JPH0810600B2 - Laminated fuel cell separator - Google Patents
Laminated fuel cell separatorInfo
- Publication number
- JPH0810600B2 JPH0810600B2 JP61232750A JP23275086A JPH0810600B2 JP H0810600 B2 JPH0810600 B2 JP H0810600B2 JP 61232750 A JP61232750 A JP 61232750A JP 23275086 A JP23275086 A JP 23275086A JP H0810600 B2 JPH0810600 B2 JP H0810600B2
- Authority
- JP
- Japan
- Prior art keywords
- plate
- fuel cell
- separator
- gas
- corrugated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0228—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2457—Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0232—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
- H01M8/0254—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
- H01M8/026—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/244—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃料電池、特に平板状の電解質板、電極お
よびセパレータを多数積層して構成される積層形燃料電
池において、反応ガスの混合、撹拌および分配性能が優
れ、かつガス利用率の高い燃料電池を実現するのに好適
なセパレータの構造に関する。Description: TECHNICAL FIELD The present invention relates to a fuel cell, particularly a laminated fuel cell constituted by laminating a large number of flat electrolyte plates, electrodes and separators, in which reaction gas is mixed, The present invention relates to a separator structure suitable for realizing a fuel cell having excellent stirring and distribution performance and a high gas utilization rate.
積層形燃料電池は、平板状の電解質板、正極板、負極
板およびセパレータを多数積層してなっており、電解質
板に含浸させた電解質液を電気化学反応の媒体として燃
料ガスと酸化剤ガスを電気化学反応させることにより、
燃料ガスを電気エネルギーに変換するものである。Laminated fuel cells have a large number of flat plate-shaped electrolyte plates, positive electrode plates, negative electrode plates, and separators stacked, and a fuel gas and an oxidant gas are used as a medium of an electrochemical reaction by using an electrolyte solution impregnated in the electrolyte plates. By causing an electrochemical reaction,
It converts fuel gas into electrical energy.
電解質板内で発電した単位セル分の電力は、燃料ガス
側の負極板と酸化剤ガス側の正極板間の電圧および電流
として外部に取り出すことができる。電気化学反応で得
られる単位電池セル当りの電圧は低く、例えば溶融炭酸
塩型燃料電池では0.6〜0.8Vである。したがって実用可
能な電圧を得るため、燃料電池では単位電池セルを数百
セル分積層することにより実用可能な電圧の電力を取り
出している。The electric power for the unit cell generated in the electrolyte plate can be taken out as a voltage and a current between the negative electrode plate on the fuel gas side and the positive electrode plate on the oxidant gas side. The voltage per unit cell obtained by the electrochemical reaction is low, and is 0.6 to 0.8 V for a molten carbonate fuel cell, for example. Therefore, in order to obtain a practicable voltage, in a fuel cell, power of a practicable voltage is taken out by stacking several hundred unit battery cells.
一方、電気化学反応で得られる電力の単位面積当りの
発電電流密度は大きく、例えば溶融炭酸塩形燃料電池で
は、0.1A/cm2〜0.2A/cm2である。溶融炭酸塩形電池にお
いては、燃料電池の性能、製作費用、発電コスト等の観
点から単位電池セルの発電条件は、電圧0.6〜0.8V、電
流密度0.1〜0.2A/cm2が使用される。このような理由か
ら積層形燃料電池には、多数のセパレータと電解板の電
気的接続部を直列に接続し、かつこの接続部を通して大
きな電流を流さなければならない。それ故、燃料電池で
は接触電気抵抗による内部損失を無視することができ
ず、接触電気抵抗の大小が燃料電池の性能を左右する。On the other hand, the generated current density is greater per unit area of the power obtained by the electrochemical reaction, for example in the molten carbonate fuel cell, a 0.1A / cm 2 ~0.2A / cm 2 . In the molten carbonate type battery, a voltage of 0.6 to 0.8 V and a current density of 0.1 to 0.2 A / cm 2 are used as the power generation conditions of the unit battery cell from the viewpoints of fuel cell performance, manufacturing cost, power generation cost and the like. For this reason, in a laminated fuel cell, it is necessary to connect a large number of separators and electrical connecting portions of electrolytic plates in series and to pass a large current through these connecting portions. Therefore, the internal loss due to the contact electric resistance cannot be ignored in the fuel cell, and the size of the contact electric resistance influences the performance of the fuel cell.
ここで、燃料電池の出力特性の一例として、溶融炭酸
塩形燃料電池の出力特性を第5図に示す。そして、同図
に基づいて燃料電池の出力特性と電池性能の関係を説明
する。同図において、横軸が電流密度i(A/cm2)、縦
軸が電圧E(V)および電力P(W)である。燃料電池
では、主に分極抵抗によって右下がり出力特性を示すた
め、曲線aのようなi−E特性となる。そして、燃料電
池の発電効率、通電電流、エネルギ変換効率等から通常
は領域Aの範囲の電流密度域が使用される。Here, as an example of the output characteristics of the fuel cell, FIG. 5 shows the output characteristics of the molten carbonate fuel cell. Then, the relationship between the output characteristics of the fuel cell and the cell performance will be described based on FIG. In the figure, the horizontal axis represents the current density i (A / cm 2 ) and the vertical axis represents the voltage E (V) and the power P (W). Since the fuel cell mainly exhibits a right-down output characteristic due to polarization resistance, the i-E characteristic as shown by the curve a is obtained. Then, the current density range of the range A is usually used from the power generation efficiency of the fuel cell, the energization current, the energy conversion efficiency, and the like.
一方、燃料電池の発電性能が悪い場合や内部電気抵抗
が大きい場合には、曲線bのようなi−E特性となる。
また曲線aの特性の電池では曲線cのi−P特性が得ら
れ、曲線bの特性の電池では曲線dのi−P特性が得ら
れる。同図から分るように、曲線bのように出力特性が
悪い電池では、得られる電力は大幅に低下する。On the other hand, when the power generation performance of the fuel cell is poor or when the internal electric resistance is large, the i-E characteristic shown by the curve b is obtained.
Further, the battery having the characteristic of the curve a can obtain the i-P characteristic of the curve c, and the battery of the characteristic of the curve b can obtain the i-P characteristic of the curve d. As can be seen from the figure, in the battery having the bad output characteristics as shown by the curve b, the obtained power is significantly reduced.
ところで、従来の積層形燃料電池において、セパレー
タ表面をガス流路とすると共に、ガス流れの混合、撹拌
および分配性能の良好なものとして、多数の穴あきパイ
プを平板上に平行に接合してガス流路とするセパレータ
が提案されている(実開昭58−113968号公報)。このセ
パレータは、セパレータの電極板との接触部がパイプの
曲面で接触面が線であり、接触面積が少ない。また平板
の両面に突起部を多数張出し成形し、これらの突起と電
極板で形成する空間部がガス流路とするセパレータが提
案されている(特開昭59−98472号公報)。このセパレ
ータは、セパレータの電極板との接触部が突起部先端の
点又は小円形であり、接触面積が少ない。さらに、1枚
の厚板の両面にガス流路用の複数の平行溝を形成し、こ
の平行溝と交差して複数の連結溝を形成したセパレータ
が提案されている(特開昭59−27467号公報。また1枚
の厚板の両面に上記ガス流路用の複数の平行溝を形成す
ると共に、該平行溝表面に一定の起伏模様を形成したセ
パレータが提案されている(実開昭60−57065号公
報)。By the way, in the conventional laminated fuel cell, the separator surface is used as a gas flow path, and a number of perforated pipes are joined in parallel on a flat plate so as to have good gas flow mixing, stirring and distribution performance. A separator having a flow path has been proposed (Japanese Utility Model Laid-Open No. 58-113968). In this separator, the contact portion with the electrode plate of the separator is a curved surface of the pipe and the contact surface is a line, and the contact area is small. Further, a separator has been proposed in which a large number of protrusions are formed on both sides of a flat plate, and the space formed by these protrusions and the electrode plate serves as a gas flow path (Japanese Patent Laid-Open No. 59-98472). In this separator, the contact portion of the separator with the electrode plate is a point at the tip of the protrusion or a small circle, and the contact area is small. Further, there has been proposed a separator in which a plurality of parallel grooves for gas passages are formed on both surfaces of one thick plate and a plurality of connecting grooves are formed so as to intersect the parallel grooves (Japanese Patent Laid-Open No. 59-27467). There is also proposed a separator in which a plurality of parallel grooves for the gas flow path are formed on both sides of one thick plate and a certain undulation pattern is formed on the surfaces of the parallel grooves (Shokai Sho 60). -57065).
積層形燃料電池の内部電気抵抗の中で、セパレータと
電極板および電解質板の各接触電気抵抗の割合は他の要
因に比べてかなり大きいものであるが、上記実開昭58−
113968号公報および特開昭59−98472号公報の従来技術
では、いずれもセパレータと電極板と接触面積が少な
く、つぎのような種々の問題があった。In the internal electric resistance of the laminated fuel cell, the ratio of the contact electric resistances of the separator, the electrode plate and the electrolyte plate is considerably higher than other factors.
In each of the conventional techniques disclosed in Japanese Patent No. 113968 and Japanese Patent Laid-Open No. 59-98472, the contact area between the separator and the electrode plate is small, and there are various problems as described below.
(1) セパレータと電極板間の接触電気抵抗が大きく
なり、これに伴って内部電気抵抗が大きくなって第5図
において説明したように、燃料電池により得られる電力
が大幅に低下する。(1) The contact electric resistance between the separator and the electrode plate is increased, and the internal electric resistance is increased accordingly. As described in FIG. 5, the electric power obtained by the fuel cell is significantly reduced.
(2) セパレータと電極板との接触部の通電電流密度
が大きくなり、抵抗発熱および局部電気腐食が大きくな
る。(2) The energization current density of the contact portion between the separator and the electrode plate increases, and resistance heat generation and local electric corrosion increase.
(3) 多孔質性電極板および電解質板の局部的なクリ
ープ変形が大きくなる。(3) The local creep deformation of the porous electrode plate and the electrolyte plate becomes large.
また、上記特開昭59−27467号公報および実開昭60−5
7065号公報の従来技術では、ガス流路断面積が流路の途
中で増減するため、断面積が減少する部分、すなわち交
差溝や起伏部分を通過するときに、ガス流れに圧力損失
が発生するという問題があった。Further, the above-mentioned Japanese Patent Laid-Open No. 59-27467 and Japanese Utility Model Laid-Open No. 60-5.
In the prior art of the 7065 publication, since the gas flow passage cross-sectional area increases and decreases in the middle of the flow passage, a pressure loss occurs in the gas flow when passing through a portion where the cross-sectional area decreases, that is, a cross groove or an undulating portion. There was a problem.
本発明の目的は、積層されるセパレータと電極板との
電気的接続抵抗を低減させ、かつガス流路断面積を流路
の途中で増減させることなく、反応ガスの撹拌および分
配性能を向上させるようにした積層形燃料電池用セパレ
ータの製造方法および構造を提供することである。The object of the present invention is to reduce the electrical connection resistance between the laminated separator and the electrode plate, and improve the stirring and distribution performance of the reaction gas without increasing or decreasing the gas flow passage cross-sectional area in the middle of the flow passage. It is an object of the present invention to provide a method and a structure for manufacturing a separator for a laminated fuel cell as described above.
かかる目的を達成するため、本発明の積層形燃料電池
用セパレータは、1枚の金属性の仕切り板と、この仕切
り板に接合された1枚の金属性の波板とからなるもので
あって、波板の凸部及び凹部それぞれの溝断面は台形で
あり、波板の凸部はその長手方向に沿ってある間隔をも
って配列されて入口及び出口を有する一連の小凸部から
なり、また、小凸部それぞれの出口には台形溝断面を形
成する二つの側辺の一つから溝の内側方向または外側方
向に傾斜する板片が設けられ、さらに小凸部の頂面が仕
切り板面に接合されてなることを特徴とする。In order to achieve such an object, the laminated fuel cell separator of the present invention comprises one metallic partition plate and one metallic corrugated plate joined to the partition plate. , The groove section of each of the convex portion and the concave portion of the corrugated plate is trapezoidal, and the convex portion of the corrugated plate is composed of a series of small convex portions having an inlet and an outlet arranged at a certain interval along the longitudinal direction thereof, and At the outlet of each small protrusion, a plate piece that is inclined inward or outward of the groove from one of the two sides that form the cross section of the trapezoidal groove is provided, and the top surface of the small protrusion is the partition plate surface. It is characterized by being joined.
上述のように構成した積層形燃料電池用セパレータ
は、燃料電池として積層組立てされた時、波板の両面の
うち、仕切り板が接合された面と反対側の面に板状の電
極が接合される。かくして波板と仕切り板間に形成され
た波板の凹部内の溝でなるガス流路と共に、波板と電極
との間に形成された波板の凸部内の溝でガス流路が形成
され、そして前者の流路に流れる反応ガスは電気化学反
応に寄与せず、一方、後者の流路に流れる反応ガスは電
気化学反応に寄与することになる。When the laminated fuel cell separator configured as described above is laminated and assembled as a fuel cell, a plate-shaped electrode is bonded to the opposite surface of the corrugated plate from the surface to which the partition plate is bonded. It Thus, together with the gas flow path formed by the groove in the concave portion of the corrugated plate formed between the corrugated plate and the partition plate, the gas flow path is formed by the groove in the convex portion of the corrugated plate formed between the corrugated plate and the electrode. Then, the reaction gas flowing in the former flow channel does not contribute to the electrochemical reaction, while the reaction gas flowing in the latter flow channel contributes to the electrochemical reaction.
本発明の積層形燃料電池用セパレータにおいて、小凸
部それぞれの溝の出口に板片を設け、この板片は小凸部
の溝の内側または外側方向に傾いているので、例えば板
片が溝の内側に傾いている場合は、小凸部の溝、即ち、
電気化学反応が生じる流路を通った反応ガスは、出口で
板片によって流れを曲げられ、下流における次の段階で
は一部が電気化学反応の生じない流路、すなわち凹部と
仕切り板とから形成される流路に流入し、残部が電気化
学反応が生じる小凸部の流路の流入することになり、ま
た板片が小凸部の溝の外側に傾いている場合には、凹部
と仕切り板との間の空間で形成される流路で電気化学反
応の生じなかった反応ガスが出力で板片によって流れが
曲げられ、次の段階で一部が電気化学反応の生じる流路
に流入し、残部が電気化学反応の生じない流路に流入す
ることになり、かくして上流から下流にかけて混合攪拌
が行われ、かつ反応ガスの全量を電気化学反応が生じる
ガス流路を通すことにより電気化学反応に寄与する反応
ガス量を増加させることができる。In the laminated fuel cell separator of the present invention, a plate piece is provided at the outlet of each groove of the small convex portion, and since the plate piece is inclined inward or outward of the groove of the small convex portion, for example, the plate piece is a groove. If it is tilted inward, the small convex groove, that is,
The reaction gas, which has passed through the flow channel where the electrochemical reaction occurs, is bent by the plate piece at the outlet, and is partially formed from the flow channel where the electrochemical reaction does not occur in the next stage, that is, the recess and the partition plate. Flow into the flow path of the small convex portion where the electrochemical reaction occurs, and when the plate piece is tilted to the outside of the groove of the small convex portion, it is separated from the concave portion. In the flow path formed between the plate and the plate, the reaction gas that did not cause the electrochemical reaction is bent by the plate piece at the output, and a part of it flows into the flow path where the electrochemical reaction occurs in the next stage. , The rest will flow into the flow channel in which no electrochemical reaction occurs, thus mixing and stirring is performed from upstream to downstream, and the entire amount of the reaction gas is passed through the gas flow channel in which the electrochemical reaction takes place. Increase the amount of reaction gas that contributes to It is possible.
以下、本発明は図面に示す実施例に基づいて説明す
る。Hereinafter, the present invention will be described based on the embodiments shown in the drawings.
第1図は本発明の一実施例にかかるセパレータの概略
構造を示す斜視図であり、第2図は本発明にかかるセパ
レータを装着した積層形燃料電池の縦断面図、第3図は
一実施例にかかるセパレータの波板の構造を示す平面図
で、第4図は第3図のIV−IV断面図である。FIG. 1 is a perspective view showing a schematic structure of a separator according to an embodiment of the present invention, FIG. 2 is a longitudinal sectional view of a laminated fuel cell equipped with the separator according to the present invention, and FIG. It is a top view which shows the structure of the corrugated plate of the separator concerning an example, and FIG. 4 is a IV-IV sectional drawing of FIG.
積層形燃料電池1は平板状の電解質板2、正極板3、
負極板5およびセパレータ6を多数積層してなってい
る。セパレータ6は、第1図に詳細に示すように、仕切
り板8と、第1および第2の波板9,10とからなってお
り、仕切り板8は金属製で平板状に形成されている。The laminated fuel cell 1 has a flat electrolyte plate 2, a positive electrode plate 3,
A large number of negative electrode plates 5 and separators 6 are laminated. As shown in detail in FIG. 1, the separator 6 is composed of a partition plate 8 and first and second corrugated plates 9 and 10. The partition plate 8 is made of metal and formed in a flat plate shape. .
第1の波板9は、金属製平板からなり、その表面は塑
性加工により波形状の凹凸部11に形成され、凹部である
溝部12と凸部であるリブ部13とは互いに平行になるよう
に形成されており、溝部12の底面およびリブ部13の頂面
は、平坦部12a,13aとなっている。そして、溝部12およ
びリブ部13の中空部13bが燃料ガス流路15となってい
る。The first corrugated plate 9 is made of a metal flat plate, and its surface is formed into a corrugated concave-convex portion 11 by plastic working so that the groove portion 12 which is a concave portion and the rib portion 13 which is a convex portion are parallel to each other. The bottom surface of the groove portion 12 and the top surface of the rib portion 13 are flat portions 12a and 13a. The hollow portion 13b of the groove portion 12 and the rib portion 13 serves as the fuel gas passage 15.
第2の波板10は、第1の波板9と同様、金属製平板か
らなり、その表面は塑性加工により波形状の凹凸部16に
形成されている。凹部である溝部18と凸部であるリブ部
19とは互いに平行になるように形成されており、溝部18
の底面およびリブ部19の頂面は、平坦部18a,19aとなっ
ている。そして第2の波板10は、凹凸部16が第1の波板
9の凹凸部11と直交するように、仕切り板8の下面に金
属的に接合されており、溝部18およびリブ部19の中空部
19bが酸化剤ガス流路20となっている。そして、第1、
第2の波板9,10を仕切り板8に接合するに際しては、第
1、第2の波板9,10と仕切り板8との間に50〜100μm
の箔状に圧延したろう材を挟み、これらを同時に又は個
別に抵抗溶接によって仮付けした後、雰囲気炉又は真空
炉中で一括ろう付けする。The second corrugated sheet 10, like the first corrugated sheet 9, is made of a metal flat plate, and the surface thereof is formed into a corrugated uneven portion 16 by plastic working. Groove portion 18 which is a concave portion and rib portion which is a convex portion
19 and the groove 18 are formed so as to be parallel to each other.
The bottom surface and the top surface of the rib portion 19 are flat portions 18a and 19a. The second corrugated sheet 10 is metallically joined to the lower surface of the partition plate 8 so that the concave and convex portions 16 are orthogonal to the concave and convex portions 11 of the first corrugated sheet 9, and the groove portion 18 and the rib portion 19 are formed. Hollow part
19b is the oxidant gas flow path 20. And the first,
When joining the second corrugated plates 9 and 10 to the partition plate 8, between the first and second corrugated plates 9 and 10 and the partition plate 8 is 50 to 100 μm.
After sandwiching the brazing material rolled into the foil shape, and temporarily or temporarily applying these by resistance welding, they are collectively brazed in an atmosphere furnace or a vacuum furnace.
本発明のセパレータ6は、第1、第2の波板9,10をガ
ス流路として利用しており、セパレータ6の両側に取り
付けられた正極板3および負極板5と仕切り板8で仕切
られた空間の大部分をガス流路として利用することがで
き、空間の無駄がほとんど生じない。従って、燃料電池
1のセパレータ6の積層方向高さを従来のものより薄く
することができ、燃料電池1が小形となる。The separator 6 of the present invention uses the first and second corrugated plates 9 and 10 as gas flow paths, and is partitioned by the partition plate 8 from the positive electrode plate 3 and the negative electrode plate 5 attached to both sides of the separator 6. Most of the open space can be used as a gas flow path, and the space is hardly wasted. Therefore, the height in the stacking direction of the separator 6 of the fuel cell 1 can be made thinner than that of the conventional one, and the fuel cell 1 becomes compact.
さらに本発明のセパレータ6は、前述のように、ガス
流路断面積が広く、かつガスの混合、撹拌性能に優れて
いるため、 (1) 燃料電池1内のガス流速を遅くすることがで
き、ガスは長時間発電反応に寄与することができる。Further, as described above, the separator 6 of the present invention has a wide gas flow passage cross-sectional area and is excellent in gas mixing and stirring performance. (1) The gas flow velocity in the fuel cell 1 can be reduced. The gas can contribute to the power generation reaction for a long time.
(2) ガス濃度分布の不均一な部分が少なくなり、全
体が均一に、かつ発電反応にガスが十分に利用される。(2) The non-uniform portion of the gas concentration distribution is reduced, and the whole is uniform, and the gas is sufficiently used for the power generation reaction.
セパレータ6の積層方向の高さは、第1、第2の波板
9,10の凹凸部11,16の高さと仕切り板8の板厚および第
1、第2の波板9,10と仕切り板8の接合層厚さの和であ
る。仕切り板8の板厚と接合層厚さは、極めて高い寸法
精度で再現でき、かつその寸法のばらつきは少ない。一
方、第1、第2の波板9,10の凹凸部11,16の高さは、塑
性加工で成形されているため、寸法精度が良く、かつば
らつきも少ない。従って、セパレータ6の積層方向の高
さの精度、換言すれば接触面の平面度が極めて良好とな
る。The height of the separator 6 in the stacking direction is determined by the first and second corrugated plates.
It is the sum of the height of the uneven portions 11 and 16 of 9, 10 and the thickness of the partition plate 8 and the thickness of the bonding layers of the first and second corrugated plates 9 and 10 and the partition plate 8. The plate thickness and the bonding layer thickness of the partition plate 8 can be reproduced with extremely high dimensional accuracy, and the dimensional variation is small. On the other hand, the heights of the concave-convex portions 11 and 16 of the first and second corrugated sheets 9 and 10 are formed by plastic working, so that the dimensional accuracy is good and there is little variation. Therefore, the accuracy of the height of the separator 6 in the stacking direction, in other words, the flatness of the contact surface becomes extremely good.
本発明に係るセパレータの波板は、第3,4図に示すよ
うに、平板39の表面に適宜の幅および間隔をもって複数
の切欠き部40をプレス加工する。つぎに、2ヶの切欠き
部40で形成される平板39の各切片部41を平板39の一面に
張出し成形させて複数の凹凸部43を形成する。この凹凸
部43は互いに平行で並列状に配置されている。このよう
に形成された波板9の各切欠き部40には、第3図に示す
ように切片部41の一部を交互に反対方向に切り起こした
切り起こし部46が臨んでいる。この切り起こし部46によ
って、反応ガスの流れは、波板9の表側(凹部45)から
裏側(凸部43の中空部43a)、裏側から表側へと順次曲
げられる。そして、反応ガスの流れ方向が曲げられた部
分では、流量の5〜8割が強制的に流路変更を強いら
れ、残りがそのまま流路に流れる。この結果、本実施例
によれば、反応ガスの混合、撹拌性能の優れたセパレー
タが得られる。その上、流路の全面でほぼ同じ流路断面
積を維持することができ、反応ガス流れの圧力損失増加
を抑えることができる。In the corrugated plate of the separator according to the present invention, as shown in FIGS. 3 and 4, a plurality of notches 40 are pressed on the surface of the flat plate 39 with appropriate widths and intervals. Next, each segment 41 of the flat plate 39 formed by the two notches 40 is stretched and formed on one surface of the flat plate 39 to form a plurality of uneven portions 43. The concavo-convex portions 43 are arranged in parallel with each other. In each notch 40 of the corrugated plate 9 formed in this way, as shown in FIG. 3, a cut-and-raised portion 46, which is obtained by alternately cutting and raising a part of the section 41 in the opposite direction, faces. By the cut-and-raised portion 46, the flow of the reaction gas is sequentially bent from the front side (recess 45) of the corrugated plate 9 to the back side (hollow portion 43a of the protrusion 43) and from the back side to the front side. Then, in the portion where the flow direction of the reaction gas is bent, 50 to 80% of the flow rate is forced to change the flow path, and the rest flows to the flow path as it is. As a result, according to this example, a separator having excellent reaction gas mixing and stirring performance can be obtained. In addition, it is possible to maintain substantially the same flow path cross-sectional area over the entire surface of the flow path, and suppress an increase in pressure loss of the reaction gas flow.
上記燃料電位用セパレータ6は、仕切り板8の両面に
それぞれ第1、第2の波板9,10を取り付けると共に、両
面を流れるガスの流路が互いに直交する場合の例を示し
たが、本発明のセパレータ6は、この形状に限定される
ものではない。即ち、セパレータ6の両面を流れるガス
の流路が互いに同一方向に対して平行な場合や反対方向
に対して平行な場合、さらに、セパレータ6の一面又は
両面を流れるガス流路がセパレータ6面内において反転
する場合および傾向する場合にも本発明を適用すること
ができる。The fuel potential separator 6 has an example in which the first and second corrugated plates 9 and 10 are attached to both surfaces of the partition plate 8 and the flow paths of the gas flowing on both surfaces are orthogonal to each other. The separator 6 of the invention is not limited to this shape. That is, when the gas flow paths flowing on both sides of the separator 6 are parallel to the same direction or parallel to the opposite directions, the gas flow paths flowing on one side or both sides of the separator 6 are within the plane of the separator 6. The present invention can be applied to the case of reversing and the case of reversing.
また、仕切り板8の一面にのみ凸部を張出して成形
し、他面を平面状とした平面部に、波板を取り付けてセ
パレータ構造とする場合についても、本発明を適用させ
ることができる。また、公知技術であるセパレータと電
極板間に孔あきの金属製薄板(コレクタ)を介在させ
て、この薄板でセパレータと電極板間の接触電気抵抗を
低減させる構造の燃料電池においても、本発明を適用さ
せることができる。The present invention can also be applied to the case where the partition plate 8 is formed by projecting a convex portion only on one surface and forming the other surface on a flat surface portion by attaching a corrugated plate to form a separator structure. The present invention is also applied to a fuel cell having a structure in which a perforated metal thin plate (collector) is interposed between a separator and an electrode plate, which is a known technique, and the contact electric resistance between the separator and the electrode plate is reduced by the thin plate. Can be applied.
上述のとおり、本発明によれば、積層形燃料電池用セ
パレータは、各小凸部の溝の出口側に、この溝の内側ま
たは外側方向に傾けた板片を設けたので、それら板片に
よって、下流側に位置する小凸部の溝および凹部の溝の
各流路に、上流側で凸部のガス流路中で電気化学反応に
寄与した反応ガスと、凹部のガス流路中で電気化学反応
に寄与しなかったガスが両方流入して混合し攪拌され、
この混合攪拌が上流から下流にかけて繰り返されて有効
ガス濃度分布が均一化され、かつ反応ガスの全量が凹部
のガス流路を通って、電気化学反応に寄与する反応ガス
量を増加させることができる。As described above, according to the present invention, since the laminated fuel cell separator is provided with a plate piece inclined toward the inside or the outside of the groove on the outlet side of the groove of each small convex portion, , The small convex groove and the concave groove located on the downstream side, the reaction gas that contributed to the electrochemical reaction in the convex gas flow path on the upstream side and the electric current in the concave gas flow path Both gases that did not contribute to the chemical reaction flow in, are mixed and stirred,
This mixing and stirring is repeated from the upstream to the downstream to make the effective gas concentration distribution uniform, and the total amount of the reaction gas can pass through the gas passage of the recess to increase the amount of the reaction gas contributing to the electrochemical reaction. .
第1図は本発明の一実施例にかかるセパレータの概略構
造を示す斜視図、第2図は積層形燃料電池の縦断面図、
第3図は一実施例にかかる波板の構造を示す平面図、第
4図は第3図のIV−IV断面図、第5図は燃料電池の出力
特性図である。 1……積層形燃料電池、3……正極板、5……負極板、
6……セパレータ、8……仕切り板、9,10……波板、1
1,16……凹凸部、12a,13a,18a,19a……平坦部、15……
燃料ガス通路、20……酸化剤ガス通路。FIG. 1 is a perspective view showing a schematic structure of a separator according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of a laminated fuel cell,
FIG. 3 is a plan view showing the structure of a corrugated sheet according to one embodiment, FIG. 4 is a sectional view taken along line IV-IV of FIG. 3, and FIG. 5 is an output characteristic diagram of a fuel cell. 1 ... Stacked fuel cell, 3 ... Positive electrode plate, 5 ... Negative electrode plate,
6 ... separator, 8 ... partition plate, 9,10 ... corrugated plate, 1
1,16 …… Concave and convex part, 12a, 13a, 18a, 19a …… Flat part, 15 ……
Fuel gas passage, 20 ... Oxidant gas passage.
Claims (1)
接合された1枚の金属製の波板とからなる積層形燃料電
池用セパレータにおいて、波板の凸部及び凹部それぞれ
の溝断面は台形であり、波板の凸部はその長手方向に沿
ってある間隔をもって配列され入口及び出口を有する一
連の小凸部からなり、小凸部それぞれの出口には台形溝
断面を形成する二つの側辺の一つから溝の内側方向また
は外側方向に傾斜する板片が設けられ、小凸部の頂面が
仕切り板面に接合されてなることを特徴とする積層形燃
料電池用セパレータ。1. A laminated fuel cell separator comprising one metal partition plate and one metal corrugated plate joined to the partition plate, wherein each of the convex and concave portions of the corrugated plate is The cross section of the groove is trapezoidal, and the convex part of the corrugated plate consists of a series of small convex parts arranged at a certain interval along the longitudinal direction and having an inlet and an outlet, and a trapezoidal groove cross section is formed at the outlet of each small convex part. A laminated fuel cell characterized in that a plate piece that is inclined inward or outward of the groove is provided from one of the two side edges, and the top surface of the small convex portion is joined to the partition plate surface. Separator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61232750A JPH0810600B2 (en) | 1986-09-30 | 1986-09-30 | Laminated fuel cell separator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61232750A JPH0810600B2 (en) | 1986-09-30 | 1986-09-30 | Laminated fuel cell separator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6386361A JPS6386361A (en) | 1988-04-16 |
JPH0810600B2 true JPH0810600B2 (en) | 1996-01-31 |
Family
ID=16944170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61232750A Expired - Lifetime JPH0810600B2 (en) | 1986-09-30 | 1986-09-30 | Laminated fuel cell separator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0810600B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014132707A1 (en) | 2013-02-28 | 2014-09-04 | トヨタ車体 株式会社 | Gas flow channel forming body for fuel cell, and fuel cell |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8901798A (en) * | 1989-07-12 | 1991-02-01 | Stichting Energie | ELECTRODE FOR APPLICATION IN THE GAS FUEL CELL, INCLUDING A COLLECTION OF ELECTRODES. |
EP0424691A1 (en) * | 1989-10-23 | 1991-05-02 | Asea Brown Boveri Ag | Arrangement of elements for the conduction of current between ceramic hightemperature fuel cells |
US4983472A (en) * | 1989-11-24 | 1991-01-08 | International Fuel Cells Corporation | Fuel cell current collector |
AU2052101A (en) * | 1999-12-23 | 2001-07-09 | Regents Of The University Of California, The | Flow channel device for electrochemical cells |
FR2816448B1 (en) * | 2000-11-09 | 2003-02-07 | Technicatome | BIPOLAR PLATE WITH TWO METAL PLATES AND EMBOSSED STRUCTURES FOR FUEL CELLS |
JP2006164546A (en) * | 2004-12-02 | 2006-06-22 | Nissan Motor Co Ltd | Separator |
JP2009277390A (en) * | 2008-05-12 | 2009-11-26 | Central Res Inst Of Electric Power Ind | Flow passage plate for fuel cell, and fuel cell using the same |
JP5252193B2 (en) * | 2008-09-03 | 2013-07-31 | トヨタ自動車株式会社 | Fuel cell |
JP5246331B2 (en) * | 2009-03-31 | 2013-07-24 | トヨタ車体株式会社 | Fuel cell |
WO2010113252A1 (en) * | 2009-03-31 | 2010-10-07 | トヨタ車体 株式会社 | Fuel battery |
JP5648293B2 (en) * | 2010-02-12 | 2015-01-07 | トヨタ車体株式会社 | Fuel cell |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5927467A (en) * | 1982-08-06 | 1984-02-13 | Tokyo Electric Power Co Inc:The | Fuel cell |
JPS61216257A (en) * | 1985-03-22 | 1986-09-25 | Hitachi Ltd | Separator for fuel cells |
JPS6217959A (en) * | 1985-07-15 | 1987-01-26 | Fuji Electric Co Ltd | Molten carbonate type fuel cell |
-
1986
- 1986-09-30 JP JP61232750A patent/JPH0810600B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014132707A1 (en) | 2013-02-28 | 2014-09-04 | トヨタ車体 株式会社 | Gas flow channel forming body for fuel cell, and fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JPS6386361A (en) | 1988-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4678359B2 (en) | Fuel cell | |
JP3713912B2 (en) | Fuel cell gas passage plate | |
CN112164810B (en) | Ultra-thin bipolar plate for fuel cell and fuel cell stack | |
JPH10308227A (en) | Solid polymer electrolyte fuel cell | |
JP5261440B2 (en) | Fuel cell stack | |
JP2002260710A (en) | Solid polymer cell assembly, fuel cell stack, and reaction gas supply method for fuel cell | |
JPH08138701A (en) | Molten carbonate fuel cell | |
JP2002175818A (en) | Fuel cell separator and fuel cell | |
JPH0810600B2 (en) | Laminated fuel cell separator | |
JP2002260709A (en) | Solid polymer cell assembly, fuel cell stack, and method of operating fuel cell | |
JPH0529009A (en) | Gas channel plate for fuel cell | |
JPH07254424A (en) | Collector plate for molten carbonate fuel cell | |
CN101849310A (en) | Separator for fuel cell, and fuel cell | |
CN102782917B (en) | Fuel cell | |
CN213936251U (en) | A combined structure of bipolar plate and carbon felt for a flow battery | |
CN212542497U (en) | Flow field plates and fuel cells for fuel cells | |
US11289716B2 (en) | Bipolar plate, fuel cell stack with bipolar plate and power generation system with bipolar plate | |
JPH05159790A (en) | Solid oxide fuel cell | |
CN210489736U (en) | A flow field structure of a fuel cell | |
JPH03266365A (en) | Solid oxide fuel cell separator | |
JP3555215B2 (en) | Method of manufacturing fuel cell and flow path forming member used therein | |
JP2000323149A (en) | Separator for fuel cell and manufacturing device thereof | |
JP7354746B2 (en) | fuel cell stack | |
JP2001250568A (en) | Current collector plate for polymer electrolyte fuel cells | |
JP4268400B2 (en) | Fuel cell |