[go: up one dir, main page]

JPH08104925A - Method for producing high-strength hot-dip galvanized steel sheet with excellent plating properties - Google Patents

Method for producing high-strength hot-dip galvanized steel sheet with excellent plating properties

Info

Publication number
JPH08104925A
JPH08104925A JP24266494A JP24266494A JPH08104925A JP H08104925 A JPH08104925 A JP H08104925A JP 24266494 A JP24266494 A JP 24266494A JP 24266494 A JP24266494 A JP 24266494A JP H08104925 A JPH08104925 A JP H08104925A
Authority
JP
Japan
Prior art keywords
hot
steel sheet
galvanized steel
dip galvanized
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24266494A
Other languages
Japanese (ja)
Inventor
Kazuaki Kyono
一章 京野
Nobuo Totsuka
信夫 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24266494A priority Critical patent/JPH08104925A/en
Publication of JPH08104925A publication Critical patent/JPH08104925A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

(57)【要約】 【目的】 Siを0.1 %以上含んでいても溶融亜鉛めっき
時の不めっきの発生のない高張力溶融亜鉛めっき鋼板お
よび高張力合金化溶融亜鉛めっき鋼板の製造方法の提
供。 【構成】 C:0.1 %以下、Si:0.5 %以下、Mn:2.0
%以下、P:0.03〜0.10%を含有した鋼片を熱間圧延し
た後、40%以上、{−80×Si(%)+90}%以下の範囲
の圧下率で冷間圧延し、 900℃以下でかつ連続式溶融亜
鉛めっき設備にて750℃以上、{−2.5 ×圧下率(%)
+1025}℃以下の温度範囲にて再結晶焼鈍後、溶融亜鉛
めっき、さらには合金化処理を行う。
(57) [Summary] [Purpose] To provide a method for producing a high-strength hot-dip galvanized steel sheet and a high-strength hot-dip galvanized steel sheet that do not cause non-plating during hot-dip galvanizing even if Si is contained at 0.1% or more. [Constitution] C: 0.1% or less, Si: 0.5% or less, Mn: 2.0
% Or less, P: 0.03 to 0.10% of the steel slab is hot-rolled, and then cold-rolled at a reduction ratio in the range of 40% or more and {-80 × Si (%) + 90}% or less, and 900 ° C. Below and 750 ℃ or more in continuous hot dip galvanizing equipment, {-2.5 × rolling reduction (%)
After recrystallization annealing in the temperature range of +1025} ° C or less, hot dip galvanizing and alloying treatment are performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として自動車材料用
の45kg/mm2 以上の高張力溶融亜鉛めっき鋼板および高
張力合金化溶融亜鉛めっき鋼板の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength hot-dip galvanized steel sheet having a weight of 45 kg / mm 2 or more and a method for producing a high-strength galvannealed steel sheet mainly for automobile materials.

【0002】[0002]

【従来の技術】合金化溶融亜鉛めっき鋼板は優れた塗装
後耐食性を有しているために、自動車車体の内板、外
板、構造部品などの自動車材料に広く使用されている。
合金化溶融亜鉛めっき鋼板の製法としては各種あるが、
コスト、生産能率のためにライン内焼鈍方式、すなわち
材質を得るための焼鈍と表面のFe酸化物を還元する焼鈍
を兼ねて焼鈍を行い、その後溶融亜鉛浴に浸漬すること
により溶融亜鉛めっきし、その後引き上げて付着量を制
御し、加熱することにより合金化処理して亜鉛めっきを
Zn−Fe合金めっきとするのが主流である。
2. Description of the Related Art Alloyed hot-dip galvanized steel sheets are widely used for automobile materials such as inner plates, outer plates and structural parts of automobile bodies because of their excellent corrosion resistance after painting.
There are various methods for producing alloyed hot-dip galvanized steel sheets,
Cost, in-line annealing method for production efficiency, that is, annealing is performed to combine the annealing for obtaining the material and the surface Fe oxide to perform annealing, and then hot dip galvanizing by dipping in a hot dip zinc bath, After that, pull up to control the amount of adhesion, and heat to alloy to perform galvanization.
The mainstream is Zn-Fe alloy plating.

【0003】一方、自動車車体の軽量化のために鉄鋼材
料の高張力が要求されている。特に、CAFE(地球環
境問題)で自動車の燃費の向上が要求されたため、その
ニーズは強いものがある。従って高張力合金化溶融亜鉛
めっき鋼板が必要となった。また、高張力溶融亜鉛めっ
き鋼板も自動車、家電、建材用等に需要がある。高張力
化する場合、固溶強化や組織強化など各種の方法がある
が、いずれの方法であってもC、Si、Mn、P、Cr、Ni、
Mo、Ti、Nbなどの添加元素が必要であるが、これらのう
ちSiは0.1wt %(以下%と表示する)以上で著しくめっ
き性を阻害することを見い出した。特に、Siが0.1 %以
上でかつMn、Cr、P、Mo、CuおよびNiの1種以上を合計
で1.0 %以上含む高張力鋼板を溶融亜鉛めっきする時、
亜鉛めっきが全面を覆わず、鋼板生地が露出したままの
いわゆる不めっきが発生した。
On the other hand, high tensile strength of steel materials is required to reduce the weight of automobile bodies. In particular, there is a strong need for the improvement of fuel efficiency of automobiles due to CAFE (Global Environmental Issues). Therefore, high strength alloyed hot-dip galvanized steel sheet is required. High-strength hot-dip galvanized steel sheets are also in demand for automobiles, home appliances, building materials, etc. There are various methods for increasing the tensile strength, such as solid solution strengthening and microstructural strengthening. In any method, C, Si, Mn, P, Cr, Ni,
Although additional elements such as Mo, Ti, and Nb are required, it was found that Si of 0.1 wt% (hereinafter referred to as%) or more significantly impairs the plating property. In particular, when hot dip galvanizing a high-strength steel sheet containing 0.1% or more of Si and 1.0% or more of one or more of Mn, Cr, P, Mo, Cu and Ni in total,
Zinc plating did not cover the entire surface, and so-called non-plating occurred with the steel sheet material exposed.

【0004】不めっき対策として、溶融亜鉛めっきの浴
温や溶融亜鉛めっき浴のAl濃度を適切に制御することも
考えられるが、その場合でもSiを0.1 %以上含有する場
合には不めっきを皆無にすることは容易ではない。また
通常の操業条件において浴温やAl濃度を変更させること
は容易ではなく、操業上大きな問題となる。その対策と
して特開昭55−122865号公報には雰囲気による高温初期
酸化処理によるSi、Mn等の表面濃化防止技術が、特開昭
57−79160 号公報にはFe系プレめっきによるSi、Mn等の
表面濃化防止技術が開示されている。しかしながら、前
者は酸化量の制御が困難であり、後者は実用的には多く
のFe付着量、すなわち通常5g/m2 以上、Siが0.5 %
を超えると約10g/m2 が必要であり、設備コスト、ラ
ンニングコストとも高い。
As a countermeasure for non-plating, it is possible to appropriately control the bath temperature of the hot dip galvanizing and the Al concentration of the hot dip galvanizing bath, but even in that case, no non-plating occurs if Si is contained at 0.1% or more. It's not easy to do. In addition, it is not easy to change the bath temperature and the Al concentration under normal operating conditions, which is a major operational problem. As a countermeasure against this, Japanese Patent Application Laid-Open No. 55-122865 discloses a technology for preventing surface concentration of Si, Mn, etc. by high-temperature initial oxidation treatment in an atmosphere.
57-79160 discloses a technology for preventing surface concentration of Si, Mn, etc. by Fe-based pre-plating. However, it is difficult for the former to control the amount of oxidation, and for the latter, practically, a large amount of Fe is deposited, that is, usually 5 g / m 2 or more, and Si is 0.5%.
If it exceeds, about 10 g / m 2 is required, and both equipment cost and running cost are high.

【0005】そこで、溶融亜鉛めっき浴条件を変更せ
ず、これらの方法に代わる安価で容易な表面濃化防止処
理技術が必要となった。
Therefore, there is a need for an inexpensive and easy surface thickening preventing treatment technique which is an alternative to these methods without changing the conditions of the hot dip galvanizing bath.

【0006】[0006]

【発明が解決しようとする課題】溶融亜鉛めっき時の不
めっきは致命的な欠陥であり、ごく一部でも不めっきが
発生すれば全く製品とはならない。本発明は、Siを0.1
%以上含んでいても、溶融亜鉛めっき時の不めっきの発
生のないめっき性に優れた高張力溶融亜鉛めっき鋼板お
よび高張力合金化溶融亜鉛めっき鋼板の製造方法を提供
することを目的とするものである。
The non-plating during hot dip galvanizing is a fatal defect, and if the non-plating occurs even in a very small amount, it cannot be a product at all. The present invention makes Si 0.1
% Or more, it is an object to provide a method for producing a high-strength hot-dip galvanized steel sheet and a high-tensile-alloyed hot-dip galvanized steel sheet that have excellent plating properties without causing non-plating during hot-dip galvanizing. Is.

【0007】[0007]

【課題を解決するための手段】本発明は、C:0.1 %以
下、Si:0.5 %以下、Mn:2.0 %以下、P:0.03〜0.10
%を含有した鋼片を熱間圧延した後、下記(1)式で表
される圧下率で冷間圧延し、連続式溶融亜鉛めっき設備
にて、 900℃以下でかつ下記(2)式で表される再結晶
焼鈍温度で焼鈍後溶融亜鉛めっきすることを特徴とする
めっき性に優れた高張力溶融亜鉛めっき鋼板の製造方法
であり、また本発明は、前記再結晶焼鈍をオールラジア
ントチューブ方式で行うことが好ましく、また本発明は
上記で得られた高張力溶融亜鉛めっき鋼板を合金化処理
することを特徴とするめっき性に優れた高張力合金化溶
融亜鉛めっき鋼板の製造方法である。
According to the present invention, C: 0.1% or less, Si: 0.5% or less, Mn: 2.0% or less, P: 0.03 to 0.10.
% Of the steel billet is hot-rolled, and then cold-rolled at a reduction ratio represented by the following formula (1), at a hot dip galvanizing facility at 900 ° C or lower and by the following formula (2). A method for producing a high-strength hot-dip galvanized steel sheet having excellent plating properties, which comprises hot-dip galvanizing after annealing at a recrystallization annealing temperature represented, and the present invention is an all-radiant tube method for the recrystallization annealing. The present invention is a method for producing a high-strength hot-dip galvanized steel sheet having excellent plating properties, which comprises subjecting the high-strength hot-dip galvanized steel sheet obtained above to an alloying treatment.

【0008】記 40%≦圧下率≦{−80×Si(%)+90}% ……………(1) 750 ℃≦再結晶焼鈍温度≦{−2.5 ×圧下率(%)+1025}℃ …(2)Note 40% ≦ reduction ratio ≦ {−80 × Si (%) + 90}% ……… (1) 750 ° C ≦ recrystallization annealing temperature ≦ {−2.5 × reduction ratio (%) + 1025} ° C. (2)

【0009】[0009]

【作用】本発明者らは、前記の高張力鋼板の不めっき原
因を検討した結果、鋼板表面にSiO2、MnO 、Cr2O3 など
の酸化物、複合添加の場合にはFeSiO 、MnSiO などの複
合酸化物が鋼板の表面に濃化しており、鋼板を覆ってい
るためであることを再確認した。特にSiは0.1 %以上の
添加により表面濃化し、めっき性を特に損なう元素であ
った。
[Function] As a result of investigating the cause of non-plating of the above high-strength steel sheet, the present inventors have found that oxides such as SiO 2 , MnO and Cr 2 O 3 on the surface of the steel sheet, FeSiO 2 and MnSiO 2 in the case of compound addition It was reconfirmed that this is because the complex oxide of (3) is concentrated on the surface of the steel sheet and covers the steel sheet. In particular, Si was an element which surface-concentrated when added in an amount of 0.1% or more and particularly impairs the plating property.

【0010】MnはSiほどではないが表面濃化し、やはり
めっき性を阻害する。これらの表面濃化により溶融亜鉛
との濡れ性が低下し、その結果、不めっきが発生すると
されており、前述の濃化防止もこの考え方に沿うもので
ある。ところで、冷延鋼板の再結晶焼鈍は通常数%のH
2 を含む、Feにとって還元性の雰囲気にて行われる。と
ころが高張力化のためにSi、Mn、Cr等が添加されている
とこれらの元素は易酸化性であり、通常の再結晶焼鈍雰
囲気では酸化性である。従って表面では選択酸化されて
酸化物となり、鋼中のバルクのこれらの成分が表面に向
かって拡散するため、多量の表面濃化層が形成される。
この表面濃化層がめっき性を阻害する。
[0010] Mn thickens the surface, though not so much as Si, and also hinders the plating property. It is said that the surface thickening reduces the wettability with molten zinc, resulting in non-plating, and the prevention of thickening is also in line with this idea. By the way, recrystallization annealing of cold-rolled steel sheet is usually performed with H of several%.
It is performed in an atmosphere that is reducing for Fe, including 2 . However, when Si, Mn, Cr, etc. are added to increase the tensile strength, these elements are easily oxidizable, and are oxidizable in a normal recrystallization annealing atmosphere. Therefore, the surface is selectively oxidized to form an oxide, and these components in the bulk of the steel diffuse toward the surface, so that a large amount of surface concentrated layer is formed.
This surface concentrated layer hinders the plating property.

【0011】従ってこの表面濃化を抑制することが重要
であるが、これは熱力学的に当然の現象であり、従来の
対策としてはせいぜいSi、Mn、Crの添加量を規制する程
度であった。ところが本発明者らは、鋼中の成分が同一
でありしかも焼鈍以降の条件が同一であるにもかかわら
ず表面濃化が変化し、その結果めっき性が変化すること
を初めて見い出した。
Therefore, it is important to suppress this surface thickening, but this is a natural phenomenon thermodynamically, and as a conventional measure, at most, the amount of Si, Mn, and Cr added is restricted. It was However, the present inventors have found for the first time that the surface concentration changes and the platability changes as a result, even though the components in the steel are the same and the conditions after annealing are the same.

【0012】そこでその原因を鋭意検討した結果、その
主原因が熱延後冷間圧延工程にあることをつきとめ、本
発明に至ったものである。ところで従来までは、鋼中の
成分や冷延圧下率、焼鈍温度などの条件は材質(機械的
性質)を得ることを主眼としてきた。その場合材質を得
やすいこととコスト上安価なためにSiが添加され、しか
もその量が0.5 %近くまで高くなる。高r値を得るため
に冷延圧下率は高くなり焼鈍温度も高くなる。これらの
結果材質は得られてもめっき性は不良となった。
Then, as a result of diligent examination of the cause, it was found that the main cause was the cold rolling process after hot rolling, and the present invention was accomplished. By the way, until now, the main objectives have been to obtain the material (mechanical properties) of the components in the steel, the cold rolling reduction, the annealing temperature and other conditions. In that case, Si is added because the material is easy to obtain and the cost is low, and the amount increases to nearly 0.5%. In order to obtain a high r value, the cold rolling reduction rate becomes high and the annealing temperature also becomes high. As a result, although the material was obtained, the plating property was poor.

【0013】本発明において、初めてFe系プレめっきや
初期酸化処理によらずめっき性を確保することができる
ようになった。通常の再結晶焼鈍でのSi、Mn、Cr等の表
面での選択酸化は熱力学的に不可避である。しかし、本
発明者らの検討によれば、鋼中成分量の規制とともに鋼
中Si量を関数とした冷延圧下率の規制を加えることによ
り表面濃化量を減少させることができ、その結果めっき
性を改善できることを見い出した。
In the present invention, for the first time, it becomes possible to secure the plating property without using Fe-based pre-plating or initial oxidation treatment. Selective oxidation on the surface of Si, Mn, Cr, etc. in the ordinary recrystallization annealing is thermodynamically unavoidable. However, according to the study by the present inventors, the amount of surface enrichment can be reduced by adding the regulation of the cold rolling reduction as a function of the amount of Si in the steel together with the regulation of the content of the components in the steel. It has been found that the plateability can be improved.

【0014】Si量は0.5 %以下に限定する。これは原板
のSi量の増加とともに焼鈍後の表面濃化量が増加しめっ
き性が劣化するためである。しかし、単にSi量の限定の
みでは不十分であり、Si量を関数として冷延圧下率を
{−80×Si(%)+90}%以下に限定する必要がある。
この理由は同じSi量であっても、冷延圧下率が高いと表
面濃化量が多くなり、めっき性が劣化するためである。
すなわち、冷延圧下率を高くしたい場合にはSi添加量を
低下させる必要がある。
The amount of Si is limited to 0.5% or less. This is because as the Si content of the original plate increases, the surface concentration after annealing increases and the plating properties deteriorate. However, merely limiting the Si amount is not sufficient, and it is necessary to limit the cold rolling reduction to {-80 × Si (%) + 90}% or less as a function of the Si amount.
The reason for this is that even if the amount of Si is the same, if the cold rolling reduction ratio is high, the amount of surface concentration increases and the plating property deteriorates.
That is, in order to increase the cold rolling reduction, it is necessary to reduce the amount of Si added.

【0015】この冷延圧下率が表面濃化量に及ぼす原因
については確定できたわけではないが、冷延により鋼に
歪が与えられこの歪が焼鈍中および焼鈍完了時点でも完
全には消失せず、この歪を経由してSiが拡散して表面に
濃化するためと推定される。つまり正常な歪の無い体拡
散よりも歪を経由する拡散の方が圧倒的に早いためと考
えられる。この焼鈍中でも残存する歪の量(数)が冷延
圧下率と比例するために、冷延圧下率の低い方が同じSi
添加量でも表面濃化量が少くなるメカニズムと考えられ
る。
Although the cause of the cold rolling reduction on the amount of surface thickening has not been determined, the strain is imparted to the steel by cold rolling and the strain does not completely disappear during annealing and at the time of completion of annealing. It is presumed that Si diffuses through this strain and concentrates on the surface. In other words, it is considered that diffusion through strain is overwhelmingly faster than normal diffusion without strain. Even during this annealing, the amount of strain remaining (number) is proportional to the cold rolling reduction, so the lower the cold rolling reduction, the same Si.
It is considered that the mechanism is such that the amount of surface thickening decreases even with the addition amount.

【0016】冷延圧下率の下限は40%以上とする。その
理由は、40%未満だと焼鈍中の再結晶がおこりにくくま
た良好な結晶方位が得られにくくなるためである。以上
まとめて図1にSi含有量に基づく許容冷延圧下率の領域
図(斜線部)のグラフを示す。Mn添加量は2.0 %以下に
限定される。この理由はMn2.0 %超ではMn自身の表面濃
化によりめっき性が阻害されるためである。Mnは冷延圧
下率の限定式の関数とはならない。その理由は同じSi
量、Mn量の鋼板を用いて冷延圧下率が焼鈍後の表面濃化
に及ぼす影響を調査したところ、冷延圧下率とSi表面濃
化量はほぼ正比例の関係であるが、Mnの表面濃化量はゆ
るやかな正の相関関係は認められるもののその傾きは小
さいことを見い出したためである。
The lower limit of the cold rolling reduction is 40% or more. The reason is that if it is less than 40%, recrystallization during annealing is difficult to occur and a good crystal orientation is difficult to obtain. In summary, FIG. 1 shows a graph of a region diagram (hatched portion) of the allowable cold rolling reduction rate based on the Si content. The amount of Mn added is limited to 2.0% or less. The reason for this is that if Mn exceeds 2.0%, the plating property is impeded by the surface concentration of Mn itself. Mn does not become a limited function of cold rolling reduction. The reason is the same Si
The effect of cold rolling reduction on the surface enrichment after annealing was investigated using steel sheets of Mn content and Mn content.The cold rolling reduction and the Si surface enrichment amount are almost directly proportional. This is because it has been found that the degree of concentration has a small slope, although a slight positive correlation is recognized.

【0017】冷延圧下率と焼鈍後のSiおよびMnの鋼板表
面濃化量との関係を図2に示す。表面濃化量はGDS
(グリムグロー発光分光)の積算値により定めた。Mnの
表面濃化が冷延圧下率に殆んど影響されないのは、Mnと
Siの拡散メカニズムの相違と考えられる。すなわちMnは
歪による拡散の寄与もあるが、むしろ主体は粒界を経由
する拡散であるためと考えられる。
FIG. 2 shows the relationship between the cold rolling reduction and the steel and steel surface enrichment of Si and Mn after annealing. Surface concentration is GDS
It was determined by the integrated value of (Grim glow emission spectrum). The fact that the surface concentration of Mn is hardly affected by the cold rolling reduction is
It is considered that the diffusion mechanism of Si is different. In other words, Mn also contributes to diffusion due to strain, but rather it is thought that the main component is diffusion via grain boundaries.

【0018】実際、焼鈍後のSEM(走査型電子顕微
鏡)による表面観察によれば粒界上にはMnを主とする濃
化物、粒面(粒内表面)にはSiを主とする複合酸化物が
認められることが多い。Cは0.1 %以下に限定される。
その理由は強度を得るためには高くしたいが、材質特性
を得るためには低い方が好ましいためである。特に高r
値を得たい場合にはCは0.01%以下が好ましい。
In fact, according to the surface observation with an SEM (scanning electron microscope) after annealing, a composite oxide mainly containing Mn on the grain boundary and Si mainly on the grain surface (internal grain surface) is observed. Things are often found. C is limited to 0.1% or less.
The reason is that it is desired to increase the strength in order to obtain the strength, but it is preferably lower in order to obtain the material characteristics. Especially high r
To obtain a value, C is preferably 0.01% or less.

【0019】Pは強度を得るためには有効な添加元素で
あり、しかもめっき性を劣化させることはほとんどない
ため0.03%以上とする。しかし多すぎると粒界への偏析
量が増加して脆化するために0.10%以下とする。これら
の鋼板を通常のCGL(連続式溶融亜鉛めっき設備)に
て再結晶焼鈍した後、溶融亜鉛めっきすればよい。
P is an effective additive element for obtaining strength, and since it hardly deteriorates the plating property, it is made 0.03% or more. However, if it is too large, the amount of segregation at grain boundaries increases and embrittlement occurs, so the content is made 0.10% or less. These steel sheets may be subjected to recrystallization annealing in a usual CGL (continuous hot dip galvanizing equipment) and then hot dip galvanizing.

【0020】同じ鋼板を使用しても、単に焼鈍温度が変
化するのみでも表面濃化量は変化する。当然温度の低い
方が表面濃化量は少ないがその焼鈍温度が表面濃化に及
ぼす影響についても冷延圧下率の影響があることを見い
出した。すなわち、同じ焼鈍温度であっても冷延圧下率
が低いと表面濃化量が抑制される。従って圧下率が高い
場合には焼鈍温度を低くする必要があり、圧下率が低い
場合には温度を高くすることができる。図3に冷延圧下
率と焼鈍温度との許容される領域図(斜線部)のグラフ
を示す。
Even if the same steel sheet is used, the amount of surface enrichment changes even if the annealing temperature changes. Naturally, the lower the temperature, the smaller the amount of surface thickening, but it was also found that the effect of the annealing temperature on the surface thickening also depends on the cold rolling reduction. That is, even if the annealing temperature is the same, if the cold rolling reduction is low, the amount of surface enrichment is suppressed. Therefore, it is necessary to lower the annealing temperature when the rolling reduction is high, and the temperature can be increased when the rolling reduction is low. FIG. 3 shows a graph of an allowable region diagram (hatched portion) of the cold rolling reduction and the annealing temperature.

【0021】すなわち、 900℃以下でかつ 750℃≦焼鈍
温度≦{−2.5 ×圧下率(%)+1025}℃の範囲に限定
される。750 ℃以上に限定されるのは再結晶を行うため
であり、900 ℃以下はそれを超えた温度が不要なためで
ある。焼鈍後、鋼板は冷却され侵入板温400 〜550 ℃に
て450 〜490 ℃の浴温の亜鉛めっき浴に浸漬してめっき
することが好ましい。侵入板温が400 ℃以上が好ましい
のは鋼板とめっき浴との反応を促進するためであり、55
0 ℃以下が好ましいのはあまり高温の板温とするとZn浴
の温度が上昇してしまうためである。亜鉛めっき浴温が
450 ℃以上が好ましいのは板との反応を促進するためで
あり、490 ℃以下が好ましいのは、それを超えると亜鉛
浴へのFeの溶出量が多くなり、ドロスの発生量が多くな
るためである。
That is, it is limited to the range of 900 ° C. or lower and 750 ° C. ≦ annealing temperature ≦ {−2.5 × reduction rate (%) + 1025} ° C. The reason why the temperature is limited to 750 ° C or higher is for recrystallization, and the temperature of 900 ° C or lower is not necessary for the temperature higher than that. After the annealing, the steel sheet is cooled, and it is preferable to plate by immersing the steel sheet in a zinc plating bath having a bath temperature of 450 to 490 ° C. at a plate temperature of 400 to 550 ° C. The temperature of the penetration plate is preferably 400 ° C or higher in order to accelerate the reaction between the steel plate and the plating bath.
The temperature of 0 ° C. or lower is preferable because the temperature of the Zn bath increases if the plate temperature is too high. The galvanizing bath temperature is
A temperature of 450 ° C or higher is preferred to accelerate the reaction with the plate, and a temperature of 490 ° C or lower is preferred because the amount of Fe eluted into the zinc bath increases and the amount of dross increases. Is.

【0022】合金化溶融亜鉛めっき鋼板を製造する場合
には、溶融亜鉛めっき後直ちに加熱し、溶融亜鉛と鋼板
中のFeとの拡散反応をおこさせ、合金化溶融亜鉛めっき
とする。なお通常の溶融亜鉛めっきの場合には亜鉛浴中
にAlが0.1 〜0.2 %程度含有されているが、合金化溶融
亜鉛めっきの場合には合金化を促進するためにやや低目
のAl濃度が推奨される。
When producing an alloyed hot-dip galvanized steel sheet, heating is performed immediately after hot-dip galvanizing to cause a diffusion reaction between the hot-dip zinc and Fe in the steel sheet to form an alloyed hot-dip galvanized sheet. In the case of normal hot-dip galvanizing, Al is contained in the zinc bath in the range of 0.1 to 0.2%, but in the case of alloying hot-dip galvanizing, a slightly lower Al concentration is used to promote alloying. Recommended.

【0023】通常のCGL(連続式溶融亜鉛めっき装
置)では焼鈍時の加熱方式としてNOF(無酸化炉)と
オールラジアントチューブタイプ(還元雰囲気)の2種
類がある。本発明はオールラジアントチューブタイプの
ラインに特に好適である。もちろん本発明の効果は本来
は加熱方式による影響はないのであるが、NOFの場
合、好むと好まざるにかかわらず鋼板表面は酸化され、
Fe酸化物が生成する。NOFは名称こそ Non Oxidizing
Furnace(無酸化炉)となってはいるが、バーナーの直
火やその廃ガスで鋼板表面を直接加熱するものであるか
ら部分的には還元性であっても、実態は上記のとおりで
ある。生成したFe酸化物はSi、Mnの表面濃化抑制作用が
あることは周知の事実である。しかしその効果は極めて
不安定で制御するのは困難である。一方、オールラジア
ントチューブタイプの場合にはそのような外乱が入らな
い。従って本発明はNOFタイプでも有効ではあるが特
にオールラジアントタイプのラインで有効である。
In a normal CGL (continuous type hot dip galvanizing apparatus), there are two types of heating methods during annealing: NOF (non-oxidizing furnace) and all radiant tube type (reducing atmosphere). The present invention is particularly suitable for all-radiant tube type lines. Of course, the effect of the present invention is not originally affected by the heating method, but in the case of NOF, the surface of the steel sheet is oxidized regardless of whether it is preferred or not.
Fe oxide is generated. The name of NOF is Non Oxidizing
Although it is a Furnace (non-oxidizing furnace), since it directly heats the surface of the steel sheet with the direct fire of the burner and its exhaust gas, the actual situation is as described above even if it is partially reducing. . It is a well-known fact that the produced Fe oxide has a surface concentration suppressing effect on Si and Mn. However, its effect is extremely unstable and difficult to control. On the other hand, in the case of the all-radiant tube type, such disturbance does not occur. Therefore, the present invention is effective even in the NOF type, but is particularly effective in the all radiant type line.

【0024】なお、鋼中の成分については材質や粒界特
性の制御のために適宜Cr、B、S、Ti、Nb、Al、O、N
等を添加したり、その添加量を制限してもかまわない。
Regarding the components in the steel, Cr, B, S, Ti, Nb, Al, O and N are appropriately used to control the material and grain boundary characteristics.
Etc. may be added or the addition amount thereof may be limited.

【0025】[0025]

【実施例】表1に示す種々の組成の鋼スラブを仕上げ温
度860 〜910 ℃で熱間圧延した後、圧下率を変更して板
厚0.8mm の冷延板とした。ついで実施例8、比較例10を
除いてオールラジアントチューブタイプのCGLにて再
結晶焼鈍後、めっき付着量30〜60g/m2 /片面の溶融
亜鉛めっきを施した。
[Examples] Steel slabs having various compositions shown in Table 1 were hot-rolled at a finishing temperature of 860 to 910 ° C, and then the reduction ratio was changed to obtain cold-rolled sheets having a thickness of 0.8 mm. Next, except for Example 8 and Comparative Example 10, after recrystallization annealing with all-radiant tube type CGL, the coating adhesion amount was 30 to 60 g / m 2 / one side hot dip galvanizing.

【0026】めっき性は目視および光学顕微鏡およびレ
ーザー顕微鏡および SEM/EDX (走査型電子顕微鏡/エ
ネルギー分散型X線分析)にて不めっきの有無を判定し
た。 めっき性の評価基準は次のとおりである。 ○は通常条件で不めっきなし。 △は通常条件でわずかに不めっきありで、他の対策、例
えば高浴温化要。
For the plating property, the presence or absence of non-plating was judged by visual observation, an optical microscope, a laser microscope and SEM / EDX (scanning electron microscope / energy dispersive X-ray analysis). The evaluation standard of the plating property is as follows. ○ means no plating under normal conditions. △ indicates that there is slight non-plating under normal conditions, and other measures such as high bath temperature are required.

【0027】×は不めっきあり。商品にならず。X indicates non-plating. Not a product.

【0028】[0028]

【表1】 [Table 1]

【0029】表1から、本発明の範囲の製造方法のもの
は、めっき性が良好で不めっきがなく、また高強度のも
のが得られていることがわかる。
From Table 1, it can be seen that the production methods within the scope of the present invention have good plating properties, no non-plating, and high strength.

【0030】[0030]

【発明の効果】本発明は成分限定とSi量を関数とした冷
延圧下率および該圧下率を関数とする再結晶温度を規定
することにより、Si等の表面濃化を低減させることがで
き、めっき性の優れた高張力溶融亜鉛めっき鋼板および
高張力合金化溶融亜鉛めっき鋼板を製造できるようにな
った。
INDUSTRIAL APPLICABILITY The present invention can reduce the surface enrichment of Si etc. by defining the component limitation and the cold rolling reduction as a function of Si content and the recrystallization temperature as a function of the reduction. It has become possible to manufacture high-strength hot-dip galvanized steel sheets and high-tensile-alloyed hot-dip galvanized steel sheets having excellent plating properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】Si含有量に基づく許容冷延圧下率の領域図を示
すグラフ。
FIG. 1 is a graph showing a region diagram of an allowable cold rolling reduction rate based on Si content.

【図2】冷延圧下率とGDSで評価した焼鈍後のSiおよ
びMnの表面濃化量との関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the cold rolling reduction rate and the surface concentration of Si and Mn after annealing evaluated by GDS.

【図3】冷延圧下率に基づく許容焼鈍温度領域図を示す
グラフ。
FIG. 3 is a graph showing an allowable annealing temperature region diagram based on cold rolling reduction.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 2/28 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C23C 2/28

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 C:0.1 %以下、Si:0.5 %以下、Mn:
2.0 %以下、P:0.03〜0.10%を含有した鋼片を熱間圧
延した後、下記(1)式で表される圧下率で冷間圧延
し、連続式溶融亜鉛めっき設備にて、 900℃以下でかつ
下記(2)式で表される再結晶焼鈍温度で焼鈍後溶融亜
鉛めっきすることを特徴とするめっき性に優れた高張力
溶融亜鉛めっき鋼板の製造方法。 記 40%≦圧下率≦{−80×Si(%)+90}% ……………(1) 750 ℃≦再結晶焼鈍温度≦{−2.5 ×圧下率(%)+1025}℃ …(2)
1. C: 0.1% or less, Si: 0.5% or less, Mn:
After hot rolling a steel slab containing 2.0% or less and P: 0.03 to 0.10%, it is cold rolled at a rolling reduction represented by the following formula (1), and 900 ° C in a continuous hot dip galvanizing facility. A method for producing a high-strength hot-dip galvanized steel sheet having excellent plating properties, which comprises hot-dip galvanizing after annealing at a recrystallization annealing temperature represented by the following formula (2). Note 40% ≤ rolling reduction ≤ {-80 x Si (%) + 90}% …………… (1) 750 ℃ ≤ recrystallization annealing temperature ≤ {-2.5 × rolling reduction (%) + 1025} ℃ (2)
【請求項2】 再結晶焼鈍をオールラジアントチューブ
方式で行うことを特徴とする請求項1記載のめっき性に
優れた高張力溶融亜鉛めっき鋼板の製造方法。
2. The method for producing a high-strength hot-dip galvanized steel sheet having excellent plating properties according to claim 1, wherein the recrystallization annealing is performed by an all-radiant tube method.
【請求項3】 請求項1又は2のいずれかで得られた高
張力溶融亜鉛めっき鋼板を合金化処理することを特徴と
するめっき性に優れた高張力合金化溶融亜鉛めっき鋼板
の製造方法。
3. A method for producing a high-strength hot-dip galvanized steel sheet having excellent plating properties, which comprises subjecting the high-strength hot-dip galvanized steel sheet obtained in claim 1 to an alloying treatment.
JP24266494A 1994-10-06 1994-10-06 Method for producing high-strength hot-dip galvanized steel sheet with excellent plating properties Pending JPH08104925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24266494A JPH08104925A (en) 1994-10-06 1994-10-06 Method for producing high-strength hot-dip galvanized steel sheet with excellent plating properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24266494A JPH08104925A (en) 1994-10-06 1994-10-06 Method for producing high-strength hot-dip galvanized steel sheet with excellent plating properties

Publications (1)

Publication Number Publication Date
JPH08104925A true JPH08104925A (en) 1996-04-23

Family

ID=17092413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24266494A Pending JPH08104925A (en) 1994-10-06 1994-10-06 Method for producing high-strength hot-dip galvanized steel sheet with excellent plating properties

Country Status (1)

Country Link
JP (1) JPH08104925A (en)

Similar Documents

Publication Publication Date Title
JP4741376B2 (en) High-strength galvannealed steel sheet with good appearance, manufacturing method and manufacturing equipment thereof
EP1980638B2 (en) High-strength hot-dip zinced steel sheet excellent in moldability and suitability for plating, high-strength alloyed hot-dip zinced steel sheet, and processes for producing these
JP5206705B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4119804B2 (en) High-strength galvannealed steel sheet with excellent adhesion and method for producing the same
JP4932363B2 (en) High-strength galvannealed steel sheet and method for producing the same
US10138530B2 (en) Method for producing high-strength galvannealed steel sheets
CN100374585C (en) High-tensile-strength hot-dip-coated steel sheet and manufacturing method thereof
JP3459500B2 (en) High-strength galvannealed steel sheet excellent in formability and plating adhesion and method for producing the same
JP2019521257A (en) Low density galvanized steel and method of manufacturing the same
JP2003055751A (en) High-strength hot-dip galvanized steel sheet excellent in plating adhesion and ductility during high working and its manufacturing method
JP4837459B2 (en) High-strength hot-dip galvanized steel sheet with good appearance and excellent corrosion resistance and method for producing the same
CN116694886A (en) Method for manufacturing thin steel sheet and method for manufacturing plated steel sheet
JP4264373B2 (en) Method for producing molten Al-based plated steel sheet with few plating defects
JPH11131145A (en) Manufacturing method of high strength and high ductility galvanized steel sheet
JP5715344B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
KR101647225B1 (en) High-strength galvannealed sheet steels having excellent surface qualities and powdering resistance and method for manufacturing the same
JP3126911B2 (en) High strength galvanized steel sheet with good plating adhesion
JPH06256903A (en) Galvannealed steel sheet excellent in press workability and plating peeling resistance
JP3130470B2 (en) High-strength hot-dip galvanized steel sheet with excellent press workability and plating adhesion
WO2021006131A1 (en) Methods respectively for manufacturing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP2002146475A (en) Galvannealed steel sheet
JP3577930B2 (en) High-strength, high-ductility hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JPH08104925A (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent plating properties
JPH0941111A (en) High-strength hot-dip galvanized steel sheet with excellent plating properties
JPH10140237A (en) Production of cold rolled steel sheet and hot-dip metal coated cold rolled steel sheet for building material, excellent in fire resistance