JPH08107662A - Brushless dc motor - Google Patents
Brushless dc motorInfo
- Publication number
- JPH08107662A JPH08107662A JP22478895A JP22478895A JPH08107662A JP H08107662 A JPH08107662 A JP H08107662A JP 22478895 A JP22478895 A JP 22478895A JP 22478895 A JP22478895 A JP 22478895A JP H08107662 A JPH08107662 A JP H08107662A
- Authority
- JP
- Japan
- Prior art keywords
- poles
- rotor
- stator
- phase
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 32
- 238000004804 winding Methods 0.000 claims description 32
- 230000003068 static effect Effects 0.000 claims description 2
- 238000005339 levitation Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 239000000696 magnetic material Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 230000004907 flux Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Landscapes
- Brushless Motors (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はブラシレスDCモー
タに係り、特にN,S極2組以上のマグネット磁極を軸
対称位置に配置したロータと、該ロータの外周に配置し
た固定子巻線を備えた固定子とを有するブラシレスDC
モータに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a brushless DC motor, and more particularly to a rotor having magnet poles of two or more pairs of N and S poles arranged axially symmetrically, and a stator winding arranged on the outer periphery of the rotor. Brushless DC with a fixed stator
Regarding motors.
【0002】[0002]
【従来の技術】図16は、係る従来のブラシレスDCモ
ータ及びその駆動方法の一例を示すものであり、(A)
はその断面構成を示し、(B)は固定子巻線の電流切換
えのタイムチャートを示す。このブラシレスDCモータ
のロータ1は、2組のN,S極のマグネット磁極合計4
極を円筒状ロータ1の外周面の軸対称位置に配置してい
る。ロータ1の外周には固定子鉄芯4の磁極面がロータ
1のマグネット磁極面から離隔して且つ対向して配置さ
れ、鉄芯4には固定子巻線3が巻回されている。固定子
鉄芯4は固定子(ステータ)2から突出した構造となっ
ており、硅素鋼等の高透磁率の磁性材から形成されてい
る。図示するように、固定子2は6極の固定子鉄芯4を
備え、各鉄芯4はU,V,W相の巻線3が巻回されてい
る。また、図示しないがマグネット磁極を配置したロー
タ1の外周面の磁極位置を検出するホール素子等の回転
位置検出装置を備え、ロータの回転状態に応じて各巻線
3に通電する電流のオン/オフ/反転を切換える通電制
御装置を備えている。2. Description of the Related Art FIG. 16 shows an example of such a conventional brushless DC motor and its driving method.
Shows the cross-sectional structure, and (B) shows a time chart of current switching of the stator winding. The rotor 1 of this brushless DC motor has a total of 4 magnetic poles of 2 pairs of N and S poles.
The poles are arranged at axially symmetrical positions on the outer peripheral surface of the cylindrical rotor 1. The magnetic pole surface of the stator iron core 4 is arranged on the outer periphery of the rotor 1 so as to be separated from and face the magnet magnetic pole surface of the rotor 1, and the stator winding 3 is wound around the iron core 4. The stator iron core 4 has a structure protruding from the stator (stator) 2, and is made of a magnetic material having a high magnetic permeability such as silicon steel. As shown in the figure, the stator 2 includes a stator iron core 4 having 6 poles, and each iron core 4 is wound with U, V, and W phase windings 3. Further, although not shown, a rotation position detecting device such as a hall element for detecting the magnetic pole position of the outer peripheral surface of the rotor 1 in which magnet magnetic poles are arranged is provided, and the on / off of the electric current supplied to each winding 3 according to the rotation state of the rotor is turned on / off. An energization control device for switching between inversion and inversion is provided.
【0003】このブラシレスDCモータの動作は次の通
りである。図示するようにロータ1のS極の磁極幅中心
が、W相鉄芯と一致した位置にある状態で、W相鉄芯の
巻線3には通電せず、その両側のU,V相の鉄芯に、U
相鉄芯はN極となるように通電し、V相鉄芯はS極とな
るように通電する。するとロータのN極マグネットとス
テータのU相の磁極(N極)に反発力が作用し、ロータ
のN極マグネットとステータのV相の磁極(S極)に吸
引力が作用し、ロータ1に図中矢印で示す方向の回転力
が与えられる。ロータ1が30°回転するとロータ1の
S極の磁極幅中心は、ステータ2のU相鉄芯に対向した
位置に達する。この時点でU相鉄芯の巻線3への通電を
停止し、V相鉄芯はN極となるようにW相鉄芯はS極と
なるように、それぞれ巻線3に通電する。するとV相の
固定子鉄芯(N極)とロータのN極との間には反発力が
生じ、W相の固定子鉄芯(S極)とロータのN極との間
には吸引力が生じる。このようにロータ1を機械角で3
0°回転する毎に固定子2側の各相鉄芯4の各巻線3の
通電を切換えることにより、回転磁界が形成され、ロー
タ1はこれに同期して回転する。The operation of this brushless DC motor is as follows. As shown in the drawing, in the state where the center of the pole width of the S pole of the rotor 1 is at the position coincident with the W-phase iron core, the winding 3 of the W-phase iron core is not energized and the U- and V-phase iron cores on both sides thereof are not energized. To U
The phase iron core is energized so as to become the N pole, and the V phase iron core is energized so as to become the S pole. Then, the repulsive force acts on the N-pole magnet of the rotor and the U-phase magnetic pole (N-pole) of the stator, and the attractive force acts on the N-pole magnet of the rotor and the V-phase magnetic pole (S-pole) of the stator, so that the rotor 1 A rotational force in the direction indicated by the arrow in the figure is applied. When the rotor 1 rotates 30 °, the center of the magnetic pole width of the S pole of the rotor 1 reaches a position facing the U-phase iron core of the stator 2. At this point, the energization of the U-phase iron core to the winding 3 is stopped, and the winding 3 is energized so that the V-phase iron core becomes the N pole and the W-phase iron core becomes the S pole. Then, a repulsive force is generated between the V-phase stator core (N pole) and the rotor N-pole, and an attractive force is generated between the W-phase stator core (S pole) and the rotor N-pole. Occurs. In this way, the rotor 1 is set at a mechanical angle of 3
A rotating magnetic field is formed by switching the energization of each winding 3 of each phase iron core 4 on the side of the stator 2 every 0 ° rotation, and the rotor 1 rotates in synchronization with this.
【0004】しかしながら、かかるブラシレスDCモー
タにおいては、ロータ1に加わる力は一見バランスして
いるように見えるが、通電していない固定子鉄芯4とロ
ータ磁極間には、ロータ磁極がマグネットであるため常
に吸引力が働く。ロータ1の中心がずれた場合には、ロ
ータ1に働く力のバランスが崩れ、ますますずれた方向
にロータ1に吸引力が働き、ロータ1を支持する軸受に
よりこのアンバランスな加重を支持させねばならなかっ
た。なお、特開平3−22845号公報には、ブラシレ
スDCモータについて関連する先行技術が開示されてい
る。However, in such a brushless DC motor, although the forces applied to the rotor 1 seem to be balanced at first glance, the rotor magnetic pole is a magnet between the stator iron core 4 and the rotor magnetic pole which are not energized. Therefore, the suction force always works. When the center of the rotor 1 is deviated, the balance of the force acting on the rotor 1 is lost, and the attraction force acts on the rotor 1 in the more deviated direction, and the bearing supporting the rotor 1 supports this unbalanced load. I had to do it. Incidentally, Japanese Patent Laid-Open No. 3-22845 discloses a prior art related to a brushless DC motor.
【0005】[0005]
【発明が解決しようとする課題】本発明は、かかる従来
技術の問題点に鑑みて為されたものであり、ブラシレス
DCモータのマグネット磁極を軸対称位置に配置したロ
ータに対して常に浮上力を作用させることができるブラ
シレスDCモータを提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the prior art, and a levitation force is always applied to a rotor in which magnet magnetic poles of a brushless DC motor are arranged in axially symmetrical positions. An object of the present invention is to provide a brushless DC motor that can operate.
【0006】[0006]
【課題を解決するための手段】本発明の請求項1のブラ
シレスDCモータは、N,S極の2n組(n≧2)のマ
グネット磁極を回転円板の平面上に同極を等間隔に並べ
て配置し、回転円板上のマグネット磁極と同極となるよ
うな三相通電を行う3n個の固定子の磁極を回転円板上
のマグネット磁極と対向して配し、三相の固定子磁極の
うち二相を通電することにより回転円板上のマグネット
磁極を反発浮上させると共に、残る一相の無通電固定子
と回転円板上のマグネット磁極との吸引力により回転円
板を回転移動させ、さらにマグネット磁極の位置に応じ
て三相の通電パターンを切換えることにより継続して回
転を持続することを特徴とする。In the brushless DC motor according to the first aspect of the present invention, 2n sets (n ≧ 2) of magnet magnetic poles of N and S poles are arranged on the plane of the rotating disk at equal intervals. Three-phase stators are arranged side by side, and the magnetic poles of the 3n stators that perform three-phase energization so as to be the same poles as the magnet magnetic poles on the rotating disk are arranged facing the magnet magnetic poles on the rotating disk. By energizing two phases among the magnetic poles, the magnetic poles on the rotating disk are repelled and levitated, and the rotating disk is rotated by the attraction force between the remaining one-phase non-energized stator and the magnetic poles on the rotating disk. Further, the rotation is continuously maintained by switching the three-phase energization pattern in accordance with the position of the magnet magnetic pole.
【0007】また請求項2の発明は、回転円板の片方の
面に配するマグネット磁極を全てN極、反対側の面に配
する磁極を全てS極とし、回転円板上のマグネット磁極
および固定子磁極面が回転円板軸直角面より傾いて、回
転円板両面のマグネット磁極面をそれぞれ同極となるよ
うに固定子鉄芯で挟み込んだ固定子磁極構造を備えたこ
とを特徴とする。According to the second aspect of the present invention, all the magnet magnetic poles arranged on one surface of the rotating disk are N poles, and all the magnetic poles arranged on the opposite surface are S poles. The stator magnetic pole surface is inclined from the plane perpendicular to the axis of the rotating disk, and the stator magnetic pole structure is provided by sandwiching the magnet magnetic pole surfaces on both sides of the rotating disk with the stator iron cores so as to have the same poles. .
【0008】また請求項3の発明は、前記三相通電パタ
ーンで回転駆動すると共に三相全相直流通電することに
より反発静止浮上する通電パターンを備え、両パターン
を切換えることにより回転・静止の制御を行うことを特
徴とする。According to a third aspect of the present invention, there is provided an energization pattern in which the three-phase energization pattern is rotationally driven and the three-phase all-phase direct current is energized to repel and stand up. It is characterized by performing.
【0009】本発明の請求項4のブラシレスDCモータ
は、N,S極の2n組(n≧2)の永久磁石を固定子磁
極と対向する面が全て同極となるようにロータ周上に等
間隔に並べて2n個のロータ磁極を構成するとともに、
前記ロータ磁極と対向する固定子磁極は3n個かつ3相
それぞれの巻線を巻回した磁極を等間隔に配置したもの
で、固定子巻線には3相それぞれ3種類の異なる通電に
より、少なくとも2相の固定子磁極がロータ磁極と同極
となり反発するとともにロータを回転移動させ、さらに
3相の通電パターンを切換えることにより継続して回転
駆動することを特徴とする。In the brushless DC motor according to a fourth aspect of the present invention, 2n sets (n ≧ 2) of permanent magnets having N and S poles are arranged on the rotor circumference so that all surfaces facing the stator magnetic poles have the same pole. 2n rotor magnetic poles are arranged at equal intervals and
The stator magnetic poles facing the rotor magnetic poles are magnetic poles formed by winding 3n number of windings and three phases of windings at equal intervals. It is characterized in that the two-phase stator magnetic poles become the same poles as the rotor magnetic poles and repel each other, the rotor is rotationally moved, and the three-phase energization pattern is switched to continuously rotate the rotor.
【0010】また請求項5の発明は、前記固定子磁極が
永久磁石と巻線、もしくは永久磁石と鉄芯と巻線から構
成され、無通電時には固定子磁極はロータ磁極と全て同
極で3相ともロータ磁極と反発し、また3相のうち2相
のみにそれぞれ反対向きの通電を行うことにより3相そ
れぞれ3種類の通電となることにより、少なくとも2相
の固定子磁極がロータ磁極と反発するとともにロータを
回転駆動させ、さらに通電パターンを切換えることによ
り継続して回転駆動することを特徴とする。According to a fifth aspect of the present invention, the stator magnetic pole is composed of a permanent magnet and a winding, or a permanent magnet, an iron core and a winding. Both phases repel the rotor magnetic poles, and by energizing only two of the three phases in opposite directions, three types of three-phase energization are achieved, so that at least two-phase stator magnetic poles repel the rotor magnetic poles. In addition, the rotor is rotationally driven, and the energization pattern is switched to continuously rotate the rotor.
【0011】また請求項6の発明は、各固定子磁極中心
を結ぶ円周の直径がロータ磁極中心を結ぶ円周の直径よ
りも大または小であることを特徴とする。The invention according to claim 6 is characterized in that the diameter of the circumference connecting the centers of the stator magnetic poles is larger or smaller than the diameter of the circumference connecting the centers of the rotor magnetic poles.
【0012】上記本発明の請求項1の構成によれば、三
相の固定子磁極のうち、二相を対向するマグネット磁極
と同極となるように通電することにより、回転円板に反
発浮上力を作用させることができる。三相の固定子磁極
のうち、残りの一相を、無通電とすることにより磁性材
である固定子磁極とマグネット磁極との間に吸引力が作
用し回転円板を回転させることができる。According to the structure of claim 1 of the present invention described above, among the three-phase stator magnetic poles, two phases are energized so that the two magnetic poles have the same polarity as the opposing magnetic poles, so that repulsive levitation is caused on the rotating disk. Power can be applied. By deenergizing the remaining one phase of the three-phase stator magnetic poles, an attractive force acts between the stator magnetic poles, which are magnetic materials, and the magnet magnetic poles to rotate the rotating disk.
【0013】また請求項2の発明によれば、マグネット
磁極及び固定子磁極面が、回転円板軸直角面より傾いて
配置されていることから、吸引力及び反発力が回転円板
軸直角方向成分、即ち求心力を有することとなる。この
ため、回転円板は固定子磁極により挟み込まれた状態
で、その軸中心部分に浮上保持された状態で回転する。
即ち、モータの回転子を軸受を用いることなく軸支して
回転駆動することができる。又、回転円板に配設するマ
グネット磁極の片面をすべてN極、他の片面をすべてS
極とすることにより、構成を簡素化することができる。According to the second aspect of the present invention, since the magnet magnetic pole and the stator magnetic pole surface are arranged so as to be inclined with respect to the plane perpendicular to the rotating disc axis, the attractive force and the repulsive force are directed in the direction perpendicular to the rotating disc axis. It has a component, namely centripetal force. Therefore, the rotating disk rotates while being sandwiched between the stator magnetic poles and being floated and held at the axial center portion thereof.
That is, the rotor of the motor can be rotatably supported by a shaft without using a bearing. Also, one side of the magnet magnetic pole arranged on the rotating disk is the N pole, and the other side is the S pole.
By using the poles, the configuration can be simplified.
【0014】また請求項3の発明によれば、回転駆動す
る通電パターンと、反発浮上静止する通電パターンとの
切換えができることから、モータの回転/停止制御を任
意に行うことが可能となる。Further, according to the third aspect of the present invention, since it is possible to switch between the energization pattern for rotational driving and the energization pattern for repulsive floating and stationary, it is possible to arbitrarily control the rotation / stop of the motor.
【0015】上記本発明の請求項4の構成によれば、3
相の固定子磁極のうち少なくとも2相が対向するマグネ
ット磁極と同極となるように通電することにより、ロー
タを反発浮上させることができる。また3相の固定子と
ロータ磁極には3種類の力(うち少なくとも2種類は反
発力)を作用させることによりロータを回転させること
ができる。According to the configuration of claim 4 of the present invention, 3
The rotor can be repulsively levitated by energizing so that at least two phases of the stator magnetic poles of the phases have the same poles as the opposing magnet magnetic poles. Further, the rotor can be rotated by applying three types of forces (at least two types of which are repulsive forces) to the three-phase stator and the rotor magnetic poles.
【0016】また請求項5の発明によれば、固定子磁極
が永久磁石と巻線、または永久磁石と鉄芯と巻線で構成
され、固定子磁極が予めロータ磁極と同極であれば、無
通電時においてもロータを反発浮上させることができ
る。また3相の巻線のうち2相のみにそれぞれ逆方向に
同じ電流を通じるだけで、3相の固定子磁極は3種類の
磁力(うち少なくとも2相はロータ磁極と同極)を得る
ことができ、容易な通電方法でロータを回転移動させる
ことができる。According to the invention of claim 5, the stator magnetic pole is composed of a permanent magnet and a winding, or a permanent magnet, an iron core and a winding, and the stator magnetic pole is the same as the rotor magnetic pole in advance. The rotor can be repulsively levitated even when the power is off. Further, the stator poles of the three-phase can obtain three kinds of magnetic force (of which at least two phases are the same pole as the rotor magnetic pole) only by passing the same current in opposite directions to only two phases of the three-phase windings. Therefore, the rotor can be rotationally moved by an easy energization method.
【0017】また請求項6の発明によれば、固定子磁極
中心を結ぶ円周の直径がロータ磁極中心を結ぶ円周の直
径よりも大きいかまたは小さいことにより、同極の反発
によってロータは常に求心力を固定子磁極から与えら
れ、さらに回転中のジャイロ効果も重なり、安定した求
心力を得ることができる。According to the invention of claim 6, the diameter of the circumference connecting the center of the magnetic poles of the stator is larger or smaller than the diameter of the circumference connecting the center of the magnetic poles of the rotor. Centripetal force is given from the stator magnetic poles, and the gyro effect during rotation is also superimposed, so that stable centripetal force can be obtained.
【0018】また本発明のモータを、例えば下記実施例
に示すような円板ロータから構成されるモータを2個組
み合わせたものとすれば、軸方向とラジアル方向とにロ
ータは求心力を得ることができ、モータとしては、補助
的な軸受のみを備えればよいことになる。Further, if the motor of the present invention is a combination of two motors composed of disc rotors as shown in the following embodiments, the rotor can obtain centripetal force in the axial direction and the radial direction. Therefore, the motor only needs to have the auxiliary bearing.
【0019】[0019]
【実施例】以下、本発明の実施例について添付図1乃至
図15を参照しながら説明する。尚、各図中同一符号は
同一又は相当部分を示す。Embodiments of the present invention will be described below with reference to the accompanying drawings 1 to 15. In the drawings, the same reference numerals indicate the same or corresponding parts.
【0020】本発明の第1実施例のブラシレスDCモー
タの平面構造を図1に示し、図2は図1のXX線に沿っ
た断面構造を示す。このモータは、ポリゴンミラー等を
高速回転させるスキャナモータに好適である。従来、こ
の種のモータはできるだけ高速回転で駆動するため、ロ
ータを支持する軸受として高精度に加工された空気軸受
又は磁気軸受等を用いることが一般的であった。従って
軸受の製作に要するコストは高いものとなっていた。本
実施例のブラシレスDCモータは、その回転駆動と反発
無制御の磁気軸受機能を兼用することにより、軸受無し
でロータを浮上しかつ駆動することを可能としたもので
ある。FIG. 1 shows a planar structure of a brushless DC motor of the first embodiment of the present invention, and FIG. 2 shows a sectional structure taken along line XX of FIG. This motor is suitable for a scanner motor that rotates a polygon mirror or the like at high speed. Conventionally, since this type of motor is driven at the highest possible speed of rotation, it has been common to use an air bearing, a magnetic bearing, or the like machined with high precision as a bearing for supporting the rotor. Therefore, the cost required to manufacture the bearing is high. The brushless DC motor of this embodiment has both the rotational drive function and the magnetic bearing function of repulsion-free control so that the rotor can be levitated and driven without a bearing.
【0021】出力軸10の外周に非磁性材料の回転円板
13を嵌着し、その外周にマグネット14を装着する。
マグネット磁極は、片方の面を全てN極、反対側の面を
すべてS極とし、マグネット磁極面及び固定子磁極面
が、回転円板軸直角面より傾いている。そして、回転円
板両面のマグネット磁極面をそれぞれ固定子鉄芯11の
磁極面で挟み込む構造となっている。A rotating disk 13 made of a non-magnetic material is fitted on the outer circumference of the output shaft 10, and a magnet 14 is mounted on the outer circumference thereof.
The magnet magnetic pole has one surface as an N pole and the opposite surface as an S pole, and the magnet magnetic pole surface and the stator magnetic pole surface are inclined from the plane perpendicular to the axis of the rotating disk. The magnetic pole surfaces on both sides of the rotating disk are sandwiched between the magnetic pole surfaces of the stator iron core 11.
【0022】固定子鉄芯11はコの字形の鉄芯に固定子
巻線12を巻回して電磁石とし、各回転円板磁極面に対
し、3組の固定子鉄芯磁極面を均等(この場合30°間
隔)に配列して、それぞれの磁極面がロータ磁極面とは
所定のギャップをとってはさみこみ、各回転円板磁極面
と固定子鉄芯磁極面を対向させる。本実施例では片面に
ついて回転円板側8極、固定子側12極の例を示してい
る。The stator iron core 11 has a U-shaped iron core around which the stator winding 12 is wound to form an electromagnet, and three sets of stator iron core magnetic pole surfaces are evenly provided for each rotating disk magnetic pole surface. In this case, each magnetic pole surface is sandwiched with a predetermined gap from the rotor magnetic pole surface so that each rotating disk magnetic pole surface faces the stator core magnetic pole surface. In this embodiment, an example is shown in which one side has eight poles on the rotating disk side and twelve poles on the stator side.
【0023】本実施例のモータの駆動方法を図3から図
6に示す。図3及び図5はロータ側及び固定子側の磁極
配置を示す平面図であり、図4及び図6は電流切換のタ
イムチャートである。図3及び図4は、浮上静止時の通
電状態を示し、図5及び図6は、回転駆動時の通電状態
を示す。図3及び図5は、図1のようにモータ上面から
見ると、ロータ磁極位置が判りにくいので固定子を外周
に開いた図としている。A method of driving the motor of this embodiment is shown in FIGS. 3 to 6. 3 and 5 are plan views showing the arrangement of magnetic poles on the rotor side and the stator side, and FIGS. 4 and 6 are time charts for current switching. 3 and 4 show the energized state when the levitation is stationary, and FIGS. 5 and 6 show the energized state when the rotary drive is performed. 3 and 5, the rotor magnetic pole position is difficult to see when viewed from the top of the motor as in FIG. 1, and therefore the stator is open to the outer periphery.
【0024】静止浮上時には、U,V,Wの各相に一定
の直流電流を供給する。マグネット磁極のN極に面した
固定子磁極はすべてN極となり、マグネット磁極のS極
に面した固定子磁極はすべてS極となり、マグネット1
4は反発力を受け回転円板13が静止浮上する。尚、ロ
ータ位置角0°のマグネット磁極(N1 極)は、U相固
定子磁極と直接対面しているので、左右両方向への回転
力を受け不安定状態となる。これに対して、ロータ位置
角45°のマグネット磁極(N2 極)は、V相(30
°)及びW相(60°)の固定子磁極から等しい大きさ
の反発力を受け安定状態となる。通電時には、これらの
力の釣合い位置である図中点線で示す位置N1’,N2’
で浮上停止する。During stationary levitation, a constant DC current is supplied to each of the U, V and W phases. All the stator magnetic poles facing the N pole of the magnet magnetic pole are N poles, and all the stator magnetic poles facing the S pole of the magnet magnetic pole are S poles.
4 receives the repulsive force and the rotating disk 13 floats still. Since the magnet magnetic pole (N1 pole) with the rotor position angle of 0 ° directly faces the U-phase stator magnetic pole, it becomes unstable due to rotational forces in both left and right directions. On the other hand, the magnet magnetic pole (N2 pole) with the rotor position angle of 45 ° is V phase (30
°) and the W-phase (60 °) stator magnetic poles receive a repulsive force of the same magnitude and enter a stable state. When energized, the positions N1 'and N2' shown by dotted lines in the figure, which are the positions for balancing these forces, are shown.
Stop ascending at.
【0025】回転駆動時には図5において、マグネット
磁極位置をホール素子等の位置検出器(図示しない)で
検出して、0°,90°,180°,270°の位置に
おいて各マグネット磁極の中心位置と対向するU相、及
び30°,120°,210°,300°の位置にある
V相の固定子鉄芯にはマグネット磁極と対向する磁極面
が同極となるように通電する。このため、回転円板13
は回転軸方向に反発して浮上力を与えられる。またV相
の固定子鉄芯はロータ側マグネット磁極と同極となり反
発して円周方向の回転力が発生する。又、W相の固定子
鉄芯は無通電となり、無通電でも電機子鉄芯とマグネッ
ト磁極が吸引するので無通電吸引となり、矢印方向に回
転力を得る。即ち、マグネット磁極N1 はU相の反発力
を受けN1'の位置に移動し、マグネット磁極N2 はV相
の反発力及びW相の無通電鉄芯の吸引力を受けN2'の位
置に移動する。この通電パターンは回転位置角0〜15
°まで同じである。そこで、15°に達した時図6に示
すように電流を切換ることにより、マグネット磁極N2'
はW相磁極から回転軸方向の反発力(浮上力)及び回転
方向の反発力を受け、マグネット磁極N1'はV相磁極か
ら無通電吸引力及びU相磁極から反発力(回転駆動力)
が与えられる。従って15°毎にこれを駆り返せば継続
して回転円板を浮上させると共に回転駆動することがで
きる。この関係は回転円板の表面(N極)でも裏面(S
極)でも同じである。During rotational driving, the position of the magnet pole is detected by a position detector (not shown) such as a Hall element in FIG. 5, and the center position of each magnet pole is located at 0 °, 90 °, 180 ° and 270 °. The U-phase and the V-phase stator iron cores at the positions of 30 °, 120 °, 210 °, and 300 ° facing each other are energized so that the magnetic pole surfaces facing the magnet magnetic poles have the same polarity. Therefore, the rotating disk 13
Is repelled in the direction of the rotation axis and is given a levitation force. Further, the V-phase stator iron core becomes the same pole as the rotor-side magnet magnetic pole and repels to generate a rotational force in the circumferential direction. Further, the W-phase stator iron core is de-energized, and even when de-energized, the armature iron core and the magnet magnetic poles are attracted to each other to de-energize and obtain a rotational force in the arrow direction. That is, the magnet magnetic pole N1 moves to the position of N1 'due to the repulsive force of the U phase, and the magnet magnetic pole N2 moves to the position of N2' due to the repulsive force of the V phase and the attraction force of the non-energized iron core of the W phase. . This energization pattern has a rotational position angle of 0 to 15
It is the same up to °. Therefore, when it reaches 15 °, the current is switched as shown in FIG.
Is a repulsive force (levitation force) in the rotation axis direction and a repulsive force in the rotation direction from the W-phase magnetic pole, and the magnet magnetic pole N1 'is a non-energizing attraction force from the V-phase magnetic pole and a repulsive force (rotational driving force) from the U-phase magnetic pole.
Is given. Therefore, if this is driven back every 15 °, the rotating disk can be continuously floated and driven to rotate. This relationship is due to the front surface (N pole) and back surface (S
The same).
【0026】本実施例のブラシレスDCモータおよびそ
の駆動方法により、ロータ磁極と固定子鉄芯の磁極の同
極の反発作用により、軸方向および半径方向にロータに
求心力を与えながら浮上させて駆動することが可能であ
る。又、通電パターンを切り換えることにより静止浮上
させることもできる。安定した静止磁気浮上および回転
を得ることができるので、軸受が不要となり、コストダ
ウンとなり、かつ出力軸10を高速回転させることが可
能である。また、磁気浮上原理が反発であることから、
モータの駆動制御以外の特別な制御が不要である。By the brushless DC motor and its driving method of the present embodiment, the rotor magnetic pole and the magnetic pole of the stator iron core repel the same polarity to levitate and drive the rotor while giving a centripetal force in the axial and radial directions. It is possible. It is also possible to levitate by switching the energization pattern. Since stable static magnetic levitation and rotation can be obtained, a bearing is not required, cost is reduced, and the output shaft 10 can be rotated at high speed. Also, since the magnetic levitation principle is repulsive,
No special control other than motor drive control is required.
【0027】次に、本発明の第2実施例のブラシレスD
Cモータの断面構造を図7に示し、そのX−X断面から
見た固定子構造を図8に、Y−Y断面から見たロータ構
造を図9に示す。このモータも、第1実施例のモータと
同様に例えばポリゴンミラー等を高速回転させる駆動用
モータとして好適である。本実施例のブラシレスDCモ
ータも、その回転駆動と反発無制御の磁気軸受機能を兼
用することにより、補助的なラジアル方向の軸受のみで
ロータを浮上しかつ駆動することを可能としたものであ
る。Next, the brushless D according to the second embodiment of the present invention.
FIG. 7 shows a sectional structure of the C motor, FIG. 8 shows a stator structure seen from the XX section, and FIG. 9 shows a rotor structure seen from the YY section. This motor is also suitable as a drive motor for rotating a polygon mirror or the like at a high speed, like the motor of the first embodiment. Also in the brushless DC motor of this embodiment, the rotor is levitated and driven only by the bearing in the auxiliary radial direction, by having both the rotational drive and the magnetic bearing function of non-repulsion control. .
【0028】出力軸10の外周に非磁性材料の回転円板
13を嵌着し、その外周にロータマグネット磁極14を
装着する。ロータマグネット磁極14は、片方の面を全
てN極、反対側の面をすべてS極とし、N極側の面が固
定子磁極15のマグネット磁極のN極と対向している。
また出力軸10は回転円板をはさんだ2ヶ所においてラ
ジアル方向に補助的に支持される軸と適当なクリアラン
スを持った補助軸受16で支持されているが、スラスト
方向には回転体の重量に対してロータマグネット磁極と
固定子マグネット磁極間の反発力により浮上力が付与さ
れている。A rotating disk 13 made of a non-magnetic material is fitted on the outer circumference of the output shaft 10, and a rotor magnet magnetic pole 14 is mounted on the outer circumference thereof. The rotor magnet magnetic pole 14 has an N pole on one side and an S pole on the opposite side, and the surface on the N pole side faces the N pole of the magnet pole of the stator pole 15.
Further, the output shaft 10 is supported at two places sandwiching the rotating disk by a shaft that is supported auxiliary in the radial direction and an auxiliary bearing 16 having a proper clearance, but in the thrust direction the weight of the rotating body is not supported. On the other hand, the levitation force is applied by the repulsive force between the rotor magnet magnetic pole and the stator magnet magnetic pole.
【0029】本実施例においてはスラスト方向のあそび
が大きいが、回転円板と固定子を2組備え、回転円板を
はさみこむように構成すればスラスト方向のあそびが規
制され小さくなるが、構成を簡単に説明するためにここ
では省略している。In this embodiment, the play in the thrust direction is large, but if two rotary discs and stators are provided and the rotary disc is sandwiched, the play in the thrust direction is regulated and becomes small. It is omitted here for the sake of simplicity.
【0030】固定子磁極15はマグネットに固定子巻線
を巻回したもので、ここでは図9に示すロータ磁極8個
に対して、図8に示す固定子磁極12個として固定子台
17の円周上に等間隔に固定している。固定子には、図
8に示すように3相U,V,W相がU1,V1,W1,
U2…の順番に4組並んでいる。The stator poles 15 are obtained by winding a stator winding around a magnet. Here, the rotor poles shown in FIG. 9 are replaced by the stator poles 12 shown in FIG. It is fixed at equal intervals on the circumference. In the stator, as shown in FIG. 8, three phases U, V, W are U1, V1, W1,
Four sets are lined up in the order of U2 ....
【0031】固定子台17は非磁性材でもよいが、外部
磁界等の影響を少なくする目的で磁性材を使用しても構
わない。固定子磁極15が装着された固定子台17上の
凹部にロータ13を装着した主軸10を装填し、その上
から非磁性材のカバー20をボルト21で締結してモー
タとして構成される。The stator base 17 may be made of a non-magnetic material, but a magnetic material may be used for the purpose of reducing the influence of an external magnetic field or the like. The main shaft 10 having the rotor 13 mounted therein is loaded in the recess on the stator base 17 having the stator magnetic poles 15 mounted thereon, and the cover 20 made of a non-magnetic material is fastened from above the main shaft 10 with bolts 21 to form a motor.
【0032】固定子磁極15は片側の面をすべてN極、
反対側をすべてS極とし、N極側の面がロータ磁極のN
極側と対向している。このときロータ磁極中心と固定子
磁極中心は一致せず、必ず反発力が半径方向にも求心力
が働くように配置する。即ち、各ロータ磁極14中心を
結ぶ円周の直径と、固定子磁極15中心を結ぶ円周の直
径は、図1に示すように異なるものとしている。これに
より、軸方向の反発力が生じるので、無制御でロータ1
3の回転軸を固定子磁極15の中心軸と合わせる方向の
半径方向力を得ることができる。The stator pole 15 has an N pole on one side,
The opposite side is the S pole, and the surface on the N pole side is the N pole of the rotor pole.
It faces the pole side. At this time, the rotor magnetic pole center and the stator magnetic pole center do not coincide, and the repulsive force is always arranged so that the centripetal force acts in the radial direction. That is, the diameter of the circle connecting the centers of the rotor magnetic poles 14 and the diameter of the circle connecting the centers of the stator magnetic poles 15 are different as shown in FIG. As a result, a repulsive force is generated in the axial direction, so that the rotor 1 is uncontrolled.
It is possible to obtain a radial force in the direction in which the rotation axis of No. 3 is aligned with the central axis of the stator magnetic pole 15.
【0033】図10は、無通電時のロータ磁極と固定子
磁極の位置関係を示す。ただし、図10は図7のY−Y
断面からロータ及び固定子磁極を見たものであるが、ロ
ータ磁極位置が重なって判りにくいので、説明の便宜上
固定子磁極15を外側に開いた図としている。無通電時
において、ロータ13は固定子から両磁極間の反発力に
より浮上しているが、補助軸受無しには安定浮上はしな
い。ロータが補助軸受けで支持された状態でロータ磁極
と固定子磁極が半径方向に中心位置に重なる状態を回転
角0°とすると、本実施例のロータと固定子の磁極数が
それぞれ8極と12極の関係では、同極間の反発力が安
定する約7.5°の位置で静止する。FIG. 10 shows the positional relationship between the rotor magnetic poles and the stator magnetic poles when the power is off. However, FIG. 10 shows YY of FIG.
Although the rotor and the stator magnetic poles are viewed from the cross section, the rotor magnetic pole positions overlap with each other and are difficult to understand. Therefore, the stator magnetic poles 15 are opened to the outside for convenience of description. When the rotor 13 is not energized, the rotor 13 floats from the stator due to the repulsive force between both magnetic poles, but it does not float stably without an auxiliary bearing. When the rotation angle is 0 ° when the rotor magnetic poles and the stator magnetic poles are radially overlapped with each other at the center position while the rotor is supported by the auxiliary bearings, the number of magnetic poles of the rotor and the stator of this embodiment is 8 and 12, respectively. As for the polar relationship, they stand still at a position of about 7.5 ° at which the repulsive force between the same poles stabilizes.
【0034】図11は、図10に示す無通電時から通電
した状態における回転原理を説明する図である。図11
は、U1,U2,U3,U4には同相のU相を、V1,
V2,V3,V4には同相のV相を、W1,W2,W
3,W4には同相のW相を、それぞれ供給するように結
線した、3相の通電パターンである。本実施例のU相、
V相、W相の結線図を図15に示す。本実施例の通電方
法では、U,V,Wの3相のうち必ず2相のみ通電し1
相は無通電である。さらに通電する2相は、直流パルス
通電であるため、片方が順方向通電となる時には、他方
は逆方向通電となる。FIG. 11 is a diagram for explaining the principle of rotation from the time when the power is not supplied to the status shown in FIG. Figure 11
U1, U2, U3, U4 have the same U phase, V1,
For V2, V3, V4, the same V phase, W1, W2, W
3 and W4 are three-phase energization patterns in which in-phase W phases are connected so as to be supplied respectively. U phase of the present embodiment,
A wiring diagram of the V phase and the W phase is shown in FIG. In the energization method of the present embodiment, only two phases out of the three phases U, V and W are energized.
The phases are de-energized. Since the two phases that are further energized are DC pulse energized, when one is energized in the forward direction, the other is energized in the reverse direction.
【0035】本実施例の通電方法によれば図13又は図
14に示すように順方向通電において反発力大、無通電
状態での反発力、さらに逆方向通電において反発力小と
なるように磁束量が変化する。尚、図13は固定子磁極
巻線12の通電電流が比較的小さい場合を示し、図14
は固定子磁極巻線12の通電電流が比較的大きい場合を
示す。このように、少なくとも2相はロータ磁極と必ず
反発しながら3相3種類の磁力を発生する。According to the energization method of this embodiment, as shown in FIG. 13 or 14, the repulsive force is large in the forward direction, the repulsive force is in the non-energized state, and the repulsive force is small in the reverse direction. The amount changes. Incidentally, FIG. 13 shows a case where the current passing through the stator magnetic pole winding 12 is relatively small.
Indicates the case where the current passing through the stator magnetic pole winding 12 is relatively large. In this way, at least two phases generate repulsive force with respect to the rotor magnetic poles to generate three types of three types of magnetic force.
【0036】図12に示すように、ロータ回転角0°〜
15°の間ではU相は順方向通電されて反発力大の状
態、V相は無通電時の反発力、W相は逆通電されて反発
力小の状態といった3種類の状態となる。図11のロー
タ磁極と固定子磁極との関係では、ロータ回転角7.5
°の時の状態を示しており図中の矢印の方向へ回転力が
働く、この回転力は0°〜15°の全区間において同じ
方向となる。As shown in FIG. 12, the rotor rotation angle is from 0 ° to
During 15 °, the U-phase is energized in the forward direction and has a large repulsive force, the V-phase is in a non-energized repulsive force, and the W-phase is reversely energized and has a small repulsive force. In the relationship between the rotor magnetic poles and the stator magnetic poles in FIG. 11, the rotor rotation angle is 7.5.
The rotational force acts in the direction of the arrow in the figure, and the rotational force is in the same direction in the entire section of 0 ° to 15 °.
【0037】ロータの回転角が15°に達すると通電が
図12のロータ回転角15°〜30°の状態に切り換わ
るが、同じ方向にロータを駆動する回転力が生じる。ロ
ータの回転角が30°〜45°においても同様の回転力
が生じる。本実施例の場合、ロータ回転角45°で1周
期となり、4周期でロータが1回転(360°)する。When the rotation angle of the rotor reaches 15 °, the energization switches to the state of the rotor rotation angle of 15 ° to 30 ° in FIG. 12, but a rotational force for driving the rotor in the same direction is generated. Similar rotational force is generated even when the rotation angle of the rotor is 30 ° to 45 °. In the case of the present embodiment, the rotor rotation angle is 45 ° and one cycle is performed, and the rotor makes one rotation (360 °) in four cycles.
【0038】ロータ13の回転角は図7に示すような光
センサ19等の非接触の回転位置角センサ等で検知して
もよいが、本実施例においては3相のうち2相しか通電
していないので、残る無通電相の巻線12に生じる逆起
電圧を利用しても、ロータ13の回転角を検知すること
ができる。The rotation angle of the rotor 13 may be detected by a non-contact rotation position angle sensor such as an optical sensor 19 as shown in FIG. 7, but in this embodiment, only two of the three phases are energized. Therefore, the rotation angle of the rotor 13 can be detected by using the counter electromotive voltage generated in the winding 12 of the remaining non-energized phase.
【0039】本実施例おいては上述したように、ロータ
回転角に応じて通電パターンを切り換えているが、必ず
しもロータ回転角を検出しなくても、同極同士の反発浮
上力が常に生じているので、脱調してもすぐに元のパタ
ーンに戻ることができる。従って、回転体の慣性モーメ
ントに応じて、ロータの回転角とは無関係に、徐々に周
波数を上げていく方法でも回転を立上げることができ
る。In the present embodiment, as described above, the energization pattern is switched according to the rotor rotation angle. However, even if the rotor rotation angle is not detected, the repulsive levitation force between the same poles is always generated. Therefore, even if you lose step, you can immediately return to the original pattern. Therefore, depending on the moment of inertia of the rotor, regardless of the rotation angle of the rotor, the rotation can be started up by gradually increasing the frequency.
【0040】以上をまとめると、本実施例のブラシレス
DCモータおよびその駆動方法により、ロータ磁極と固
定子磁極の同極の反発作用により、無通電時においても
軸方向の反発力によりロータ浮上させ、通電により円周
方向に反発力を与えながら浮上回転駆動することが可能
である。又、ロータ磁極が円周上に配置された直径と、
固定子磁極が円周上に配置された直径とを異なるものと
することにより、ロータに半径方向の求心力が生じる。
回転に伴いこの磁気的な求心力のみならず回転体のジャ
イロ効果も重なり、求心力は大きなものとなり、ラジア
ル方向の軸受は補助的で簡便なものでよく、コストダウ
ンとなり、かつ出力軸を高速回転させることが可能であ
る。また、磁気浮上原理が反発であるので、モータの駆
動制御以外の特別な制御が不要であり、制御系が簡単で
ある。In summary, according to the brushless DC motor and its driving method of the present embodiment, the repulsive action of the same poles of the rotor magnetic pole and the stator magnetic pole causes the rotor to levitate due to the repulsive force in the axial direction even when no power is supplied. It is possible to drive the levitation rotation while applying a repulsive force in the circumferential direction by energization. Also, the diameter of the rotor poles arranged on the circumference,
A radial centripetal force is created in the rotor by making the stator poles different in diameter from the circumference.
With the rotation, not only this magnetic centripetal force but also the gyro effect of the rotating body overlap, the centripetal force becomes large, and the radial bearing may be supplementary and simple, cost reduction, and the output shaft rotates at high speed. It is possible. Further, since the magnetic levitation principle is repulsive, no special control other than drive control of the motor is required, and the control system is simple.
【0041】また本実施例においては固定子磁極にマグ
ネット(永久磁石)を用いたが、例えば巻線のみのコア
レス構造であっても、本実施例と同様に、反発励磁通電
を行えば、同様な効果が得られることはいうまでもな
い。In this embodiment, a magnet (permanent magnet) is used for the stator magnetic poles. However, even in the case of a coreless structure having only windings, similar to this embodiment, if repulsive excitation energization is performed, the same result is obtained. It goes without saying that such effects can be obtained.
【0042】また本実施例ではロータ磁極8極、固定子
磁極12極の例を示したが、ロータ磁極2n個(n≧
2)、固定子磁極3n個であっても、同様の効果が得ら
れることもいうまでもない。In this embodiment, the rotor magnetic pole has 8 poles and the stator magnetic pole has 12 poles, but 2n rotor magnetic poles (n≥
2), it goes without saying that the same effect can be obtained even with 3n stator magnetic poles.
【0043】また、本実施例ではロータ磁極面と固定子
磁極面が双方とも平面であるが、これを双方とも円筒形
状面間としても、同様な作用効果が得られることも勿論
のことである。Further, in the present embodiment, both the rotor magnetic pole surface and the stator magnetic pole surface are flat surfaces, but it is needless to say that the same action and effect can be obtained even if both are arranged between the cylindrical surfaces. .
【0044】また図2に示すように回転円板磁極面と固
定子磁極面に軸直交方向に対して角度をつけることは、
半径方向の求心力(ラジアル軸受力)を得る為であり、
用途に応じて様々な角度のつけかたがあることも言うま
でもない。Further, as shown in FIG. 2, it is necessary to form an angle between the rotating disk magnetic pole surface and the stator magnetic pole surface with respect to the direction orthogonal to the axis.
This is to obtain the radial centripetal force (radial bearing force),
It goes without saying that there are various ways to attach the angle depending on the application.
【0045】[0045]
【発明の効果】以上に説明したように、本発明によれば
出力軸に固定された回転円板を回転駆動しながら、かつ
回転円板に求心力及び浮上力を与えることができる。係
るブラシレスDCモータによれば、空気軸受又は磁気軸
受によるラジアル方向及びアキシャル方向の支持を必要
とせずに、例えばポリゴンミラーを搭載したスキャナモ
ータを高速回転駆動及び停止制御することが可能とな
る。As described above, according to the present invention, it is possible to apply a centripetal force and a levitation force to the rotating disc while rotating the rotating disc fixed to the output shaft. According to such a brushless DC motor, it becomes possible to perform high-speed rotation drive and stop control of a scanner motor equipped with a polygon mirror, for example, without the need for supporting in the radial direction and the axial direction by an air bearing or a magnetic bearing.
【図1】本発明の一実施例のブラシレスDCモータの構
造を示す平面図。FIG. 1 is a plan view showing the structure of a brushless DC motor according to an embodiment of the present invention.
【図2】図1のXX線に沿った断面図。FIG. 2 is a sectional view taken along line XX of FIG.
【図3】図3乃至図6は、本発明の一実施例のブラシレ
スDCモータの駆動方法を説明する図であり、図3は静
止浮上時の磁極位置関係を示す説明図。FIG. 3 to FIG. 6 are diagrams illustrating a method of driving a brushless DC motor according to an embodiment of the present invention, and FIG. 3 is an explanatory diagram showing a magnetic pole position relationship during stationary levitation.
【図4】同上において、静止浮上時のタイムチャート。FIG. 4 is a time chart of the same as above when a person is standing still.
【図5】回転駆動時の磁極位置関係を示す説明図。FIG. 5 is an explanatory diagram showing a magnetic pole position relationship during rotational driving.
【図6】回転駆動時のタイムチャート。FIG. 6 is a time chart during rotation driving.
【図7】本発明の第2実施例のブラシレスDCモータの
構造を示す断面図。FIG. 7 is a sectional view showing the structure of a brushless DC motor according to a second embodiment of the present invention.
【図8】図7のXX断面から見た固定子磁極の平面図。8 is a plan view of a stator magnetic pole as seen from the XX section of FIG. 7. FIG.
【図9】図7のYY断面から見たロータ磁極の平面図。9 is a plan view of a rotor magnetic pole viewed from the YY cross section of FIG. 7. FIG.
【図10】図10乃至図14は、本発明の第2実施例の
ブラシレスDCモータの駆動方法を説明する図であり、
図10は静止浮上時のロータ磁極と固定子磁極の位置関
係を示す説明図。FIG. 10 to FIG. 14 are views for explaining a driving method of the brushless DC motor according to the second embodiment of the present invention,
FIG. 10 is an explanatory diagram showing the positional relationship between the rotor magnetic poles and the stator magnetic poles during stationary levitation.
【図11】回転駆動原理を説明する図であり、ロータ磁
極に対する固定子の各磁極の磁極の強さの関係を示す説
明図。FIG. 11 is a diagram for explaining the principle of rotational driving, and an explanatory diagram showing the relationship between the magnetic pole strength of each magnetic pole of the stator with respect to the rotor magnetic poles.
【図12】回転駆動時のロータ位置角に対するU,V,
W相の通電状態を示すタイムチャート。FIG. 12 shows U, V, with respect to rotor position angles during rotational driving.
The time chart which shows the energization state of W phase.
【図13】無通電、順方向通電、逆方向通電による磁束
量の変化を示す説明図であり、通電電流が比較的小さい
場合を示す。FIG. 13 is an explanatory diagram showing changes in the amount of magnetic flux due to non-energization, forward energization, and reverse energization, showing a case where the energization current is relatively small.
【図14】無通電、順方向通電、逆方向通電による磁束
量の変化を示す説明図であり、通電電流が比較的大きい
場合を示す。FIG. 14 is an explanatory diagram showing changes in the amount of magnetic flux due to non-energization, forward energization, and reverse energization, showing a case where the energization current is relatively large.
【図15】U相、V相、W相の結線状態を示す説明図。FIG. 15 is an explanatory diagram showing a U-phase, V-phase, and W-phase connection state.
【図16】従来のブラシレスDCモータを説明する
(A)磁極配置を示す断面図、(B)電流切換えを示す
タイムチャート。FIG. 16 is a cross-sectional view showing a magnetic pole arrangement (A) illustrating a conventional brushless DC motor, and (B) a time chart showing current switching.
11 固定子鉄芯 12 固定子巻線 13 回転円板 14 ロータマグネット 15 固定子磁極 N1,N2 … マグネット磁極 11 Stator Iron Core 12 Stator Winding 13 Rotating Disc 14 Rotor Magnet 15 Stator Magnetic Pole N1, N2 ... Magnet Magnetic Pole
───────────────────────────────────────────────────── フロントページの続き (72)発明者 久部 泰史 神奈川県藤沢市本藤沢4丁目1−1 株式 会社荏原電産内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasushi Hisabe 4-1-1 Motofujisawa, Fujisawa-shi, Kanagawa Ebara Densan Co., Ltd.
Claims (6)
ト磁極を回転円板の平面上に同極を等間隔に並べて配置
し、回転円板上のマグネット磁極と同極となるような三
相通電を行う3n個の固定子の磁極を回転円板上のマグ
ネット磁極と対向して配し、三相の固定子磁極のうち二
相を通電することにより回転円板上のマグネット磁極を
反発浮上させると共に、残る一相の無通電固定子と回転
円板上のマグネット磁極との吸引力により回転円板を回
転移動させ、さらにマグネット磁極の位置に応じて三相
の通電パターンを切換えることにより継続して回転を持
続することを特徴としたブラシレスDCモータ。1. 2n sets (n ≧ 2) of magnetic poles of N and S poles are arranged on the plane of a rotating disc with the same poles arranged at equal intervals, and become the same poles as the magnetic poles on the rotating disc. The magnets on the rotating disk are arranged by arranging the magnetic poles of 3n stators that perform such three-phase energization so as to face the magnet magnetic poles on the rotating disk, and by energizing two phases of the three-phase stator magnetic poles. The magnetic pole is repelled and levitated, and the attracting force between the remaining one-phase non-energized stator and the magnet magnetic pole on the rotating disc causes the rotating disc to rotate, and a three-phase energization pattern is created according to the position of the magnetic pole. Brushless DC motor characterized by continuing rotation by switching.
磁極を全てN極、反対側の面に配する磁極を全てS極と
し、回転円板上のマグネット磁極および固定子磁極面が
回転円板軸直角面より傾いて、回転円板両面のマグネッ
ト磁極面をそれぞれ同極となるように固定子鉄芯で挟み
込んだ固定子磁石構造を備えたことを特徴とした請求項
1記載のブラシレスDCモータ。2. The magnet magnetic poles arranged on one surface of the rotating disk are all N poles, and the magnetic poles arranged on the opposite surface are all S poles, and the magnet magnetic poles and the stator magnetic pole surface on the rotating disk rotate. 2. A brushless structure according to claim 1, further comprising a stator magnet structure which is inclined from a plane perpendicular to the disc axis and in which magnet pole faces on both sides of the rotating disc are sandwiched by stator iron cores so as to have the same poles. DC motor.
共に、三相全相直流通電することにより反発静止浮上す
る通電パターンを備え、両パターンを切換えることによ
り回転・静止の制御を行うことを特徴とした請求項2記
載のブラシレスDCモータ。3. A three-phase energization pattern is used for rotation driving, and a three-phase all-phase direct current is energized to provide a repulsive stationary levitating energization pattern, and rotation / static control is performed by switching between both patterns. The brushless DC motor according to claim 2.
を固定子磁極と対向する面が全て同極となるようにロー
タ周上に等間隔に並べて2n個のロータ磁極を構成する
とともに、 前記ロータ磁極と対向する固定子磁極は3n個かつ3相
それぞれの巻線を巻回した磁極を等間隔に配置したもの
で、固定子巻線には3相それぞれ3種類の異なる通電に
より、少なくとも2相の固定子磁極がロータ磁極と同極
となり反発するとともにロータを回転移動させ、さらに
3相の通電パターンを切換えることにより継続して回転
駆動することを特徴としたブラシレスDCモータ。4. A set of 2n rotor magnetic poles having 2n sets of N and S poles (n ≧ 2) are arranged at equal intervals on the rotor circumference so that all surfaces facing the stator poles have the same pole. The stator magnetic poles, which are configured and opposed to the rotor magnetic poles, are magnetic poles formed by winding 3n windings and three-phase windings at equal intervals, and the stator windings have three different three-phase windings. A brushless DC motor characterized in that at least two-phase stator magnetic poles become the same poles as the rotor magnetic poles due to energization, repels the rotor, and the rotor is rotationally moved, and further three-phase energization patterns are switched to continuously rotate the motor. .
くは永久磁石と鉄芯と巻線から構成され、無通電時には
固定子磁極はロータ磁極と全て同極で3相ともロータ磁
極と反発し、また3相のうち2相のみにそれぞれ反対向
きの通電を行うことにより3相それぞれ3種類の通電と
なることにより、少なくとも2相の固定子磁極がロータ
磁極と反発するとともにロータを回転駆動させ、さらに
通電パターンを切換えることにより継続して回転駆動す
ることを特徴としたブラシレスDCモータ。5. The stator magnetic pole is composed of a permanent magnet and a winding, or a permanent magnet, an iron core and a winding, and when there is no energization, the stator magnetic pole is all the same as the rotor magnetic pole, and all three phases are repulsive to the rotor magnetic pole. In addition, by energizing only two of the three phases in opposite directions, three types of energization are provided for each of the three phases, so that at least two-phase stator poles repel the rotor poles and the rotor is driven to rotate. The brushless DC motor is characterized by being continuously rotated by switching the energizing pattern.
ータ磁極中心を結ぶ円周の直径よりも大または小である
ことを特徴とした請求項1又は2記載のブラシレスDC
モータ。6. The brushless DC according to claim 1, wherein the diameter of the circumference connecting the centers of the stator magnetic poles is larger or smaller than the diameter of the circumference connecting the centers of the rotor magnetic poles.
motor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22478895A JPH08107662A (en) | 1994-08-12 | 1995-08-09 | Brushless dc motor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-211996 | 1994-08-12 | ||
JP21199694 | 1994-08-12 | ||
JP22478895A JPH08107662A (en) | 1994-08-12 | 1995-08-09 | Brushless dc motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08107662A true JPH08107662A (en) | 1996-04-23 |
Family
ID=26518954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22478895A Pending JPH08107662A (en) | 1994-08-12 | 1995-08-09 | Brushless dc motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08107662A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002315258A (en) * | 2001-04-13 | 2002-10-25 | Rikogaku Shinkokai | Bearingless rotating machine, generator using the same, blower and pump |
JP2007107175A (en) * | 2005-10-07 | 2007-04-26 | Truetzschler Gmbh & Co Kg | Device having at least one electric motor-driven roller, especially in pretreatment machine for spinning such as card machine, cleaning machine, drawing frame and combing machine |
WO2015056709A1 (en) * | 2013-10-16 | 2015-04-23 | 株式会社Madi | Electric motor |
JP2024018485A (en) * | 2022-07-29 | 2024-02-08 | 株式会社空 | rotating electric machine |
-
1995
- 1995-08-09 JP JP22478895A patent/JPH08107662A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002315258A (en) * | 2001-04-13 | 2002-10-25 | Rikogaku Shinkokai | Bearingless rotating machine, generator using the same, blower and pump |
JP2007107175A (en) * | 2005-10-07 | 2007-04-26 | Truetzschler Gmbh & Co Kg | Device having at least one electric motor-driven roller, especially in pretreatment machine for spinning such as card machine, cleaning machine, drawing frame and combing machine |
WO2015056709A1 (en) * | 2013-10-16 | 2015-04-23 | 株式会社Madi | Electric motor |
JP5985760B2 (en) * | 2013-10-16 | 2016-09-06 | 株式会社空 | Electric motor |
JP2024018485A (en) * | 2022-07-29 | 2024-02-08 | 株式会社空 | rotating electric machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100403857B1 (en) | Motor of magnetic lifting type | |
KR100352022B1 (en) | Motor of magnetic lifting type | |
US4499407A (en) | Brushless DC motor assembly with improved stator pole | |
US5097170A (en) | Brushless d.c. electric motor | |
JP2955221B2 (en) | Rotating assembly | |
JP3850195B2 (en) | Magnetic levitation motor | |
JP3678517B2 (en) | Radial force generator, coiled rotating machine, and rotating device | |
JP3710547B2 (en) | Disk type magnetic levitation rotating machine | |
JP2000184655A (en) | Magnetically levitating motor | |
US6611073B2 (en) | Magnetically levitated motor | |
JP3820479B2 (en) | Flywheel equipment | |
JPH08107662A (en) | Brushless dc motor | |
JPH03107615A (en) | magnetic bearing device | |
JPH08322194A (en) | Axial magnetic levitation motor and rotating machine employing it | |
JPH06141512A (en) | Magnetic levitation motor | |
JPH1080113A (en) | Disc-type bearingless motor | |
JPS6399742A (en) | Magnetic bearing integrating type motor | |
Ueno et al. | A 5-dof active controlled disk type pm motor with cylindrical flux paths | |
JP3903407B2 (en) | Magnetic levitation motor | |
JP2667815B2 (en) | Brushless electric motor | |
JPH01103146A (en) | Motor | |
JPH11289733A (en) | Bearing device and electric motor using the same | |
JPH0928066A (en) | Rotating machine | |
Nguyen et al. | Control of 6 degrees of freedom salient axial-gap self-bearing motor | |
JPH03118754A (en) | Commutatorless motor |