目
的を達成するため、本発明による光起電力型HgCdT
e赤外線検出器の製造方法においては、基板表面に2種
類の面方位が現われている非平坦基板を用い、4族元素
などのHgCdTe結晶中にあって、成長もしくは処理
条件により、p型もしくはn型のどちらか一方の電気特
性を示す不純物で、いわゆる両性不純物を用いてHgC
dTe層を形成することにある。
SUMMARY OF THE INVENTION The present invention is a photovoltaic type H
In a method for manufacturing a gCdTe infrared detector, HgCd
Photovoltaic type H, characterized in that a non-flat substrate having a Te layer forming substrate having two kinds of crystal orientation planes is used.
It is a method for manufacturing a gCdTe infrared detector. In addition, the present invention provides a method for manufacturing a photovoltaic HgCdTe infrared detector, wherein when the HgCdTe layer is formed, one element selected from the group 4 element and the group 5 element is used.
Photovoltaic HgCdTe characterized by simultaneously forming a region having p-type and a region having n-type electrical characteristics on a non-flat substrate having a substrate on which a Te layer has two types of crystal orientation planes. In the method of manufacturing an infrared detector, the group 4 element used here is, for example, Si, and the group 5 element is, for example, As. Thus, in order to achieve the above object, the photovoltaic HgCdT according to the present invention
In the method of manufacturing an e-infrared detector, a non-flat substrate in which two types of plane orientations appear on the surface of the substrate is used, and in a HgCdTe crystal such as a Group 4 element, p-type or n-type is used depending on the growth or treatment conditions. HgC, which is an impurity exhibiting electrical characteristics of either type,
Forming a dTe layer.

【0008】[0008]

【作用】本発明において、基板表面に2種類の結晶方位
面を有する非平坦基板、すなわち基板表面に2種類の面
方位が現われている非平坦基板を用いるので、この面方
位が異なるHgCdTe層では、外因性不純物の取り込
み効率と電気的活性率が異なる。このドーピング効率の
違いを利用し、2種類の方位が現れている非平坦基板を
用いると、電気特性の違いとして現れることになる。こ
のため、ドーピング効率の差の大きい面方位同士が現れ
ていれば、1つの不純物でp型とn型を同時に形成する
ことができる。
In the present invention, since a non-flat substrate having two kinds of crystal orientation planes on the substrate surface, that is, a non-flat substrate having two kinds of plane orientations appearing on the substrate surface is used, the HgCdTe layer having different plane orientations is used. , The exogenous impurities uptake efficiency and electrical activation rate are different. If a non-flat substrate in which two types of orientations appear is used by utilizing this difference in doping efficiency, it will appear as a difference in electrical characteristics. Therefore, if surface orientations having large differences in doping efficiency appear, one impurity can simultaneously form p-type and n-type.

【0009】[0009]

【実施例】次に本発明の実施例について図面を参照して
説明する。図1並びに図4(a)(b)及び図5(c)
(d)に本発明による光起電力型HgCdTe赤外線検
出器の構造、製造工程を示す。まず、図1を説明する
と、表面に2種類の結晶方位面を形成した非平坦基板で
あるGaAs基板(1)にバッファ層(2)を形成す
る。その上の<100>方向を矢印で示した面にはp型
HgCdTe層(3)、また矢印で示した<111>B
方向の面にはn型HgCdTe層(4)が形成されてい
る。そして保護表面膜(5)、p型電極(6)が形成さ
れているものである。
Next, an embodiment of the present invention will be described with reference to the drawings. 1 and 4 (a) (b) and 5 (c)
(D) shows the structure and manufacturing process of the photovoltaic HgCdTe infrared detector according to the present invention. First, referring to FIG. 1, a buffer layer (2) is formed on a GaAs substrate (1) which is a non-flat substrate having two types of crystal orientation planes formed on the surface. A p-type HgCdTe layer (3) is provided on the surface in which the <100> direction is indicated by an arrow, and <111> B indicated by an arrow.
An n-type HgCdTe layer (4) is formed on the surface in the direction. Then, the protective surface film (5) and the p-type electrode (6) are formed.

【0010】次に、製造工程を図4(a)(b)及び図
5(c)(d)で説明する。図4(a)に示すように、
HgCdTe形成用の基板(1)として(100)もし
くは(100)微傾斜面GaAsを用いた。基板(1)
にはマスク(8)とエッチングのための開口部を設けて
いる。次いで、図4(b)に示すように、基板(1)の
マスクの開口部からエッチングすると(111)面を呈
する側面が形成される。図においては、矢印と<111
>で方向を示している。なお、GaAs基板(1)の非
平坦化については、例えば西沢ら(半導体装置の製造方
法およびエッチング液、特公平4−78167)のエッ
チング液などで容易に実施することができるものであ
る。
Next, the manufacturing process will be described with reference to FIGS. 4 (a) (b) and 5 (c) (d). As shown in FIG.
As the substrate (1) for forming HgCdTe, (100) or (100) vicinal GaAs was used. Board (1)
Is provided with a mask (8) and an opening for etching. Next, as shown in FIG. 4B, etching is performed from the opening of the mask of the substrate (1) to form a side surface exhibiting a (111) plane. In the figure, the arrow and <111
> Indicates the direction. The non-planarization of the GaAs substrate (1) can be easily performed by using, for example, the etching solution of Nishizawa et al. (Method of manufacturing semiconductor device and etching solution, Japanese Patent Publication No. 4-78167).

【0011】次いで、マスクを除去した後、非平坦基板
(1)を分子線エピタキシーなどのHgCdTe成長装
置に導入し、基板の表面酸化膜を600℃で除去する。
そして、図5(c)に示すように、基板(1)からの不
純物拡散防止のためにCdTeもしくはCdZnTeバ
ッファ層(2)を少なくとも3μm以上形成する。分子
線エピタキシーでは基板温度約300℃で形成できる。
次に、HgCdTe層の形成には、砒素(As)をp型
不純物源として用いる。また、HgCdTeの形成は、
CdTe、TeおよびHgを母材料として基板温度約1
90℃で形成した。そして、GaAs基板(1)、バッ
ファ層(2)の上にp型HgCdTe層(3)、またn
型HgCdTe層(4)が形成される。
Then, after removing the mask, the non-flat substrate (1) is introduced into a HgCdTe growth apparatus such as molecular beam epitaxy, and the surface oxide film of the substrate is removed at 600 ° C.
Then, as shown in FIG. 5C, at least 3 μm or more of a CdTe or CdZnTe buffer layer (2) is formed in order to prevent impurity diffusion from the substrate (1). Molecular beam epitaxy can be performed at a substrate temperature of about 300 ° C.
Next, arsenic (As) is used as a p-type impurity source for forming the HgCdTe layer. The formation of HgCdTe is
Substrate temperature about 1 with CdTe, Te and Hg as base materials
Formed at 90 ° C. Then, on the GaAs substrate (1) and the buffer layer (2), a p-type HgCdTe layer (3) and n
A type HgCdTe layer (4) is formed.

【0012】Asのドーピング量はAsの蒸発源温度に
より決めることができる。エリオット等(ジーナル・オ
ブ・ヴァキュームサイエンス・アンド・テクノロジーB
10巻、1992年、1428−1431頁)による
と、(100)の微傾斜面で1.4×1017
−3、(111)面で1.7×1016cm−3にド
ーピングできることがわかっている。また、分子線エピ
タキシーで形成した、故意に不純物をドープしないHg
CdTe層の残留不純物はn型であり、1×1015
−3であることがわかっている。
The doping amount of As can be determined by the temperature of the evaporation source of As. Elliott, etc. (Genal of Vacuum Science and Technology B
10 vol., 1992, pp. 1428-1431), 1.4 * 10 < 17 > c on a slightly inclined plane of (100).
It has been found that the m −3 and (111) planes can be doped to 1.7 × 10 16 cm −3 . In addition, Hg formed by molecular beam epitaxy and not intentionally doped with impurities
The residual impurities of the CdTe layer are n-type and are 1 × 10 15 c
It is known to be m −3 .

【0013】したがって、(100)と(111)面で
は、約1桁のドーピング効率の差があるため、(10
0)面でp型5×1015cm−3のAsをドープした
場合、(111)面では本来1桁低い5×1014cm
−3のp型濃度が形成されるが、背景不純物がn型1×
1015cm−3と大きいため、その差の5×1014
cm−3のn型層が(111)面に形成されることにな
る。このように非平坦基板を用い、1種類の不純物をド
ーピングすることにより、図5(c)に示すように、
(111)と(100)面の接線上にp/n接合の界面
が形成できた。
Therefore, there is a difference in doping efficiency between the (100) and (111) planes by about one digit, so that (10
When p-type 5 × 10 15 cm −3 As is doped in the (0) plane, it is originally 5 × 10 14 cm lower in the (111) plane by one digit.
-3 p-type concentration is formed, but background impurities are n-type 1 ×
Since it is as large as 10 15 cm −3 , the difference is 5 × 10 14
The cm −3 n-type layer is formed on the (111) plane. By using the non-flat substrate in this way and doping one kind of impurities, as shown in FIG.
A p / n junction interface could be formed on the tangent of the (111) and (100) planes.

【0014】次いで、図5(d)に示すように、この上
に保護表面膜(5)のCdTeを形成し、p型層(3)
の(100)面上に開口し、p型電極(6)を形成し、
さらにメサエッチされた凹部の(111)面にn型電極
(7)を形成することにより光起電力型HgCdTe赤
外線検出器の製造を行うことができる。また、基板には
(100)以外にもドーピング効率が少なくとも1桁異
なる面方位が現れた非平坦基板であれば、同様な結果を
得ることができる。ドーピングに用いる元素も4族の両
性不純物を示す元素を用いれば、面方位に依ってはp型
かn型のどちらでもできるのでなお都合がよい。
Next, as shown in FIG. 5 (d), CdTe of the protective surface film (5) is formed on the p-type layer (3).
To form a p-type electrode (6) on the (100) plane of
Furthermore, a photovoltaic HgCdTe infrared detector can be manufactured by forming an n-type electrode (7) on the (111) surface of the mesa-etched recess. Similar results can be obtained as long as the substrate is a non-flat substrate having a plane orientation different from that of (100) by at least one digit. If the element used for doping is an element showing a group 4 amphoteric impurity, either p-type or n-type can be used, which is more convenient.

【0015】[0015]

【発明の効果】以上のように、本発明によれば、基板表
面に2種類の結晶方位面を有する非平坦基板を用ること
により、光起電力型HgCdTe赤外線検出器の製造方
法において、空間的素子分離を完全に行い、1つのドー
ピング源のみにより、同時にp型、n型層を形成でき
る。そして、空間分解能の低下がないきわめて良質な画
像の撮影が可能となる。また、1成長工程だけでp/n
接合の作製が行えるため、作製に要する時間を短縮する
ことができるという効果を奏するものである。
As described above, according to the present invention, by using a non-flat substrate having two kinds of crystal orientation planes on the substrate surface, in the method of manufacturing a photovoltaic HgCdTe infrared detector, a space is provided. The element isolation can be completely performed, and the p-type and n-type layers can be simultaneously formed with only one doping source. Then, it is possible to capture an extremely high-quality image without deterioration in spatial resolution. In addition, p / n only in one growth process
Since the bonding can be manufactured, the time required for manufacturing can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による光起電力型HgCdTe赤外線
検出器の構造を示す図。
FIG. 1 is a diagram showing the structure of a photovoltaic HgCdTe infrared detector according to the present invention.

【図2】 従来のプレーナ型HgCdTe赤外線検出器
の構造を示す図。
FIG. 2 is a diagram showing a structure of a conventional planar type HgCdTe infrared detector.

【図3】 従来のメサ型HgCdTe赤外線検出器の構
造を示す図。
FIG. 3 is a diagram showing a structure of a conventional mesa-type HgCdTe infrared detector.

【図4】 本発明の実施例である赤外線検出器の製造工
程(a)(b)を示す図。
FIG. 4 is a diagram showing manufacturing steps (a) and (b) of an infrared detector that is an embodiment of the present invention.

【図5】 本発明の実施例である赤外線検出器の製造工
程で[図4]に続く工程(c)(d)を示す図。
FIG. 5 is a diagram showing steps (c) and (d) following [FIG. 4] in the manufacturing process of the infrared detector that is the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 GaAs基板 2 CdTeバッファ層 3 p型HgCdTe層 4 n型HgCdTe層 5 表面保護層 6 p型電極 7 n型電極 8 マスク 1 GaAs substrate 2 CdTe buffer layer 3 p-type HgCdTe layer 4 n-type HgCdTe layer 5 surface protective layer 6 p-type electrode 7 n-type electrode 8 mask

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光起電力型HgCdTe赤外線検出器の
製造方法において、HgCdTe層を形成する基板の表
面が2種類の結晶方位面を有する非平坦基板を用いるこ
とを特徴とする光起電力型HgCdTe赤外線検出器の
製造方法。
1. A method of manufacturing a photovoltaic HgCdTe infrared detector, characterized in that a non-flat substrate having a HgCdTe layer on the surface of which has two types of crystal orientation planes is used. Manufacturing method of infrared detector.
【請求項2】 光起電力型HgCdTe赤外線検出器の
製造方法において、HgCdTe層の形成時に4族元
素、あるいは5族元素のどちらか1種類の元素を用い
て、HgCdTe層を形成する基板の表面が2種類の結
晶方位面を有する非平坦基板上に電気特性がp型である
領域とn型である領域を同時に形成することを特徴とす
る光起電力型HgCdTe赤外線検出器の製造方法。
2. A method for manufacturing a photovoltaic HgCdTe infrared detector, wherein the surface of the substrate on which the HgCdTe layer is formed by using one of Group 4 element and Group 5 element when forming the HgCdTe layer. 2. A method of manufacturing a photovoltaic HgCdTe infrared detector, characterized in that a region having electric characteristics of p-type and a region having electric characteristics of n-type are simultaneously formed on a non-flat substrate having two types of crystal orientation planes.
JP6270310A 1994-10-07 1994-10-07 Manufacture of photovoltaic type hgcdte infrared ray detector Pending JPH08111539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6270310A JPH08111539A (en) 1994-10-07 1994-10-07 Manufacture of photovoltaic type hgcdte infrared ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6270310A JPH08111539A (en) 1994-10-07 1994-10-07 Manufacture of photovoltaic type hgcdte infrared ray detector

Publications (1)

Publication Number Publication Date
JPH08111539A true JPH08111539A (en) 1996-04-30

Family

ID=17484501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6270310A Pending JPH08111539A (en) 1994-10-07 1994-10-07 Manufacture of photovoltaic type hgcdte infrared ray detector

Country Status (1)

Country Link
JP (1) JPH08111539A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116482150A (en) * 2023-06-25 2023-07-25 浙江珏芯微电子有限公司 Tellurium-cadmium-mercury doping activation rate evaluation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346279A (en) * 1989-07-03 1991-02-27 Santa Barbara Res Center Hetero junction photodiode
JPH04313267A (en) * 1991-04-03 1992-11-05 Mitsubishi Electric Corp Infrared rays detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346279A (en) * 1989-07-03 1991-02-27 Santa Barbara Res Center Hetero junction photodiode
JPH04313267A (en) * 1991-04-03 1992-11-05 Mitsubishi Electric Corp Infrared rays detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116482150A (en) * 2023-06-25 2023-07-25 浙江珏芯微电子有限公司 Tellurium-cadmium-mercury doping activation rate evaluation method
CN116482150B (en) * 2023-06-25 2023-09-12 浙江珏芯微电子有限公司 Tellurium-cadmium-mercury doping activation rate evaluation method

Similar Documents

Publication Publication Date Title
US11043529B2 (en) CMOS pixels comprising epitaxial layers for light-sensing and light emission
US5144398A (en) Semiconductor device and photoelectric conversion apparatus using the same
US5808329A (en) Low light level imager with extended wavelength response employing atomic bonded (fused) semiconductor materials
EP0023021B1 (en) Semiconductor device and method of manufacturing the same
CN103545328B (en) Sensor and its manufacturing method
EP0373832A2 (en) Semiconductor device and photoelectric conversion apparatus using the device
JPH0613641A (en) Photodetector and manufacturing method thereof
US5532173A (en) FET optical receiver using backside illumination, indium materials species
JPH0395942A (en) Method of forming junction with fewdefects in semiconductor material
EP0180457A2 (en) Semiconductor integrated circuit device and method for producing same
JPH05267695A (en) Infrared image sensing device
US4983534A (en) Semiconductor device and method of manufacturing the same
JP2022032720A (en) Two-wavelength photodetector and image sensor using it
US4885619A (en) HgCdTe MIS device having a CdTe heterojunction
US4831428A (en) Infrared ray detection device
JPH08111539A (en) Manufacture of photovoltaic type hgcdte infrared ray detector
EP0116652B1 (en) Phototransistor
Koelmans Application of semiconducting thin films
JP2798006B2 (en) Infrared solid-state imaging device and manufacturing method thereof
JPH0983010A (en) Infrared light emitting device and fabrication thereof
JP2664747B2 (en) Semiconductor device and photoelectric conversion device using the same
JP2800246B2 (en) Manufacturing method of vertical transistor
JP2559842B2 (en) Semiconductor device and photoelectric conversion device using the same
JP2798927B2 (en) Semiconductor light receiving device and method of manufacturing the same
JPH05343727A (en) Infrared detector and its manufacture