JPH08105305A - Absorption type rankine cycle generation apparatus - Google Patents
Absorption type rankine cycle generation apparatusInfo
- Publication number
- JPH08105305A JPH08105305A JP24356494A JP24356494A JPH08105305A JP H08105305 A JPH08105305 A JP H08105305A JP 24356494 A JP24356494 A JP 24356494A JP 24356494 A JP24356494 A JP 24356494A JP H08105305 A JPH08105305 A JP H08105305A
- Authority
- JP
- Japan
- Prior art keywords
- water
- ammonia
- turbine
- heat
- condenser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010521 absorption reaction Methods 0.000 title claims description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 79
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 29
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000001704 evaporation Methods 0.000 claims abstract description 11
- 230000008020 evaporation Effects 0.000 claims abstract description 10
- 239000002918 waste heat Substances 0.000 claims abstract description 9
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 14
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 13
- 238000011084 recovery Methods 0.000 claims description 3
- 230000008016 vaporization Effects 0.000 claims 1
- 238000010248 power generation Methods 0.000 abstract description 11
- 239000007864 aqueous solution Substances 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 3
- 238000009835 boiling Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、工場等から排出される
比較的低温(例えば、150℃以下)の未利用エネルギ
ーを有効に利用して発電する吸収式ランキンサイクル発
電装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption-type Rankine cycle power generator which effectively utilizes unused energy at a relatively low temperature (for example, 150 ° C. or lower) discharged from a factory or the like.
【0002】[0002]
【従来の技術】従来、低温度の廃熱から熱回収を行なっ
て発電する方式として最も代表的な装置としては、図4
に示すような、アンモニア単一ランキンサイクル発電装
置が知られている。この装置は、その作動媒体として低
沸点媒体である有機媒体、例えば、アンモニア又はフロ
ン等の単一媒体を使用し、タービン1から出た排気を凝
縮器2において冷却水Cで冷却して液化させ、液化させ
たアンモニア液(NH3 )を給液ポンプ3によってボイ
ラ等の蒸発部4に供給し、そこで、比較的低温の廃熱H
によって蒸発させてアンモニア蒸気としてタービン1に
供給し、このタービン1により駆動される発電機5で発
電するようになっている。2. Description of the Related Art Conventionally, as a most typical device for recovering heat from low temperature waste heat to generate electricity, FIG.
There is known an ammonia single Rankine cycle power generation device as shown in FIG. This device uses an organic medium, which is a low boiling point medium, as a working medium, for example, a single medium such as ammonia or chlorofluorocarbon, and exhaust gas discharged from the turbine 1 is cooled by cooling water C in a condenser 2 and liquefied. The liquefied ammonia solution (NH 3 ) is supplied to the evaporator 4 such as a boiler by the liquid supply pump 3, and the waste heat H of a relatively low temperature
Is vaporized and supplied as ammonia vapor to the turbine 1, and the generator 5 driven by the turbine 1 generates electric power.
【0003】このような低沸点媒体を利用したランキン
サイクル発電装置は、上記のように、150℃以下の、
通常、人間が生活する程度の未利用エネルギーを蒸発部
とタービンを利用して動力化しようとするものである
が、アンモニアの特性からその高圧高温条件が決定して
しまう。すなわち、タービン1から出る排気の圧力も冷
却水Cによって冷却される温度で決まってしまうことか
ら、温度レベル的には、必ずしも適当な媒体ではなく、
タービンで発生する動力は、これ以上に大きくはならな
い。A Rankine cycle power generator using such a low boiling point medium has a temperature of 150 ° C. or lower as described above.
Usually, it is an attempt to use unused energy for human life by using an evaporator and a turbine, but the high pressure and high temperature conditions are determined from the characteristics of ammonia. That is, since the pressure of the exhaust gas from the turbine 1 is also determined by the temperature cooled by the cooling water C, it is not necessarily an appropriate medium in terms of temperature level.
The power generated by the turbine will not be greater than this.
【0004】一方、このランキンサイクルと類似のカリ
ーナサイクルも公知であるが、このサイクルは、システ
ムとして複雑となり、かつ、対象温度がガスタービンの
排ガス温度レベルの如く、比較的高いという問題があ
る。On the other hand, although a Carina cycle similar to this Rankine cycle is also known, this cycle has a problem that the system is complicated and the target temperature is relatively high like the exhaust gas temperature level of the gas turbine.
【0005】[0005]
【発明が解決しようとする課題】本発明は、係る従来の
問題を解消するためになされたものであり、その目的と
するところは、ランキンサイクルの作動媒体として、ア
ンモニアと水の混合媒体を使用し、タービンの圧力等の
設計条件及び発電出力量の改善を計り得る吸収式ランキ
ンサイクル発電装置を提供することにある。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and its object is to use a mixed medium of ammonia and water as a working medium of Rankine cycle. However, it is another object of the present invention to provide an absorption-type Rankine cycle power generation device capable of improving design conditions such as turbine pressure and the amount of power generation output.
【0006】[0006]
【課題を解決するための手段】すなわち、本発明の吸収
式ランキンサイクル発電装置は、作動媒体をアンモニア
及び水の混合媒体とし、かつ、比較的低温度の廃熱を熱
源とした熱回収発電装置であって、その蒸発部ではアン
モニア水溶液をタービンに導入するアンモニア蒸気と水
に分離し、その水をタービンより排出されるアンモニア
蒸気と凝縮器において、再度、混合させ、形成されたア
ンモニア水溶液を前記蒸発部へ送液すると共に、前記蒸
発部と凝縮器の間を反対方向に移動する水とアンモニア
水溶液を熱交換させることを特徴とするものである。That is, the absorption Rankine cycle power generator of the present invention is a heat recovery power generator in which a working medium is a mixed medium of ammonia and water and waste heat of a relatively low temperature is used as a heat source. In the evaporator, the aqueous ammonia solution is separated into ammonia vapor to be introduced into the turbine and water, and the water is mixed again with the ammonia vapor discharged from the turbine in the condenser to form the aqueous ammonia solution as described above. The liquid is sent to the evaporation section, and at the same time, the water and the ammonia solution moving between the evaporation section and the condenser in the opposite direction are heat-exchanged.
【0007】すなわち、150℃以下の比較的低温度の
廃熱の熱源により蒸発部で加熱されたアンモニア水溶液
は、アンモニア蒸気と水とに分離され、分離された水
が、タービンの排気であるアンモニア蒸気と凝縮器で接
触し、そこで、冷却水で冷却されるので、アンモニア蒸
気は水に吸収されてアンモニア水溶液になり、上記の水
と熱交換する熱交換器を経由して蒸発部に戻り、この熱
交換器により熱ロスが防止さると共に、水及びアンモニ
アの混合媒体を作動媒体としているので、凝縮器での凝
縮圧力を低減できる一方、タービン膨張割合を拡大する
ことができ、それだけ発生出力を大きくできる。That is, the aqueous ammonia solution heated in the evaporating section by the heat source of waste heat having a relatively low temperature of 150 ° C. or lower is separated into ammonia vapor and water, and the separated water is ammonia that is exhaust gas from the turbine. Since it makes contact with the steam at the condenser, where it is cooled by cooling water, the ammonia steam is absorbed by water to form an aqueous ammonia solution, and returns to the evaporation section via the heat exchanger that exchanges heat with the water, This heat exchanger prevents heat loss and uses a mixed medium of water and ammonia as the working medium, so the condensation pressure in the condenser can be reduced, while the turbine expansion rate can be increased, and the generated output is that much. Can be made bigger.
【0008】[0008]
【実施例】以下、図面を参照して本発明の実施例を説明
する。図1は本発明に係る吸収式ランキンサイクル発電
装置の系統図、図2は本発明に係る吸収式ランキンサイ
クル発電装置の蒸発部の要部詳細系統図であり、従来と
同じ機器は、同じ符号で示している。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of an absorption-type Rankine cycle power generation device according to the present invention, and FIG. 2 is a detailed system diagram of a main part of an evaporation section of an absorption-type Rankine cycle power generation device according to the present invention. It shows with.
【0009】この発電装置は、作動媒体にアンモニアと
水の混合媒体を使用しており、比較的低温度、例えば、
工場等から排出される150℃以下の廃熱を熱源とした
熱回収発電装置であり、図1の蒸発部4において、アン
モニア水溶液を廃熱Hで加熱することにより、アンモニ
ア蒸気と水に分離させている。分離されたアンモニア蒸
気は、タービン1に導入され、発電機5により発電する
が、一方の分離された水は、熱交換器6を介して凝縮器
2に送られ、ここで、タービン1より排出されたアンモ
ニア蒸気と接触し、かつ、凝縮器2において冷却水Cに
より冷却されることでアンモニア蒸気とそれを吸収する
水との混合により、再び、アンモニア水溶液が形成され
る。This power generator uses a mixed medium of ammonia and water as a working medium, and has a relatively low temperature, for example,
This is a heat recovery power generator using waste heat of 150 ° C. or less discharged from a factory or the like as a heat source, and by heating the aqueous ammonia solution with the waste heat H in the evaporation section 4 of FIG. 1, it is separated into ammonia vapor and water. ing. The separated ammonia vapor is introduced into the turbine 1 and generated by the power generator 5, while the separated water is sent to the condenser 2 via the heat exchanger 6 and discharged from the turbine 1 here. The aqueous ammonia is formed again by the mixing of the ammonia vapor and the water that absorbs the ammonia vapor that is brought into contact with the ammonia vapor and cooled by the cooling water C in the condenser 2.
【0010】このアンモニア水溶液は、給液ポンプ3に
より熱交換器6を経由して蒸発部4へ戻される。上記の
ように、蒸発部4から凝縮器2へ移動する水と、凝縮器
2から蒸発部4へ移動するアンモニア水溶液とは、それ
ぞれの移動において、熱交換器6を介してそれぞれ熱交
換を行なうことになる。This aqueous ammonia solution is returned by the liquid supply pump 3 to the evaporator 4 via the heat exchanger 6. As described above, the water moving from the evaporator 4 to the condenser 2 and the aqueous ammonia solution moving from the condenser 2 to the evaporator 4 perform heat exchange via the heat exchanger 6 in each movement. It will be.
【0011】ここで、凝縮器2において、アンモニア蒸
気と水の2つの媒体が混合し、相互に吸収する際に、吸
収熱が発生し、その吸収熱は、凝縮器2の冷却水Cが奪
うことになるが、2つの媒体の混合に伴う圧力は、図4
に示す従来のアンモニア単一ランキンサイクル発電装置
の場合に比べて極めて低い圧力になる。このことは、タ
ービン1の入口と出口との熱落差が大きくなり、それだ
け、タービン1で発生する動力、すなわち、発電量が増
大することになる。Here, in the condenser 2, when the two media of ammonia vapor and water are mixed and mutually absorbed, absorption heat is generated, and the absorption heat is taken by the cooling water C of the condenser 2. However, the pressure associated with the mixing of the two media is
The pressure is extremely low as compared with the case of the conventional ammonia single Rankine cycle power generation device shown in FIG. This means that the heat drop between the inlet and the outlet of the turbine 1 increases, and the power generated in the turbine 1, that is, the amount of power generation increases accordingly.
【0012】ここで、図3を参照し、図4に示す従来例
と図1に示す本発明における圧力とエンタルピーとの関
係を表すアンモニア状態線図について説明する。図4の
従来のアンモニア単一の場合では、線図A−B、即ち、
圧力1000PSIAから300PSIAまでのエンタルピーh
2 が、タービン断熱変化であるのに対し、図1の本発明
のアンモニアと水との混合媒体の場合では、線図X−
Y、即ち、圧力800PSIAから200PSIAまでのエンタ
ルピーh1 がタービン断念変化となり、エンタルピーに
h1 −h2 の差がでることが判る。この分だけ、タービ
ン1における熱落差が大きく、タービン膨張割合を拡大
でき、以て、発生出力が大きくなることになる。An ammonia state diagram showing the relationship between pressure and enthalpy in the conventional example shown in FIG. 4 and the present invention shown in FIG. 1 will be described with reference to FIG. In the case of the conventional ammonia alone in FIG. 4, the diagrams AB, that is,
Enthalpy h from pressures of 1000 PSIA to 300 PSIA
2 is the turbine adiabatic change, whereas in the case of the mixed medium of ammonia and water of the present invention of FIG.
Y, i.e., the enthalpy h 1 from the pressure 800PSIA to 200PSIA becomes turbine abandon changes, it can be seen that the difference between h 1 -h 2 comes out in enthalpy. As a result, the heat drop in the turbine 1 is large, and the turbine expansion rate can be expanded, so that the generated output becomes large.
【0013】ここで、図1の装置のアンモニア水溶液濃
度を80%とした場合、図3に示すタービン断熱落差で
11.1kcal/kg(断熱効率100%)の差があること
になり、これだけ未利用エネルギーの有効利用ができる
ことになる。次に、図2の蒸発部4の詳細について説明
すると、この蒸発部4は、蒸発器41と過熱器42とか
らなり、廃熱Hは、矢印の如く、過熱器42から蒸発器
41へ導入され、熱吸収後は廃棄される。Here, when the ammonia aqueous solution concentration of the apparatus of FIG. 1 is set to 80%, there is a difference of 11.1 kcal / kg (adiabatic efficiency 100%) in the turbine adiabatic head shown in FIG. It is possible to effectively use the energy used. Next, the details of the evaporator 4 in FIG. 2 will be described. The evaporator 4 is composed of an evaporator 41 and a superheater 42, and the waste heat H is introduced from the superheater 42 to the evaporator 41 as indicated by the arrow. And is discarded after absorbing heat.
【0014】また、蒸発器41へ導入されたアンモニア
水溶液は、ここで分離され、分離されたアンモニア蒸気
は、気水分離器43を介して過熱器42で、更に、過熱
された後、タービン1へ導入される。一方、分離された
水は、熱交換器6を介して凝縮器2へ導入され、タービ
ン1の排気であるアンモニア蒸気を吸収する。Further, the aqueous ammonia solution introduced into the evaporator 41 is separated here, and the separated ammonia vapor is further superheated in the superheater 42 via the steam separator 43, and then the turbine 1 Be introduced to. On the other hand, the separated water is introduced into the condenser 2 via the heat exchanger 6 and absorbs the ammonia vapor which is the exhaust gas of the turbine 1.
【0015】[0015]
【発明の効果】上記のように、本発明の吸収式ランキン
サイクル発電装置によれば、水とアンモニアの混合媒体
を作動媒体としているので、凝縮器での凝縮圧力を低減
できる。その結果、タービン膨張割合が拡大するため、
発生出力が大きくなる。As described above, according to the absorption rankine cycle power generator of the present invention, since the working medium is the mixed medium of water and ammonia, the condensation pressure in the condenser can be reduced. As a result, the turbine expansion rate increases,
The generated output becomes large.
【図1】本発明に係る吸収式ランキンサイクル発電装置
の系統図である。FIG. 1 is a system diagram of an absorption-type Rankine cycle power generation device according to the present invention.
【図2】本発明に係る吸収式ランキンサイクル発電装置
の要部系統図である。FIG. 2 is a main part system diagram of an absorption-type Rankine cycle power generation device according to the present invention.
【図3】本発明の装置と従来の装置のタービンでの断熱
膨張の変化を示すアンモニア状態線図である。FIG. 3 is an ammonia state diagram showing changes in adiabatic expansion in the turbine of the device of the present invention and the conventional device.
【図4】従来のアンモニア単一ランキンサイクル発電装
置の系統図である。FIG. 4 is a system diagram of a conventional ammonia single Rankine cycle power generation device.
1 タービン 2 凝縮器 4 蒸発部 1 Turbine 2 Condenser 4 Evaporator
Claims (1)
とし、かつ、比較的低温度の廃熱を熱源とした熱回収発
電装置であって、その蒸発部ではアンモニア水溶液をタ
ービンに導入するアンモニア蒸気と水に分離し、その水
をタービンより排出されるアンモニア蒸気と凝縮器にお
いて、再度、混合させ、形成されたアンモニア水溶液を
前記蒸発部へ送液すると共に、前記蒸発部と凝縮器の間
を反対方向に移動する水とアンモニア水溶液を熱交換さ
せる吸収式ランキンサイクル発電装置。1. A heat recovery power generator using a mixed medium of ammonia and water as a working medium, and using waste heat of a relatively low temperature as a heat source, wherein the vaporizing section introduces an aqueous ammonia solution into a turbine. Water is separated into water, and the water is mixed again with the ammonia vapor discharged from the turbine in the condenser, and the formed aqueous ammonia solution is sent to the evaporation section, and between the evaporation section and the condenser. An absorption Rankine cycle power generator that exchanges heat between water and ammonia solution that move in opposite directions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24356494A JPH08105305A (en) | 1994-10-07 | 1994-10-07 | Absorption type rankine cycle generation apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24356494A JPH08105305A (en) | 1994-10-07 | 1994-10-07 | Absorption type rankine cycle generation apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08105305A true JPH08105305A (en) | 1996-04-23 |
Family
ID=17105722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24356494A Pending JPH08105305A (en) | 1994-10-07 | 1994-10-07 | Absorption type rankine cycle generation apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08105305A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008101521A (en) * | 2006-10-18 | 2008-05-01 | Fuji Oil Co Ltd | Power generation system using exhaust heat |
JP2008248830A (en) * | 2007-03-30 | 2008-10-16 | Kyushu Denshi Giken Kk | Compound turbine system and hot water power generation device using same |
JP2009041567A (en) * | 2007-08-07 | 2009-02-26 | General Electric Co <Ge> | Method and apparatus for supplying pressure for spray inlet temperature suppressor of gas turbine |
-
1994
- 1994-10-07 JP JP24356494A patent/JPH08105305A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008101521A (en) * | 2006-10-18 | 2008-05-01 | Fuji Oil Co Ltd | Power generation system using exhaust heat |
JP2008248830A (en) * | 2007-03-30 | 2008-10-16 | Kyushu Denshi Giken Kk | Compound turbine system and hot water power generation device using same |
JP2009041567A (en) * | 2007-08-07 | 2009-02-26 | General Electric Co <Ge> | Method and apparatus for supplying pressure for spray inlet temperature suppressor of gas turbine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2700538B2 (en) | A refrigeration cycle apparatus that drives a refrigeration cycle for cooling outside air used in a gas turbine by using exhaust heat from a steam turbine, and a combined cycle power plant using such a refrigeration cycle apparatus | |
JP3391515B2 (en) | Apparatus and method for obtaining power from high pressure geothermal fluid | |
KR100628597B1 (en) | Modified bottoming cycle for cooling inlet air to a gas turbine combined cycle plant | |
US6209307B1 (en) | Thermodynamic process for generating work using absorption and regeneration | |
JP3961058B2 (en) | Method and apparatus for converting heat into effective energy | |
JP3681434B2 (en) | Cogeneration system and combined cycle power generation system | |
JPH0941908A (en) | Thermodynamical power generator using three-component working fluid | |
CN103147943B (en) | Ammonia water mixed working medium-based combined cooling and power supply system for utilization of geothermal energy | |
CN109519243A (en) | Supercritical CO2With ammonium hydroxide combined cycle system and electricity generation system | |
JP2003232226A (en) | Gas turbine power generation equipment | |
JPH09203304A (en) | Compound power generating system using waste as fuel | |
KR101917430B1 (en) | Power generating apparatus | |
JPH11173109A (en) | Power generation and hot water supply system | |
JPH08105305A (en) | Absorption type rankine cycle generation apparatus | |
JP2001248409A (en) | Exhaust heat recovery system | |
JP2010096414A (en) | Ammonia absorption refrigeration type power generating device | |
JP2753347B2 (en) | Steam turbine system and energy supply system | |
JPH05272837A (en) | Compression absorption composite heat pump | |
RU2787622C1 (en) | Thermal power plant with a regeneration system and method of its operation | |
JP3973412B2 (en) | Waste heat recovery system by gas turbine | |
RU2779349C1 (en) | Recovery power plant | |
RU2799694C1 (en) | Combined power plant with waste heat recovery | |
JPH02106665A (en) | Cogeneration system utilizing absorbing type heat pump cycle | |
JP2655227B2 (en) | Absorption double-effect generator | |
JPS63134867A (en) | Ocean temperature difference power generation set |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19991026 |