[go: up one dir, main page]

JPH08107237A - Thermoelectric element and electronic apparatus using thermoelectric element - Google Patents

Thermoelectric element and electronic apparatus using thermoelectric element

Info

Publication number
JPH08107237A
JPH08107237A JP6167241A JP16724194A JPH08107237A JP H08107237 A JPH08107237 A JP H08107237A JP 6167241 A JP6167241 A JP 6167241A JP 16724194 A JP16724194 A JP 16724194A JP H08107237 A JPH08107237 A JP H08107237A
Authority
JP
Japan
Prior art keywords
insulator
type semiconductor
thermoelectric element
heat
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6167241A
Other languages
Japanese (ja)
Inventor
Keisuke Tsubata
佳介 津端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP6167241A priority Critical patent/JPH08107237A/en
Publication of JPH08107237A publication Critical patent/JPH08107237A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electromechanical Clocks (AREA)

Abstract

PURPOSE: To provide a thermoelectric element wherein the thicknesses of an N-type semiconductor and a P-type semiconductor are determined by considering power generation capability and miniaturization, and an electronic apparatus using the thermoelectric element. CONSTITUTION: A first insulator 101 of aluminum having an oxide film is set as a heat absorption side. A second insulator 102 of aluminum having an oxide film is set as a heat radiation side. When temperature difference is applied in the manner in which the temperature of the heat absorption side is higher than that of the heat radiation side, heat is conducted from the first insulator 101 to the second insulator 102. In this case, electrons in N-type semiconductor 103 move toward the insulator 102 on the heat radiation side. Positive holes in P-type semiconductor 104 move toward the insulator 102 on the heat radiation side. Since the the N-type semiconductors 103 and the P-type semiconductors 104 are electrically connected in series through connection parts 105, the conduction of heat is converted into a current, and an electromotive force can be obtained from both output terminal parts 106.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエネルギー源として電池
を使用しない電子機器を実現するための熱電素子、およ
びエネルギー源として熱電素子を用いた電子機器に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric element for realizing an electronic device that does not use a battery as an energy source, and an electronic device using the thermoelectric element as an energy source.

【0002】[0002]

【従来の技術】電子機器にはそのエネルギー源として、
主に電池が使用されていた。しかし使用者は、使用中に
電池切れが起こる心配を常に抱えなくてはならず、万一
使用中に電池切れが起こった場合、その損害は大きなも
のとなる場合もある。そして電池切れを起こした場合に
は電池を交換する、或は使用者が出来ない場合には他に
依頼することを強いられる。更に使用済みの電池は環境
破壊の原因となるために、一般の廃棄物と同じ扱で廃棄
することが出来ない。
2. Description of the Related Art As an energy source for electronic equipment,
Batteries were mainly used. However, the user must always have a concern that the battery will run out during use, and if the battery runs out during use, the damage can be significant. Then, when the battery runs out, the battery is replaced, or when the user cannot do it, he is forced to ask another person. Moreover, used batteries cannot be disposed of in the same manner as general waste, because they cause environmental damage.

【0003】電池に変わるエネルギー源として、ゼーベ
ック効果に基づく起電力を発生する熱電素子が最近研究
されている。例えば図9は、熱電発電機の発電原理を示
す図である。熱電発電機はp型熱電素子(901)およ
びn型熱電素子(902)を直列に多数個接続し、絶縁
板(903)と放熱板(904)および吸熱板(90
5)から構成されている。以上のような熱電発電機が、
例えば特開昭54ー123047号公報に、開示されて
いる。
As an energy source replacing the battery, a thermoelectric element that generates an electromotive force based on the Seebeck effect has been recently researched. For example, FIG. 9 is a diagram showing a power generation principle of a thermoelectric generator. In the thermoelectric generator, a large number of p-type thermoelectric elements (901) and n-type thermoelectric elements (902) are connected in series, and an insulating plate (903), a heat radiating plate (904) and a heat absorbing plate (90) are connected.
5). The thermoelectric generator as above
For example, it is disclosed in Japanese Patent Application Laid-Open No. 54-123047.

【0004】一方熱電素子を用いた電子機器も最近研究
されている。例えば図10は、熱電式腕時計の構成を示
す図である。熱電式腕時計は、ムーブメント(100
1)と、熱電式発電器(1002)と、電気エネルギー
畜電器と、金属製底部、フレーム部、金属製の頂部、を
備えた多部分からなる腕時計のケーシング(1003)
と、を有する。以上のような熱電式腕時計が、例えば特
開昭55−20483号公報に、開示されている。しか
し、発電能力及び小型化を考慮した熱電素子モジュール
は、まだ実用化には至っていない。
On the other hand, electronic devices using thermoelectric elements have been recently researched. For example, FIG. 10 is a diagram showing a configuration of a thermoelectric wristwatch. The thermoelectric wristwatch has a movement (100
1), a thermoelectric generator (1002), an electric energy storage device, and a multi-part wristwatch casing (1003) including a metal bottom, a frame, and a metal top.
And. The thermoelectric wristwatch as described above is disclosed in, for example, Japanese Patent Laid-Open No. 55-20483. However, a thermoelectric element module considering power generation capacity and miniaturization has not yet been put into practical use.

【0005】[0005]

【発明が解決しようとする課題】熱電素子の発電能力
は、n型半導体およびp型半導体の数に比例し、n型半
導体およびp型半導体の厚さは厚い方が高い。つまり高
い発電能力を得ようとするとn型半導体およびp型半導
体の数を増やし厚くするので熱電素子全体が大きくなっ
てしまう。しかし、この熱電素子を電子機器に搭載する
場合には、熱電素子は出来るだけ小さいことが理想であ
り、発電能力の増大と、熱電素子の小型化は相反する要
求となる。
The power generation capacity of the thermoelectric element is proportional to the number of n-type semiconductors and p-type semiconductors, and the n-type semiconductors and p-type semiconductors are thicker. That is, in order to obtain high power generation capability, the number of n-type semiconductors and p-type semiconductors is increased and the thickness is increased, so that the entire thermoelectric element becomes large. However, when this thermoelectric element is mounted on an electronic device, it is ideal that the thermoelectric element is as small as possible, and there is a conflicting requirement between increasing the power generation capacity and downsizing the thermoelectric element.

【0006】そこで本発明の目的は、n型半導体および
p型半導体の厚さが発電能力と小型化を考慮して決定さ
れた熱電素子、および熱電素子を用いた電子機器を提供
することにある。
Therefore, an object of the present invention is to provide a thermoelectric element in which the thicknesses of the n-type semiconductor and the p-type semiconductor are determined in consideration of power generation capability and miniaturization, and electronic equipment using the thermoelectric element. .

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明は、熱電素子の発電能力がn型半導体およびp
型半導体の数や厚さだけでなく、絶縁体の熱伝導率によ
っても左右されることに着目し、絶縁体に酸化膜をつけ
たアルミニウムを用いた場合には、n型半導体およびp
型半導体の厚さを0.1〜3mm、さらに望ましくは0.
2〜1mmとした。
In order to solve the above problems, the present invention provides a thermoelectric element having an n-type semiconductor and a p-type semiconductor.
Focusing not only on the number and thickness of the n-type semiconductors, but also on the thermal conductivity of the insulator. When aluminum with an oxide film is used for the insulator, the n-type semiconductor and p-type semiconductor are used.
The thickness of the type semiconductor is 0.1 to 3 mm, more preferably 0.
It was 2-1 mm.

【0008】[0008]

【作用】図1は、本発明の第一の熱電素子の構造と発電
原理を示す図である。第一の絶縁体101を吸熱側、第
二の絶縁体102を放熱側とする。吸熱側の温度を放熱
側と比較して高温となるような温度差を与えた場合、第
一の絶縁体101から第二の絶縁体102の方向に熱が
伝達される。その際に、n型半導体103の中では電子
が放熱側の絶縁体102の方向に移動する。p型半導体
104の中では、正孔が放熱側の絶縁体102の方向に
移動する。n型半導体103とp型半導体104は、接
続部105を介して電気的に直列に接続されているた
め、熱の伝達が電流に変換され、両端の出力端子部10
6より起電力を得ることができる。
1 is a diagram showing the structure and power generation principle of the first thermoelectric element of the present invention. The first insulator 101 is on the heat absorption side, and the second insulator 102 is on the heat dissipation side. When the temperature difference on the heat absorption side is higher than that on the heat radiation side, heat is transferred from the first insulator 101 to the second insulator 102. At that time, in the n-type semiconductor 103, electrons move toward the heat radiating side insulator 102. In the p-type semiconductor 104, holes move in the direction of the insulator 102 on the heat dissipation side. Since the n-type semiconductor 103 and the p-type semiconductor 104 are electrically connected in series via the connection part 105, heat transfer is converted into a current, and the output terminal parts 10 at both ends are converted.
An electromotive force can be obtained from 6.

【0009】図2は、本発明の第二の熱電素子の構造と
発電原理を示す図である。第一の絶縁体201を吸熱
側、第二の絶縁体202を放熱側とする。吸熱側の温度
を放熱側と比較して高温となるような温度差を与えた場
合、第一の絶縁体201から第二の絶縁体202の方向
に熱が伝達される。その際に、n型半導体複合素子20
3の中では電子が放熱側の絶縁体202の方向に移動す
る。p型半導体複合素子204の中では、正孔が放熱側
の絶縁体202の方向に移動する。n型半導体複合素子
203とp型半導体複合素子204は、接続部205を
介して電気的に直列に接続されているため、熱の伝達が
電流に変換され、両端の出力端子部206より起電力を
得ることができる。
FIG. 2 is a diagram showing the structure and power generation principle of the second thermoelectric element of the present invention. The first insulator 201 is on the heat absorption side and the second insulator 202 is on the heat dissipation side. When the temperature difference on the heat absorption side is higher than that on the heat radiation side, heat is transferred from the first insulator 201 to the second insulator 202. At that time, the n-type semiconductor composite element 20
In 3, the electrons move toward the insulator 202 on the heat radiation side. In the p-type semiconductor composite element 204, holes move in the direction of the insulator 202 on the heat dissipation side. Since the n-type semiconductor composite element 203 and the p-type semiconductor composite element 204 are electrically connected in series via the connection part 205, heat transfer is converted into an electric current, and electromotive force is generated from the output terminal parts 206 at both ends. Can be obtained.

【0010】さらに図3は、本発明の熱電素子をエネル
ギー源として用いた電子機器の動作原理を示すブロック
図である。熱電素子301に温度差が与えられ、起電力
が発生すると、蓄電機構302に電気が蓄えられる。蓄
電機構302に蓄えられた電気の電圧が駆動機構303
を駆動するのに十分な大きさに達すると、駆動機構30
3が駆動され、動作・表示機構304が働き出す。
Further, FIG. 3 is a block diagram showing the operating principle of an electronic device using the thermoelectric element of the present invention as an energy source. When a temperature difference is applied to the thermoelectric element 301 and an electromotive force is generated, electricity is stored in the power storage mechanism 302. The voltage of electricity stored in the power storage mechanism 302 is the driving mechanism 303.
When it reaches a size large enough to drive the
3 is driven, and the operation / display mechanism 304 starts working.

【0011】[0011]

【実施例】図4は、本発明の熱電素子の一実施例の構造
と発電原理を示す図である。第一の絶縁体は、例えば酸
化膜407を貼ったアルミニウム401で構成し吸熱側
とする。第二の絶縁体は、例えば酸化膜408を貼った
アルミニウム402で構成し放熱側とする。吸熱側の温
度が放熱側より高温となるような例えば2度程度の温度
差を与えた場合、第一の絶縁体から第二の絶縁体の方向
に熱が伝達される。その際にn型半導体403例えばビ
スマス−テルル系、ナマリ−テルル系あるいは鉄−シリ
サイド系の中では電子が放熱側の第二の絶縁体の方向に
移動する。p型半導体404例えばビスマス−テルル
系、ナマリ−テルル系あるいは鉄−シリサイド系の中で
は正孔が放熱側の第二の絶縁体の方向に移動する。n型
半導体403とp型半導体404は接続部405例えば
電極を介して電気的に直列に接続されているため熱の伝
達が電流に変換され、出力端子部406より起電力を得
ることができる。出力端子部406より得られた起電力
は蓄電素子409に充電される。
EXAMPLE FIG. 4 is a diagram showing the structure and power generation principle of an example of the thermoelectric element of the present invention. The first insulator is made of, for example, aluminum 401 to which an oxide film 407 is attached, and has a heat absorbing side. The second insulator is made of, for example, aluminum 402 to which an oxide film 408 is attached, and serves as a heat radiation side. When a temperature difference of about 2 degrees is given such that the temperature on the heat absorption side is higher than that on the heat radiation side, heat is transferred from the first insulator to the second insulator. At that time, in the n-type semiconductor 403, for example, in the bismuth-tellurium system, the namaly-tellurium system, or the iron-silicide system, the electrons move toward the second insulator on the heat radiation side. In the p-type semiconductor 404, for example, in the bismuth-tellurium system, the namari-tellurium system, or the iron-silicide system, holes move toward the second insulator on the heat dissipation side. Since the n-type semiconductor 403 and the p-type semiconductor 404 are electrically connected in series via the connecting portion 405, for example, an electrode, heat transfer is converted into a current, and electromotive force can be obtained from the output terminal portion 406. The electromotive force obtained from the output terminal portion 406 charges the storage element 409.

【0012】図5は、第一の絶縁体及び第二の絶縁体に
酸化膜を貼ったアルミニウムを用いた場合のn型半導体
およびp型半導体の厚さに対する出力電圧の変化を示し
たグラフである。このとき熱電素子に与えられた温度差
は2度、半導体の断面積は0.01mm2 とした。半導体
数はn型とp型を合わせて3000個、4000個、5
000個、6000個の場合を示した。1.5v電池の
代用となるためには、n型半導体およびp型半導体の厚
さの誤差による出力電圧のばらつきが少なくなる厚さ1
mm以上において、少なくとも1.4Vを得られる400
0個が必要である。さらに製造時の欠陥や、温度差が2
度をわずかに下回った場合を考えると5000個程度必
要である。ここで温度差を2度としたのは、本発明の熱
電素子を電子腕時計に搭載した場合、得られる温度差が
実験により2度程度であったためである。
FIG. 5 is a graph showing changes in the output voltage with respect to the thicknesses of the n-type semiconductor and the p-type semiconductor when aluminum having an oxide film attached to the first insulator and the second insulator is used. is there. At this time, the temperature difference applied to the thermoelectric element was 2 degrees, and the cross-sectional area of the semiconductor was 0.01 mm 2 . The total number of semiconductors, including n-type and p-type, is 3000, 4000, 5
The cases of 000 and 6000 are shown. In order to substitute for the 1.5v battery, the variation in the output voltage due to the thickness error of the n-type semiconductor and the p-type semiconductor is reduced.
400 mm can be obtained at least 1.4 V
0 is required. In addition, defects during manufacturing and temperature difference of 2
Considering the case of slightly lower than the degree, about 5000 pieces are required. Here, the temperature difference is set to 2 degrees because, when the thermoelectric element of the present invention is mounted on an electronic wristwatch, the temperature difference obtained is about 2 degrees by an experiment.

【0013】一般のICの動作電圧の実力値を0.7v
とし、電子機器例えば電子腕時計に搭載する場合には外
観上の制約があるためn型半導体およびp型半導体の厚
さは図5より0.1mm以上3mm以下とする事が望まし
い。さらに望ましくは、一般のICの動作電圧の規格値
を1.2vとし、より大きな電圧を得ようとした場合n
型半導体およびp型半導体の厚さの増加に対する出力電
圧の増加率が10%以上であることが効率を考えた上で
好ましいので、n型半導体およびp型半導体の厚さは図
5より0.2mm以上1mm以下とする事が望ましい。例え
ばn型半導体およびp型半導体の断面積が0.01mm
2、厚さが1mm、数がn型p型合わせて4000個、n
型半導体とp型半導体の間隔を約0.2mm、放熱側及び
吸熱側の電極と絶縁板を合わせた厚さがそれぞれ1mmで
あるとすると、熱電素子の大きさは全体で約14mm×1
4mm×3mmとなり、2度の温度差が与えられた場合約
1.4Vの起電力を得ることが可能である。
The actual value of the operating voltage of a general IC is 0.7v.
However, when mounted on an electronic device, for example, an electronic wristwatch, there is a restriction on the appearance, so that it is desirable that the thicknesses of the n-type semiconductor and the p-type semiconductor are 0.1 mm or more and 3 mm or less as shown in FIG. More desirably, when the standard value of the operating voltage of a general IC is set to 1.2v and a larger voltage is to be obtained, n
It is preferable that the rate of increase of the output voltage with respect to the increase of the thicknesses of the n-type semiconductor and the p-type semiconductor is 10% or more in view of efficiency. It is desirable to set it to 2 mm or more and 1 mm or less. For example, the cross-sectional area of n-type semiconductor and p-type semiconductor is 0.01 mm
2, thickness is 1mm, the number is n-type and p-type total 4000, n
Assuming that the distance between the p-type semiconductor and the p-type semiconductor is about 0.2 mm, and the combined thickness of the heat-radiating and heat-absorbing electrodes and the insulating plate is 1 mm, the size of the thermoelectric element is about 14 mm x 1
It becomes 4 mm x 3 mm, and it is possible to obtain an electromotive force of about 1.4 V when a temperature difference of 2 degrees is given.

【0014】図6は、本発明の熱電素子を動力源として
用いた電子機器の一実施例として、電子腕時計の動作原
理を示すブロック図である。熱電素子601に温度差が
与えられ起電力が発生すると充電制御回路602を介し
て蓄電素子603に電気が蓄えられる。蓄電素子603
に蓄えられた電気により駆動制御回路604が駆動し、
表示機構605に時刻が表示される。
FIG. 6 is a block diagram showing the operating principle of an electronic wristwatch as an embodiment of an electronic device using the thermoelectric element of the present invention as a power source. When a temperature difference is applied to the thermoelectric element 601 and an electromotive force is generated, electricity is stored in the storage element 603 via the charge control circuit 602. Power storage element 603
The drive control circuit 604 is driven by the electricity stored in
The time is displayed on the display mechanism 605.

【0015】図7は、本発明の電子腕時計の実施例の外
観を示す図である。放熱されやすいように放熱板701
が表面に露出している。放熱板701は、例えば絶縁の
ために酸化膜を付けたアルミニウムで構成されている。
図8は、本発明の電子腕時計の実施例の構造を示す断面
図である。絶縁板801は一般に気温よりも高温である
腕に触れるために吸熱側、絶縁板802は大気中にある
ために放熱側となる。絶縁板801および802は、例
えば酸化膜を付けたアルミニウムで構成されている。例
えば携帯者の体温が摂氏36度で、気温摂氏20度の環
境にて使用し電子腕時計全体が腕の温度に近くなると、
絶縁板801と絶縁板802との間に生じる温度差は2
度前後である。温度差が生じると、熱は絶縁板801か
らn型およびp型半導体803を通り絶縁板802に伝
えられ大気中に放熱される。このときゼーベック効果に
より起電力が生じ蓄電素子804、例えばリチウム2次
電池、カーボン−リチウム2次電池、あるいはバナジウ
ム−リチウム2次電池に蓄電される。この蓄えられた電
気により輪列とモーターから成り運針動作を行うムーブ
メント805が駆動する。
FIG. 7 is a view showing the external appearance of an embodiment of the electronic wrist watch of the present invention. Heat dissipation plate 701 to facilitate heat dissipation
Is exposed on the surface. The heat dissipation plate 701 is made of, for example, aluminum with an oxide film attached for insulation.
FIG. 8 is a sectional view showing the structure of the embodiment of the electronic wrist watch of the present invention. The insulating plate 801 is a heat absorbing side for touching an arm that is generally higher in temperature than the air temperature, and the insulating plate 802 is a heat radiating side for being in the atmosphere. The insulating plates 801 and 802 are made of, for example, aluminum with an oxide film. For example, if the wearer's body temperature is 36 degrees Celsius and the temperature is 20 degrees Celsius and the entire electronic wristwatch is close to the arm temperature,
The temperature difference between the insulating plate 801 and the insulating plate 802 is 2
It is around. When a temperature difference occurs, heat is transferred from the insulating plate 801 through the n-type and p-type semiconductors 803 to the insulating plate 802 and radiated into the atmosphere. At this time, electromotive force is generated by the Seebeck effect, and the electricity is stored in the electricity storage element 804, for example, a lithium secondary battery, a carbon-lithium secondary battery, or a vanadium-lithium secondary battery. The stored electricity drives a movement 805 which is composed of a train wheel and a motor and performs a hand movement operation.

【0016】[0016]

【発明の効果】以上述べてきたように本発明によれば、
絶縁体に酸化膜をつけたアルミニウムを用いた熱電素子
のn型、p型半導体の厚さを0.1〜3mm、さらに望ま
しくは0.2〜1mmとする事により、必要とする起電力
を得るための熱電素子としては発電効率が良くかつ小型
化されたものを得ることができる。さらにこの熱電素子
を電子機器に用いることにより、電子機器を小型化する
ことが可能になる。
As described above, according to the present invention,
By setting the thickness of the n-type and p-type semiconductor of the thermoelectric element using aluminum with an oxide film attached to the insulator to 0.1 to 3 mm, more preferably 0.2 to 1 mm, the required electromotive force can be obtained. As the thermoelectric element for obtaining the thermoelectric element, it is possible to obtain a thermoelectric element having high power generation efficiency and a small size. Furthermore, by using this thermoelectric element in an electronic device, the electronic device can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の熱電素子の構造と発電原理を示
す図である。
FIG. 1 is a diagram showing a structure and a power generation principle of a first thermoelectric element of the present invention.

【図2】本発明の第二の熱電素子の構造と発電原理を示
す図である。
FIG. 2 is a diagram showing a structure and a power generation principle of a second thermoelectric element of the present invention.

【図3】本発明の熱電素子をエネルギー源として用いた
電子機器の動作原理を示すブロック図である。
FIG. 3 is a block diagram showing an operation principle of an electronic device using the thermoelectric element of the present invention as an energy source.

【図4】本発明の熱電素子の実施例の構造と発電原理を
示す図である。
FIG. 4 is a diagram showing a structure and a power generation principle of an embodiment of the thermoelectric element of the present invention.

【図5】本発明の熱電素子の半導体数の違いによる半導
体の厚さと出力電圧の関係を示す図である。
FIG. 5 is a diagram showing a relationship between a semiconductor thickness and an output voltage according to a difference in the number of semiconductors of the thermoelectric element of the present invention.

【図6】本発明の熱電素子を動力源として用いた電子機
器の一実施例として、電子腕時計の動作原理を示すブロ
ック図である。
FIG. 6 is a block diagram showing an operation principle of an electronic wristwatch as an embodiment of an electronic device using the thermoelectric element of the present invention as a power source.

【図7】本発明の一実施例の電子腕時計の外観を示す図
である。
FIG. 7 is a diagram showing an appearance of an electronic wrist watch according to an embodiment of the present invention.

【図8】本発明の一実施例の電子腕時計の構造を示す断
面図である。
FIG. 8 is a sectional view showing the structure of an electronic wrist watch according to an embodiment of the present invention.

【図9】従来の熱電素子の構造と発電原理を示す図であ
る。
FIG. 9 is a diagram showing a structure of a conventional thermoelectric element and a power generation principle.

【図10】熱電素子を動力源として用いた従来の電子腕
時計の構造を示す断面図である。
FIG. 10 is a cross-sectional view showing the structure of a conventional electronic wristwatch using a thermoelectric element as a power source.

【符号の説明】[Explanation of symbols]

101 第一の絶縁体 102 第二の絶縁体 103 n型半導体 104 p型半導体 105 接続部 106 出力端子部 203 n型半導体複合素子 204 p型半導体複合素子 301、601 熱電素子 302 蓄電機構 409、603、804 蓄電素子 303 駆動機構 304 動作、表示機構 401、402 アルミニウム 407、408 酸化膜 602 充電制御回路 604 駆動制御回路 605 表示機構 701、801 放熱板 802 絶縁板 803 n型およびp型半導体 805 ムーブメント Reference Signs List 101 first insulator 102 second insulator 103 n-type semiconductor 104 p-type semiconductor 105 connecting portion 106 output terminal portion 203 n-type semiconductor composite element 204 p-type semiconductor composite element 301, 601 thermoelectric element 302 storage mechanism 409, 603 , 804 Storage element 303 Drive mechanism 304 Operation, display mechanism 401, 402 Aluminum 407, 408 Oxide film 602 Charge control circuit 604 Drive control circuit 605 Display mechanism 701, 801 Heat sink 802 Insulating plate 803 N-type and p-type semiconductor 805 Movement

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数のn型半導体(103)と複数のp
型半導体(104)を交互に電気的に直列になるように
接続する複数の接続部(105)と出力端子部(10
6)とを有し、接続部(105)を1つおきに固定する
酸化膜を付けたアルミニウムで構成した第一の絶縁体
(101)と、第一の絶縁体で接続していない1つおき
の接続部(105)を固定する酸化膜を付けたアルミニ
ウムで構成した第二の絶縁体(102)とを有し、第一
の絶縁体(101)と第二の絶縁体(102)との間に
固定される複数のn型半導体(103)および複数のp
型半導体(104)のそれぞれの厚さが0.1mm〜3mm
であることを特徴とする熱電素子。
1. A plurality of n-type semiconductors (103) and a plurality of p-types.
Type semiconductors (104) and a plurality of connection parts (105) and output terminal parts (10) for alternately connecting them in series electrically.
6) and a first insulator (101) made of aluminum with an oxide film for fixing every other connecting portion (105), and one not connected by the first insulator A second insulator (102) made of aluminum having an oxide film for fixing every other connection portion (105), and a first insulator (101) and a second insulator (102). A plurality of n-type semiconductors (103) and a plurality of p fixed between
The thickness of each type semiconductor (104) is 0.1 mm to 3 mm
A thermoelectric element characterized in that
【請求項2】 複数のn型半導体から構成されるn型半
導体複合素子(203)を複数有し、複数のp型半導体
から構成されるp型半導体複合素子(204)を複数有
し、複数のn型半導体複合素子(203)と複数のp型
半導体複合素子(204)を交互に電気的に直列になる
ように接続する複数の接続部(205)と出力端子部
(206)とを有し、接続部(205)を1つおきに固
定する酸化膜を付けたアルミニウムで構成した第一の絶
縁体(201)と、第一の絶縁体(201)で接続して
いない1つおきの接続部(205)を固定する酸化膜を
付けたアルミニウムで構成した第二の絶縁体(202)
とを有し、第一の絶縁体(201)と第二の絶縁体(2
02)との間に固定される複数のn型半導体複合素子
(203)および複数のp型半導体複合素子(204)
のそれぞれの厚さが0.1mm〜3mmであることを特徴と
する熱電素子。
2. A plurality of n-type semiconductor composite elements (203) composed of a plurality of n-type semiconductors, and a plurality of p-type semiconductor composite elements (204) composed of a plurality of p-type semiconductors. Of the n-type semiconductor composite element (203) and the plurality of p-type semiconductor composite elements (204) are alternately connected so as to be electrically connected in series. The first insulator (201) made of aluminum with an oxide film for fixing every other connecting portion (205) and every other first insulator (201) not connected by the first insulator (201). A second insulator (202) made of aluminum with an oxide film for fixing the connection part (205)
And a first insulator (201) and a second insulator (2
02) a plurality of n-type semiconductor composite elements (203) and a plurality of p-type semiconductor composite elements (204)
A thermoelectric element having a thickness of 0.1 mm to 3 mm.
【請求項3】 請求項1記載の熱電素子において、複数
のn型半導体(103)および複数のp型半導体(10
4)のそれぞれの厚さが0.2mm〜1mmであることを特
徴とする熱電素子。
3. The thermoelectric element according to claim 1, wherein a plurality of n-type semiconductors (103) and a plurality of p-type semiconductors (10).
A thermoelectric element characterized in that each thickness of 4) is 0.2 mm to 1 mm.
【請求項4】 請求項2記載の熱電素子において、複数
のn型半導体複合素子(203)および複数のp型半導
体複合素子(204)のそれぞれの厚さが0.2mm〜1
mmであることを特徴とする熱電素子。
4. The thermoelectric element according to claim 2, wherein each of the plurality of n-type semiconductor composite elements (203) and the plurality of p-type semiconductor composite elements (204) has a thickness of 0.2 mm to 1.
mm is a thermoelectric element.
【請求項5】 エネルギー源を必要とする電子機器にお
いて、請求項1乃至請求項4のいずれか1項に記載する
熱電素子をエネルギー源として用いた電子機器。
5. An electronic device which requires an energy source, wherein the thermoelectric element according to any one of claims 1 to 4 is used as the energy source.
【請求項6】 エネルギー源を必要とする電子時計にお
いて、請求項1乃至請求項4のいずれか1項に記載する
熱電素子をエネルギー源として用いた電子時計。
6. An electronic timepiece which requires an energy source, wherein the thermoelectric element according to any one of claims 1 to 4 is used as the energy source.
JP6167241A 1994-07-19 1994-07-19 Thermoelectric element and electronic apparatus using thermoelectric element Pending JPH08107237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6167241A JPH08107237A (en) 1994-07-19 1994-07-19 Thermoelectric element and electronic apparatus using thermoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6167241A JPH08107237A (en) 1994-07-19 1994-07-19 Thermoelectric element and electronic apparatus using thermoelectric element

Publications (1)

Publication Number Publication Date
JPH08107237A true JPH08107237A (en) 1996-04-23

Family

ID=15846083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6167241A Pending JPH08107237A (en) 1994-07-19 1994-07-19 Thermoelectric element and electronic apparatus using thermoelectric element

Country Status (1)

Country Link
JP (1) JPH08107237A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044103A1 (en) * 1998-02-27 1999-09-02 Seiko Instruments Inc. Power generation device and electronic timepiece using the device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044103A1 (en) * 1998-02-27 1999-09-02 Seiko Instruments Inc. Power generation device and electronic timepiece using the device

Similar Documents

Publication Publication Date Title
JP3084521B2 (en) Electronic equipment with generator
CA1081477A (en) Wrist watch incorporating a thermoelectric generator
US5705770A (en) Thermoelectric module and method of controlling a thermoelectric module
EP1316140B1 (en) Portable electronic device with enhanced battery life and cooling
JP3054932B2 (en) Electronic clock using thermoelectric elements
WO2012124394A1 (en) Thermoelectric generator device and portable electronic apparatus
CN103633925B (en) A kind of combined type portable generating set
JP2946205B1 (en) Thermoelectric power generation unit and portable electronic device using the unit
KR20160047843A (en) Wearable device having thermoelectric generator
JPH11176491A (en) Electronic device charging system
JPH11206032A (en) Hand-held charger
US20100037931A1 (en) Method and Apparatus for Generating Electric Power Using Solar Energy
JP2003102186A (en) Electric charging system for instrument having thermal power generating system
JPH0846249A (en) Thermoelectric element module and portable electronic apparatus using the same
JPH0832127A (en) Thermoelectric element and electronic equipment using it
US6259656B1 (en) Thermoelectric unit and timepiece using it
JPH08107237A (en) Thermoelectric element and electronic apparatus using thermoelectric element
JP3439535B2 (en) Thermoelectric generator and electronic equipment using the thermoelectric generator
JPH0837324A (en) Thermoelectric element and electric apparatus with thermoelectric element
JPH06109868A (en) Wristwatch
JPH10142358A (en) Heat-electricity conversion type clock
JP2967411B2 (en) Power generating device and electronic timepiece using the power generating device
EP3477714A1 (en) Portable electronic device
JP2000014026A (en) Electronic device
JPH11248866A (en) Electronic time piece with charging electrode