[go: up one dir, main page]

JPH08107512A - Method for adjusting sharpness of image - Google Patents

Method for adjusting sharpness of image

Info

Publication number
JPH08107512A
JPH08107512A JP5131457A JP13145793A JPH08107512A JP H08107512 A JPH08107512 A JP H08107512A JP 5131457 A JP5131457 A JP 5131457A JP 13145793 A JP13145793 A JP 13145793A JP H08107512 A JPH08107512 A JP H08107512A
Authority
JP
Japan
Prior art keywords
image
memory
original
sharpness
original image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5131457A
Other languages
Japanese (ja)
Other versions
JP2984516B2 (en
Inventor
Seido Kawanaka
誠道 川中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ezel Inc
Sharp Corp
Original Assignee
Ezel Inc
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ezel Inc, Sharp Corp filed Critical Ezel Inc
Priority to JP5131457A priority Critical patent/JP2984516B2/en
Publication of JPH08107512A publication Critical patent/JPH08107512A/en
Application granted granted Critical
Publication of JP2984516B2 publication Critical patent/JP2984516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Picture Signal Circuits (AREA)
  • Studio Circuits (AREA)
  • Television Signal Processing For Recording (AREA)

Abstract

PURPOSE: To adjust sharpness with a large convolution by comparatively small circuit scale by smoothing a reduced image, magnifying the image to an original size, weighting the difference between the magnified image and an original image and adding the weighted difference to the source image. CONSTITUTION: This method is provided with image memories IM1-IM3 and a memory INM for input, and one or two systems of the outputs of these memories are selected by a multiplexer MUX and inputted to a computing element CAL. The output of the computing element CAL is selectively inputted to either one of memories IM1-IM3. Then, a camera C for input is connected to the memory INM for input and a fetched image is temporarily held in the memory INM. Then, the original image is reduced by prescribed reduction factor, the reduced image is smoothed, the smoothed image is magnified by magnification factor corresponding to the reduction factor, and the difference between the magnified image and the original image is added to the original image with prescribed weight. Thus, since large sharpening is executed, high-speed processing can be provided by the small scale circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は画像の鮮鋭度調整方法
に係り、特に大きなサイズのコンボリューションにおけ
る種々の鮮鋭度の鮮鋭化方法、すなわち鮮鋭度の調整方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image sharpness adjusting method, and more particularly to a sharpening method of various sharpness in a large size convolution, that is, a sharpness adjusting method.

【0002】[0002]

【従来の技術】高周波成分の復元によるエッジ強調の手
法として鮮鋭化あり、そのコンボリューションを大きく
取ることにより、より大局的な処理を実現し得る。しか
し大きなコンボリューションサイズに対応するハードウ
エアは全体の回路規模が大きくなり、高価なシステムと
なる。またソフトウエアによる画像処理では実用的な処
理スピードを得られない。
2. Description of the Related Art Sharpening is a method of edge enhancement by restoring high-frequency components, and by taking a large convolution, more global processing can be realized. However, the hardware corresponding to a large convolution size has a large circuit scale and becomes an expensive system. Also, image processing by software cannot obtain a practical processing speed.

【0003】[0003]

【発明が解決しようとする課題】この発明はこのような
従来の問題点を解消すべく創案されたもので、比較的小
さな回路規模で、大きなコンボリューションの鮮鋭度調
整を実現しうる、鮮鋭度調整方法を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention was devised to solve the above-mentioned problems of the prior art, and it is possible to realize sharpness adjustment of a large convolution with a relatively small circuit scale. The purpose is to provide a method of adjustment.

【0004】[0004]

【課題を解決するための手段】この発明に係る画像の鮮
鋭度調整方法は、縮小画像について平滑化を行い、これ
を元のサイズに拡大し、拡大された画像と原画像との差
に重みを掛けたものをさらに原画像に加え、結果的に、
大形鮮鋭化を実行するものである。そして重みの変化に
よって連続的に鮮鋭度を調整する。
An image sharpness adjusting method according to the present invention smoothes a reduced image, enlarges it to its original size, and weights the difference between the enlarged image and the original image. The result of multiplying by is added to the original image, and as a result,
Large-scale sharpening is executed. Then, the sharpness is continuously adjusted by changing the weight.

【0005】[0005]

【作用】この発明に係る画像の鮮鋭度調整方法によれ
ば、縮小画像について平滑化を行ってこれを元のサイズ
に拡大し、拡大された画像と原画像との差に重みを掛け
たものをさらに原画像に加えることができる。
According to the image sharpness adjusting method of the present invention, the reduced image is smoothed and enlarged to the original size, and the difference between the enlarged image and the original image is weighted. Can be further added to the original image.

【0006】[0006]

【実施例】次にこの発明に係る画像の鮮鋭度調整方法の
1実施例を図面に基づいて説明する。 図1において、
同方法を実施するための画像処理装置の一例において、
イメージメモリIM1〜IM3と入力用メモリINMと
を有し、これらメモリの出力の1系統または2系統をマ
ルチプレクサMUXで選択して、演算器CALに入力す
る。演算器CALの出力はセレクタSELによってメモ
リIM1〜IM3のいずれかに選択的に入力される。一
方入力用メモリINMには入力用カメラCが接続され、
取り込んだ画像は一旦メモリINMに保持される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an image sharpness adjusting method according to the present invention will now be described with reference to the drawings. In FIG.
In an example of an image processing apparatus for implementing the method,
The image memories IM1 to IM3 and the input memory INM are provided, and one or two systems of outputs of these memories are selected by the multiplexer MUX and input to the arithmetic unit CAL. The output of the arithmetic unit CAL is selectively input to any of the memories IM1 to IM3 by the selector SEL. On the other hand, an input camera C is connected to the input memory INM,
The captured image is temporarily stored in the memory INM.

【0007】図2は鮮鋭度調整の手順を示すフローチャ
ートであり、以下にその詳細を説明する。 〔ステップ2−1〕最初にカメラCから原画像をとりこ
み、メモリINMに保持した後に、メモリIM1に転送
する。このとき演算器CALは演算処理を実行せずデー
タをそのまま通過させる。
FIG. 2 is a flow chart showing the procedure for adjusting the sharpness, the details of which will be described below. [Step 2-1] First, the original image is taken from the camera C, held in the memory INM, and then transferred to the memory IM1. At this time, the arithmetic unit CAL does not execute the arithmetic processing and passes the data as it is.

【0008】〔ステップ2−2〕メモリIM1内の原画
像を1画素ずつ読みだし、間引きつつメモリIM2に書
き込み、縮小画像を生成する。図3はこの間引きの状況
を示すもので、一定間隔ごと、例えば8画素ごとに画素
を抽出し(図中×印を付して示す)、その他の画素を無
視する。画像処理装置では、メモリIM2への書き込み
を一定間隔ごとに行うことによってこの間引きを実行し
得る。縮小処理に際しては演算器CALは演算を行わ
ず、データを通過させる。
[Step 2-2] The original image in the memory IM1 is read out pixel by pixel, and is written into the memory IM2 while thinning out to generate a reduced image. FIG. 3 shows this thinning-out situation. Pixels are extracted at regular intervals, for example, every 8 pixels (marked with a cross in the figure), and other pixels are ignored. In the image processing device, this thinning can be performed by performing writing to the memory IM2 at regular intervals. The arithmetic unit CAL does not perform an arithmetic operation during the reduction processing, and passes data.

【0009】〔ステップ2−3〕メモリIM2内の縮小
画像を1画素ずつ読みだし、演算器CALで平滑化を行
いつつ処理結果をメモリIM3に書き込む。平滑化のコ
ンンボリューションサイズは3×3のような一般的なも
のであり、小規模の回路で実行し得る。ここで行う平滑
化は中央画素以外の画素の濃度平均であり、図4のコン
ボリューション(A〜Iの符号によって各画素を特定す
る)において、 E=(A+B+C+D+F+G+H+I)/8 の演算を行う。
[Step 2-3] The reduced image in the memory IM2 is read pixel by pixel, and the processing result is written in the memory IM3 while being smoothed by the arithmetic unit CAL. The smoothing convolution size is typical, such as 3x3, and can be implemented in small circuits. The smoothing performed here is the density average of the pixels other than the central pixel, and in the convolution of FIG. 4 (specifying each pixel by the symbols A to I), E = (A + B + C + D + F + G + H + I) / 8 is calculated.

【0010】〔ステップ2−4〕メモリIM3内の平滑
画像を1画素ずつ読みだし、演算器CALでさらに平滑
化を行いつつ処理結果をメモリIM2に書き込む。この
平滑化はステップ2−3で行った処理と同一である。
[Step 2-4] The smoothed image in the memory IM3 is read pixel by pixel, and the processing result is written in the memory IM2 while being further smoothed by the arithmetic unit CAL. This smoothing is the same as the processing performed in step 2-3.

【0011】〔ステップ2−5〕メモリIM2内の平滑
化画像を1画素ずつ読みだし、拡大してメモリIM3に
書き込み、原画像のサイズに戻す。拡大の処理は読み出
した画素を複数回書き込み、さらに同一ラインを複数回
書き込むことによって実現する。同一画素の書き込みは
メモリIM2の読みだしにおいて同一アドレスを繰り返
し与えることによって実現する。
[Step 2-5] The smoothed image in the memory IM2 is read out pixel by pixel, enlarged and written in the memory IM3, and restored to the size of the original image. The enlargement processing is realized by writing the read pixel a plurality of times and further writing the same line a plurality of times. Writing to the same pixel is realized by repeatedly giving the same address when reading the memory IM2.

【0012】〔ステップ2−6〕メモリIM3内の画像
とメモリIM1に記憶している原画像との重み付き加算
を行い、結果をメモリIM2に書き込む。原画像の画素
濃度をDo、IM3の画像の画素濃度をD、重みをα、
処理結果の濃度をDrとすると、重み付き加算は次式で
表現される。 Dr=(1+α)DoーαD ここに、α=1のときDr=Do+(Do−D)であ
り、Dの値は32×32コンボリューションの平滑化画
像に略等しく、Drは結果的に32×32コンボリュー
ションで鮮鋭化処理された画像となる。またαを小さく
していくと、Dr=Do+α(Do−D)の右辺第2項
が減少して鮮鋭度が低下し、次第に原画像に近づく。
[Step 2-6] Weighted addition is performed on the image in the memory IM3 and the original image stored in the memory IM1, and the result is written in the memory IM2. The pixel density of the original image is Do, the pixel density of the IM3 image is D, the weight is α,
If the density of the processing result is Dr, the weighted addition is expressed by the following equation. Dr = (1 + α) Do−αD Here, when α = 1, Dr = Do + (Do−D), and the value of D is approximately equal to the smoothed image of 32 × 32 convolution, and Dr is 32 as a result. The image is sharpened by x32 convolution. Further, as α is decreased, the second term on the right side of Dr = Do + α (Do-D) is decreased, the sharpness is decreased, and the image gradually approaches the original image.

【0013】前述の縮小画像に対する平滑化は大きなコ
ンボリューションに対する平滑化と同様の効果を生じさ
せ、この大形平滑化画像と原画像の加算により大形鮮鋭
化が実現される。そしてハードウエアとしては、3×3
コンボリューション程度の通常規模のもので目的が達成
される。さらに係数αの調整により鮮鋭度を調整でき、
デジタルコピア、ファクシミリ、デジタル写真などにお
いて、用途に応じ、あるいはユーザの好みに応じて、任
意に鮮鋭度を設定しうる。
The smoothing for the reduced image described above has the same effect as the smoothing for the large convolution, and the large sharpening is realized by adding the large smoothed image and the original image. And as hardware, 3x3
The purpose is achieved with a normal scale such as convolution. Furthermore, the sharpness can be adjusted by adjusting the coefficient α,
In digital copiers, facsimiles, digital photographs, etc., the sharpness can be arbitrarily set according to the application or the user's preference.

【0014】[0014]

【発明の効果】前述のとおり、この発明に係る画像の鮮
鋭度調整方法は、縮小画像について平滑化を行い、これ
を元のサイズに拡大し、拡大された画像と原画像との差
に重みを掛けたものをさらに原画像に加え、大形鮮鋭化
を実行するので、小規模回路によって高速処理を実現で
きるという優れた効果を有する。
As described above, the image sharpness adjusting method according to the present invention smoothes a reduced image, enlarges it to its original size, and weights the difference between the enlarged image and the original image. Since a large-scale sharpening is executed by adding the product multiplied by to the original image, it has an excellent effect that high-speed processing can be realized by a small-scale circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施にしようされる画像処理装置
を示すブロック図である。
FIG. 1 is a block diagram showing an image processing apparatus used for implementing a method of the present invention.

【図2】本発明方法の1実施例を示すフローチャートで
ある。
FIG. 2 is a flowchart showing an embodiment of the method of the present invention.

【図3】本発明方法における間引きの状態を示す概念図
である。
FIG. 3 is a conceptual diagram showing a thinning state in the method of the present invention.

【図4】3×3コンボリューションを示す概念図であ
る。
FIG. 4 is a conceptual diagram showing 3 × 3 convolution.

【符号の説明】[Explanation of symbols]

MUX マルチプレクサ IM1 イメージメモリ1 IM2 イメージメモリ2 IM3 イメージメモリ3 INM メモリ CAL 演算器 SEL セレクタ C カメラ MUX multiplexer IM1 image memory 1 IM2 image memory 2 IM3 image memory 3 INM memory CAL calculator SEL selector C camera

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原画像を所定の縮小率で縮小し、この縮
小画像に対して平滑化を施し、平滑化された画像を前記
縮小率に対応した拡大率で拡大し、拡大された画像と原
画像との差を所定の重みをもって原画像に加えることを
特徴とする画像の鮮鋭度調整方法。
1. An original image is reduced at a predetermined reduction rate, smoothing is performed on the reduced image, the smoothed image is enlarged at an enlargement rate corresponding to the reduction rate, and an enlarged image is obtained. A method for adjusting the sharpness of an image, which comprises adding a difference from the original image to the original image with a predetermined weight.
【請求項2】 縮小率は1/8であり、拡大率は8であ
ることを特徴とする請求項1記載の画像の鮮鋭度調整方
法。
2. The image sharpness adjusting method according to claim 1, wherein the reduction ratio is 1/8 and the enlargement ratio is 8.
【請求項3】 重みを1として画像の鮮鋭度を高めるこ
とを特徴とする請求項1記載の画像の鮮鋭度調整方法。
3. The method for adjusting the sharpness of an image according to claim 1, wherein the sharpness of the image is increased by setting the weight to 1.
【請求項4】 重みを1/2以下として画像を平滑化す
ることを特徴とする請求項1記載の画像の鮮鋭度調整方
法。
4. The image sharpness adjusting method according to claim 1, wherein the image is smoothed with a weight of 1/2 or less.
JP5131457A 1993-05-07 1993-05-07 Image sharpness adjustment method Expired - Fee Related JP2984516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5131457A JP2984516B2 (en) 1993-05-07 1993-05-07 Image sharpness adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5131457A JP2984516B2 (en) 1993-05-07 1993-05-07 Image sharpness adjustment method

Publications (2)

Publication Number Publication Date
JPH08107512A true JPH08107512A (en) 1996-04-23
JP2984516B2 JP2984516B2 (en) 1999-11-29

Family

ID=15058410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5131457A Expired - Fee Related JP2984516B2 (en) 1993-05-07 1993-05-07 Image sharpness adjustment method

Country Status (1)

Country Link
JP (1) JP2984516B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095009A (en) * 2000-09-14 2002-03-29 Olympus Optical Co Ltd Electronic camera and printer
JP2006011539A (en) * 2004-06-22 2006-01-12 Namco Ltd Program, information storage medium, and image generation system
US7683944B2 (en) 2002-09-12 2010-03-23 Hoya Corporation Filter process for obtaining a soft focus picture image
KR20150004167A (en) * 2013-07-02 2015-01-12 삼성전자주식회사 method and apparatus for improving quality of image and recording medium thereof
JP2015060495A (en) * 2013-09-20 2015-03-30 カシオ計算機株式会社 Image processing apparatus, image processing method, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095009A (en) * 2000-09-14 2002-03-29 Olympus Optical Co Ltd Electronic camera and printer
US7683944B2 (en) 2002-09-12 2010-03-23 Hoya Corporation Filter process for obtaining a soft focus picture image
JP2006011539A (en) * 2004-06-22 2006-01-12 Namco Ltd Program, information storage medium, and image generation system
KR20150004167A (en) * 2013-07-02 2015-01-12 삼성전자주식회사 method and apparatus for improving quality of image and recording medium thereof
JP2015060495A (en) * 2013-09-20 2015-03-30 カシオ計算機株式会社 Image processing apparatus, image processing method, and program
US9443323B2 (en) 2013-09-20 2016-09-13 Casio Computer Co., Ltd. Image processing apparatus, image processing method and recording medium

Also Published As

Publication number Publication date
JP2984516B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
EP2352121A1 (en) Image processing apparatus and method
US6289133B1 (en) Image processing method and apparatus
KR100305237B1 (en) Reduction / enlargement image processing unit for producing low-pass filtered images
EP0997828A2 (en) Signal processing distributed arithmetic architecture
JPH09101765A (en) Picture processor
JP2984516B2 (en) Image sharpness adjustment method
US20080181528A1 (en) Faster serial method for continuously varying Gaussian filters
EP0908845B1 (en) Image sharpening and re-sampling method
TW200949759A (en) Image processing apparatus and method
CN115689879A (en) Image reduction method, device, terminal and storage medium
TWI799265B (en) Super resolution device and method
TWI831334B (en) Method and system for collecting training dataset
JP7370814B2 (en) Image processing device, its control method and program
US20050213851A1 (en) Scaling device and method for scaling a digital picture
JP2004289340A (en) Image enlargement processor
JPH04349496A (en) Image processing device and its method
JPH0728991A (en) Data processing circuit using memory
JP2691559B2 (en) Pixel density conversion device and method thereof
JPH06197222A (en) Image processor
JP2854433B2 (en) Line memory control circuit
JP3225591B2 (en) Image processing device reduction / enlargement processing circuit
JP2024004400A (en) Data processing device and method
JP3877054B2 (en) Image reduction scaling device
JPS6391784A (en) Image identifying system
JPS6336382A (en) Picture processor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees