JPH08107512A - Method for adjusting sharpness of image - Google Patents
Method for adjusting sharpness of imageInfo
- Publication number
- JPH08107512A JPH08107512A JP5131457A JP13145793A JPH08107512A JP H08107512 A JPH08107512 A JP H08107512A JP 5131457 A JP5131457 A JP 5131457A JP 13145793 A JP13145793 A JP 13145793A JP H08107512 A JPH08107512 A JP H08107512A
- Authority
- JP
- Japan
- Prior art keywords
- image
- memory
- original
- sharpness
- original image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000009499 grossing Methods 0.000 claims abstract description 7
- 230000015654 memory Effects 0.000 abstract description 31
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
Landscapes
- Picture Signal Circuits (AREA)
- Studio Circuits (AREA)
- Television Signal Processing For Recording (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は画像の鮮鋭度調整方法
に係り、特に大きなサイズのコンボリューションにおけ
る種々の鮮鋭度の鮮鋭化方法、すなわち鮮鋭度の調整方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image sharpness adjusting method, and more particularly to a sharpening method of various sharpness in a large size convolution, that is, a sharpness adjusting method.
【0002】[0002]
【従来の技術】高周波成分の復元によるエッジ強調の手
法として鮮鋭化あり、そのコンボリューションを大きく
取ることにより、より大局的な処理を実現し得る。しか
し大きなコンボリューションサイズに対応するハードウ
エアは全体の回路規模が大きくなり、高価なシステムと
なる。またソフトウエアによる画像処理では実用的な処
理スピードを得られない。2. Description of the Related Art Sharpening is a method of edge enhancement by restoring high-frequency components, and by taking a large convolution, more global processing can be realized. However, the hardware corresponding to a large convolution size has a large circuit scale and becomes an expensive system. Also, image processing by software cannot obtain a practical processing speed.
【0003】[0003]
【発明が解決しようとする課題】この発明はこのような
従来の問題点を解消すべく創案されたもので、比較的小
さな回路規模で、大きなコンボリューションの鮮鋭度調
整を実現しうる、鮮鋭度調整方法を提供することを目的
とする。SUMMARY OF THE INVENTION The present invention was devised to solve the above-mentioned problems of the prior art, and it is possible to realize sharpness adjustment of a large convolution with a relatively small circuit scale. The purpose is to provide a method of adjustment.
【0004】[0004]
【課題を解決するための手段】この発明に係る画像の鮮
鋭度調整方法は、縮小画像について平滑化を行い、これ
を元のサイズに拡大し、拡大された画像と原画像との差
に重みを掛けたものをさらに原画像に加え、結果的に、
大形鮮鋭化を実行するものである。そして重みの変化に
よって連続的に鮮鋭度を調整する。An image sharpness adjusting method according to the present invention smoothes a reduced image, enlarges it to its original size, and weights the difference between the enlarged image and the original image. The result of multiplying by is added to the original image, and as a result,
Large-scale sharpening is executed. Then, the sharpness is continuously adjusted by changing the weight.
【0005】[0005]
【作用】この発明に係る画像の鮮鋭度調整方法によれ
ば、縮小画像について平滑化を行ってこれを元のサイズ
に拡大し、拡大された画像と原画像との差に重みを掛け
たものをさらに原画像に加えることができる。According to the image sharpness adjusting method of the present invention, the reduced image is smoothed and enlarged to the original size, and the difference between the enlarged image and the original image is weighted. Can be further added to the original image.
【0006】[0006]
【実施例】次にこの発明に係る画像の鮮鋭度調整方法の
1実施例を図面に基づいて説明する。 図1において、
同方法を実施するための画像処理装置の一例において、
イメージメモリIM1〜IM3と入力用メモリINMと
を有し、これらメモリの出力の1系統または2系統をマ
ルチプレクサMUXで選択して、演算器CALに入力す
る。演算器CALの出力はセレクタSELによってメモ
リIM1〜IM3のいずれかに選択的に入力される。一
方入力用メモリINMには入力用カメラCが接続され、
取り込んだ画像は一旦メモリINMに保持される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an image sharpness adjusting method according to the present invention will now be described with reference to the drawings. In FIG.
In an example of an image processing apparatus for implementing the method,
The image memories IM1 to IM3 and the input memory INM are provided, and one or two systems of outputs of these memories are selected by the multiplexer MUX and input to the arithmetic unit CAL. The output of the arithmetic unit CAL is selectively input to any of the memories IM1 to IM3 by the selector SEL. On the other hand, an input camera C is connected to the input memory INM,
The captured image is temporarily stored in the memory INM.
【0007】図2は鮮鋭度調整の手順を示すフローチャ
ートであり、以下にその詳細を説明する。 〔ステップ2−1〕最初にカメラCから原画像をとりこ
み、メモリINMに保持した後に、メモリIM1に転送
する。このとき演算器CALは演算処理を実行せずデー
タをそのまま通過させる。FIG. 2 is a flow chart showing the procedure for adjusting the sharpness, the details of which will be described below. [Step 2-1] First, the original image is taken from the camera C, held in the memory INM, and then transferred to the memory IM1. At this time, the arithmetic unit CAL does not execute the arithmetic processing and passes the data as it is.
【0008】〔ステップ2−2〕メモリIM1内の原画
像を1画素ずつ読みだし、間引きつつメモリIM2に書
き込み、縮小画像を生成する。図3はこの間引きの状況
を示すもので、一定間隔ごと、例えば8画素ごとに画素
を抽出し(図中×印を付して示す)、その他の画素を無
視する。画像処理装置では、メモリIM2への書き込み
を一定間隔ごとに行うことによってこの間引きを実行し
得る。縮小処理に際しては演算器CALは演算を行わ
ず、データを通過させる。[Step 2-2] The original image in the memory IM1 is read out pixel by pixel, and is written into the memory IM2 while thinning out to generate a reduced image. FIG. 3 shows this thinning-out situation. Pixels are extracted at regular intervals, for example, every 8 pixels (marked with a cross in the figure), and other pixels are ignored. In the image processing device, this thinning can be performed by performing writing to the memory IM2 at regular intervals. The arithmetic unit CAL does not perform an arithmetic operation during the reduction processing, and passes data.
【0009】〔ステップ2−3〕メモリIM2内の縮小
画像を1画素ずつ読みだし、演算器CALで平滑化を行
いつつ処理結果をメモリIM3に書き込む。平滑化のコ
ンンボリューションサイズは3×3のような一般的なも
のであり、小規模の回路で実行し得る。ここで行う平滑
化は中央画素以外の画素の濃度平均であり、図4のコン
ボリューション(A〜Iの符号によって各画素を特定す
る)において、 E=(A+B+C+D+F+G+H+I)/8 の演算を行う。[Step 2-3] The reduced image in the memory IM2 is read pixel by pixel, and the processing result is written in the memory IM3 while being smoothed by the arithmetic unit CAL. The smoothing convolution size is typical, such as 3x3, and can be implemented in small circuits. The smoothing performed here is the density average of the pixels other than the central pixel, and in the convolution of FIG. 4 (specifying each pixel by the symbols A to I), E = (A + B + C + D + F + G + H + I) / 8 is calculated.
【0010】〔ステップ2−4〕メモリIM3内の平滑
画像を1画素ずつ読みだし、演算器CALでさらに平滑
化を行いつつ処理結果をメモリIM2に書き込む。この
平滑化はステップ2−3で行った処理と同一である。[Step 2-4] The smoothed image in the memory IM3 is read pixel by pixel, and the processing result is written in the memory IM2 while being further smoothed by the arithmetic unit CAL. This smoothing is the same as the processing performed in step 2-3.
【0011】〔ステップ2−5〕メモリIM2内の平滑
化画像を1画素ずつ読みだし、拡大してメモリIM3に
書き込み、原画像のサイズに戻す。拡大の処理は読み出
した画素を複数回書き込み、さらに同一ラインを複数回
書き込むことによって実現する。同一画素の書き込みは
メモリIM2の読みだしにおいて同一アドレスを繰り返
し与えることによって実現する。[Step 2-5] The smoothed image in the memory IM2 is read out pixel by pixel, enlarged and written in the memory IM3, and restored to the size of the original image. The enlargement processing is realized by writing the read pixel a plurality of times and further writing the same line a plurality of times. Writing to the same pixel is realized by repeatedly giving the same address when reading the memory IM2.
【0012】〔ステップ2−6〕メモリIM3内の画像
とメモリIM1に記憶している原画像との重み付き加算
を行い、結果をメモリIM2に書き込む。原画像の画素
濃度をDo、IM3の画像の画素濃度をD、重みをα、
処理結果の濃度をDrとすると、重み付き加算は次式で
表現される。 Dr=(1+α)DoーαD ここに、α=1のときDr=Do+(Do−D)であ
り、Dの値は32×32コンボリューションの平滑化画
像に略等しく、Drは結果的に32×32コンボリュー
ションで鮮鋭化処理された画像となる。またαを小さく
していくと、Dr=Do+α(Do−D)の右辺第2項
が減少して鮮鋭度が低下し、次第に原画像に近づく。[Step 2-6] Weighted addition is performed on the image in the memory IM3 and the original image stored in the memory IM1, and the result is written in the memory IM2. The pixel density of the original image is Do, the pixel density of the IM3 image is D, the weight is α,
If the density of the processing result is Dr, the weighted addition is expressed by the following equation. Dr = (1 + α) Do−αD Here, when α = 1, Dr = Do + (Do−D), and the value of D is approximately equal to the smoothed image of 32 × 32 convolution, and Dr is 32 as a result. The image is sharpened by x32 convolution. Further, as α is decreased, the second term on the right side of Dr = Do + α (Do-D) is decreased, the sharpness is decreased, and the image gradually approaches the original image.
【0013】前述の縮小画像に対する平滑化は大きなコ
ンボリューションに対する平滑化と同様の効果を生じさ
せ、この大形平滑化画像と原画像の加算により大形鮮鋭
化が実現される。そしてハードウエアとしては、3×3
コンボリューション程度の通常規模のもので目的が達成
される。さらに係数αの調整により鮮鋭度を調整でき、
デジタルコピア、ファクシミリ、デジタル写真などにお
いて、用途に応じ、あるいはユーザの好みに応じて、任
意に鮮鋭度を設定しうる。The smoothing for the reduced image described above has the same effect as the smoothing for the large convolution, and the large sharpening is realized by adding the large smoothed image and the original image. And as hardware, 3x3
The purpose is achieved with a normal scale such as convolution. Furthermore, the sharpness can be adjusted by adjusting the coefficient α,
In digital copiers, facsimiles, digital photographs, etc., the sharpness can be arbitrarily set according to the application or the user's preference.
【0014】[0014]
【発明の効果】前述のとおり、この発明に係る画像の鮮
鋭度調整方法は、縮小画像について平滑化を行い、これ
を元のサイズに拡大し、拡大された画像と原画像との差
に重みを掛けたものをさらに原画像に加え、大形鮮鋭化
を実行するので、小規模回路によって高速処理を実現で
きるという優れた効果を有する。As described above, the image sharpness adjusting method according to the present invention smoothes a reduced image, enlarges it to its original size, and weights the difference between the enlarged image and the original image. Since a large-scale sharpening is executed by adding the product multiplied by to the original image, it has an excellent effect that high-speed processing can be realized by a small-scale circuit.
【図1】本発明方法の実施にしようされる画像処理装置
を示すブロック図である。FIG. 1 is a block diagram showing an image processing apparatus used for implementing a method of the present invention.
【図2】本発明方法の1実施例を示すフローチャートで
ある。FIG. 2 is a flowchart showing an embodiment of the method of the present invention.
【図3】本発明方法における間引きの状態を示す概念図
である。FIG. 3 is a conceptual diagram showing a thinning state in the method of the present invention.
【図4】3×3コンボリューションを示す概念図であ
る。FIG. 4 is a conceptual diagram showing 3 × 3 convolution.
MUX マルチプレクサ IM1 イメージメモリ1 IM2 イメージメモリ2 IM3 イメージメモリ3 INM メモリ CAL 演算器 SEL セレクタ C カメラ MUX multiplexer IM1 image memory 1 IM2 image memory 2 IM3 image memory 3 INM memory CAL calculator SEL selector C camera
Claims (4)
小画像に対して平滑化を施し、平滑化された画像を前記
縮小率に対応した拡大率で拡大し、拡大された画像と原
画像との差を所定の重みをもって原画像に加えることを
特徴とする画像の鮮鋭度調整方法。1. An original image is reduced at a predetermined reduction rate, smoothing is performed on the reduced image, the smoothed image is enlarged at an enlargement rate corresponding to the reduction rate, and an enlarged image is obtained. A method for adjusting the sharpness of an image, which comprises adding a difference from the original image to the original image with a predetermined weight.
ることを特徴とする請求項1記載の画像の鮮鋭度調整方
法。2. The image sharpness adjusting method according to claim 1, wherein the reduction ratio is 1/8 and the enlargement ratio is 8.
とを特徴とする請求項1記載の画像の鮮鋭度調整方法。3. The method for adjusting the sharpness of an image according to claim 1, wherein the sharpness of the image is increased by setting the weight to 1.
ることを特徴とする請求項1記載の画像の鮮鋭度調整方
法。4. The image sharpness adjusting method according to claim 1, wherein the image is smoothed with a weight of 1/2 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5131457A JP2984516B2 (en) | 1993-05-07 | 1993-05-07 | Image sharpness adjustment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5131457A JP2984516B2 (en) | 1993-05-07 | 1993-05-07 | Image sharpness adjustment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08107512A true JPH08107512A (en) | 1996-04-23 |
JP2984516B2 JP2984516B2 (en) | 1999-11-29 |
Family
ID=15058410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5131457A Expired - Fee Related JP2984516B2 (en) | 1993-05-07 | 1993-05-07 | Image sharpness adjustment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2984516B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002095009A (en) * | 2000-09-14 | 2002-03-29 | Olympus Optical Co Ltd | Electronic camera and printer |
JP2006011539A (en) * | 2004-06-22 | 2006-01-12 | Namco Ltd | Program, information storage medium, and image generation system |
US7683944B2 (en) | 2002-09-12 | 2010-03-23 | Hoya Corporation | Filter process for obtaining a soft focus picture image |
KR20150004167A (en) * | 2013-07-02 | 2015-01-12 | 삼성전자주식회사 | method and apparatus for improving quality of image and recording medium thereof |
JP2015060495A (en) * | 2013-09-20 | 2015-03-30 | カシオ計算機株式会社 | Image processing apparatus, image processing method, and program |
-
1993
- 1993-05-07 JP JP5131457A patent/JP2984516B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002095009A (en) * | 2000-09-14 | 2002-03-29 | Olympus Optical Co Ltd | Electronic camera and printer |
US7683944B2 (en) | 2002-09-12 | 2010-03-23 | Hoya Corporation | Filter process for obtaining a soft focus picture image |
JP2006011539A (en) * | 2004-06-22 | 2006-01-12 | Namco Ltd | Program, information storage medium, and image generation system |
KR20150004167A (en) * | 2013-07-02 | 2015-01-12 | 삼성전자주식회사 | method and apparatus for improving quality of image and recording medium thereof |
JP2015060495A (en) * | 2013-09-20 | 2015-03-30 | カシオ計算機株式会社 | Image processing apparatus, image processing method, and program |
US9443323B2 (en) | 2013-09-20 | 2016-09-13 | Casio Computer Co., Ltd. | Image processing apparatus, image processing method and recording medium |
Also Published As
Publication number | Publication date |
---|---|
JP2984516B2 (en) | 1999-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2352121A1 (en) | Image processing apparatus and method | |
US6289133B1 (en) | Image processing method and apparatus | |
KR100305237B1 (en) | Reduction / enlargement image processing unit for producing low-pass filtered images | |
EP0997828A2 (en) | Signal processing distributed arithmetic architecture | |
JPH09101765A (en) | Picture processor | |
JP2984516B2 (en) | Image sharpness adjustment method | |
US20080181528A1 (en) | Faster serial method for continuously varying Gaussian filters | |
EP0908845B1 (en) | Image sharpening and re-sampling method | |
TW200949759A (en) | Image processing apparatus and method | |
CN115689879A (en) | Image reduction method, device, terminal and storage medium | |
TWI799265B (en) | Super resolution device and method | |
TWI831334B (en) | Method and system for collecting training dataset | |
JP7370814B2 (en) | Image processing device, its control method and program | |
US20050213851A1 (en) | Scaling device and method for scaling a digital picture | |
JP2004289340A (en) | Image enlargement processor | |
JPH04349496A (en) | Image processing device and its method | |
JPH0728991A (en) | Data processing circuit using memory | |
JP2691559B2 (en) | Pixel density conversion device and method thereof | |
JPH06197222A (en) | Image processor | |
JP2854433B2 (en) | Line memory control circuit | |
JP3225591B2 (en) | Image processing device reduction / enlargement processing circuit | |
JP2024004400A (en) | Data processing device and method | |
JP3877054B2 (en) | Image reduction scaling device | |
JPS6391784A (en) | Image identifying system | |
JPS6336382A (en) | Picture processor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070924 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080924 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080924 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090924 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |