[go: up one dir, main page]

JPH08103434A - Biological light measuring device and measuring method - Google Patents

Biological light measuring device and measuring method

Info

Publication number
JPH08103434A
JPH08103434A JP24259294A JP24259294A JPH08103434A JP H08103434 A JPH08103434 A JP H08103434A JP 24259294 A JP24259294 A JP 24259294A JP 24259294 A JP24259294 A JP 24259294A JP H08103434 A JPH08103434 A JP H08103434A
Authority
JP
Japan
Prior art keywords
light
difference signal
detection
living body
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24259294A
Other languages
Japanese (ja)
Other versions
JP3359756B2 (en
Inventor
Atsushi Maki
敦 牧
Hideaki Koizumi
英明 小泉
Fumio Kawaguchi
文男 川口
Yuichi Yamashita
優一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24259294A priority Critical patent/JP3359756B2/en
Priority to US08/539,871 priority patent/US5803909A/en
Publication of JPH08103434A publication Critical patent/JPH08103434A/en
Priority to US09/149,155 priority patent/US6128517A/en
Priority to US09/203,610 priority patent/US6282438B1/en
Priority to US09/900,144 priority patent/US7286870B2/en
Application granted granted Critical
Publication of JP3359756B2 publication Critical patent/JP3359756B2/en
Priority to US11/037,338 priority patent/US8050744B2/en
Priority to US11/037,339 priority patent/US7715904B2/en
Priority to US11/037,282 priority patent/US7440794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

(57)【要約】 【目的】 生体内の局所的な血液動態変化を分離計測す
る。 【構成】 光源1から発せられる光を光照射位置5より
被検体6に照射させ、被検体6を通過して出射する光
を、被検体6上の異なる2箇所に配置する2本の光検出
用光ファイバー7a,7bを介して光検出器10a,1
0bで検出する。光検出器10a,10bからの電気信
号は、対数増幅器25a,25bで対数変換した後、差
動増幅器11の正極と負極に入力する。差動増幅器11
から出力される異なる2ヵ所の位置での通過光強度の対
数差分信号は、逐次A/D変換器12でデジタル信号に
変換して計算機13に取り込み、表示装置14に時系列
データとして表示する。
(57) [Summary] [Purpose] To separately measure local hemodynamic changes in vivo. Constitution: Light emitted from a light source 1 is irradiated onto a subject 6 from a light irradiation position 5, and light emitted through the subject 6 is detected at two different positions on the subject 6. Photodetectors 10a, 1 through the optical fibers 7a, 7b
It is detected at 0b. The electric signals from the photodetectors 10a and 10b are logarithmically converted by the logarithmic amplifiers 25a and 25b, and then input to the positive and negative electrodes of the differential amplifier 11. Differential amplifier 11
The logarithmic difference signal of the transmitted light intensity at two different positions output from is sequentially converted into a digital signal by the A / D converter 12, taken into the computer 13, and displayed on the display device 14 as time series data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光を用いて生体内の情
報を計測する生体光計測装置及びそれを用いた計測方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a living body light measuring device for measuring information in a living body using light and a measuring method using the same.

【0002】[0002]

【従来の技術】従来の生体光計測装置として、動脈中の
酸素飽和度を計測するオキシメータ(特開昭55−24
004号)がある。オキシメータは、複数波長の光を生
体に照射し、生体からの透過光強度あるいは反射光強度
を計測し、HbとHbO2 の分光特性と脈波を利用し
て、動脈中の酸素飽和度を算出する装置である。
2. Description of the Related Art As a conventional living body optical measuring device, an oximeter for measuring oxygen saturation in an artery (Japanese Patent Laid-Open No. 55-24).
004). The oximeter irradiates the living body with light of multiple wavelengths, measures the transmitted light intensity or the reflected light intensity from the living body, and uses the spectral characteristics of Hb and HbO 2 and the pulse wave to measure the oxygen saturation in the artery. It is a device for calculating.

【0003】また、生体組織内の酸素飽和度(動脈系と
静脈系の両者を含む平均的な酸素飽和度)及び血液量を
計測する方法として、ヨブシス等の方法(特開昭57−
115232号)がある。この方法はHbとHbO2
分光特性を利用して生体組織内の酸素飽和度と血液量
(以下、両者を併せて血液動態という)を計測するもの
である。なお、本明細書では、透過光、反射光、散乱光
を特に区別せず、光源から発せられて生体と相互作用し
た後、光検出器で検出された光強度を通過光強度とい
う。
Further, as a method for measuring the oxygen saturation (average oxygen saturation including both arterial system and venous system) and the blood volume in the living tissue, a method such as Jobis et al.
115232). This method utilizes the spectral characteristics of Hb and HbO 2 to measure oxygen saturation and blood volume (hereinafter, both are collectively referred to as hemodynamics) in living tissue. In this specification, transmitted light, reflected light, and scattered light are not particularly distinguished, and the light intensity emitted from a light source and interacting with a living body, and then detected by a photodetector is referred to as transmitted light intensity.

【0004】[0004]

【発明が解決しようとする課題】従来技術を用いると、
動脈中の酸素飽和度あるいは、生体組織内の血液動態を
計測することができる。しかし、従来技術では、生体の
全体的な変化に由来する血液動態の変化と生体の局所的
な変化に由来する血液動態の変化とを分離することは不
可能である。
With the prior art,
It is possible to measure oxygen saturation in arteries or hemodynamics in living tissues. However, it is impossible to separate the hemodynamic change due to the overall change of the living body and the hemodynamic change due to the local change of the living body by the conventional technique.

【0005】一方、生体の局所的な変化に由来する血液
動態の変化のみを検出したい場合がある。例えば生体の
脳では、生体の各機能に対応して働く局所的な部位(以
下、機能部位という)が存在し、生体の任意の機能に対
応して機能部位の血液量あるいは酸素飽和度が変化す
る。この時、任意の機能部位のみの血液量あるいは酸素
飽和度の変化を計測することができれば、脳の機能部位
の働きを調べることができ、医学的に非常に重要であ
る。
On the other hand, there are cases where it is desired to detect only changes in hemodynamics due to local changes in the living body. For example, in the brain of a living body, there are local parts that work in response to each function of the living body (hereinafter referred to as functional parts), and the blood volume or oxygen saturation of the functional part changes in response to any function of the living body. To do. At this time, if changes in blood volume or oxygen saturation of only an arbitrary functional site can be measured, the function of the functional site of the brain can be examined, which is medically very important.

【0006】具体例として、安静に仰臥した被検者の側
頭部に光を照射し、光照射位置より3cm離れた点で通
過光強度を計測した際の通過光強度の時間変化を図2に
示す。図2中の通過光強度の揺らぎは、生体中の全体的
な血液動態の変化に由来するものである。この様に被検
者が安静にしていても、通過光強度信号に予測不可能な
信号変化が表れ、また頭皮の上から頭蓋骨を介して脳に
光照射している関係上、脳の活動に基づく信号変化は極
微小量であり、脳の機能部位が賦活して局所の血液動態
のみが変化してもその信号を分離することは困難であ
る。本発明は、従来技術では困難であった生体内の全体
的な血液動態変化と局所的な血液動態変化を分離して計
測する技術を提供することを目的とする。
As a specific example, FIG. 2 shows the time variation of the transmitted light intensity when the transmitted light intensity is measured at a point 3 cm away from the light irradiation position by irradiating the temporal region of the subject lying on his back with light. Shown in. The fluctuation of the transmitted light intensity in FIG. 2 is derived from the change in the overall hemodynamics in the living body. In this way, even when the subject is resting, an unpredictable signal change appears in the transmitted light intensity signal, and because the brain is irradiated with light from above the scalp through the skull, the activity of the brain is not affected. The signal change based on it is extremely small, and it is difficult to separate the signal even if only the local hemodynamics are changed due to activation of the functional part of the brain. An object of the present invention is to provide a technique for separating and measuring an overall hemodynamic change in a living body and a local hemodynamic change, which are difficult with the conventional techniques.

【0007】[0007]

【課題を解決するための手段】本発明は、生体に対して
任意の1箇所もしくは複数箇所から光を照射し、局所的
な変化が信号の変化として計測される検出位置と局所的
な変化が信号の変化として計測されない検出位置の2箇
所を光照射位置から等距離となるように設定し、それぞ
れの検出位置において通過光強度を検出し、前記2箇所
間の通過光強度の対数差分をとることを特徴とする。
According to the present invention, a living body is irradiated with light from any one or a plurality of places, and a local change is detected as a signal change and a local change is detected. Two detection positions, which are not measured as a signal change, are set to be equidistant from the light irradiation position, the passing light intensity is detected at each of the detection positions, and the logarithmic difference of the passing light intensity between the two positions is obtained. It is characterized by

【0008】好適には、入射位置から等距離でかつ位置
の異なる2箇所の検出位置で通過光を受光し、それぞれ
の検出位置における通過光強度をフォトダイオードや光
電子増倍管等の光電変換素子を用いて電気信号(以下、
通過光強度を意味する電気信号を通過光強度信号とい
う)に変換し、各通過光信号強度を対数増幅器で対数変
換した後に、第1の検出位置における通過光強度信号と
第2の検出位置における通過光強度信号を差動増幅す
る。
Preferably, passing light is received at two detection positions that are equidistant from the incident position and different in position, and the intensity of the passing light at each detection position is a photoelectric conversion element such as a photodiode or a photomultiplier tube. Electrical signal (hereinafter,
After converting the electric signal that means the transmitted light intensity into a transmitted light intensity signal) and logarithmically converting each transmitted light signal intensity by a logarithmic amplifier, the transmitted light intensity signal at the first detection position and the second detection position at the second detection position are detected. The transmitted light intensity signal is differentially amplified.

【0009】光源から発せられる光を強度変調し、検出
信号のうちその周波数成分のみを抽出することで、外来
起因の雑音を除去することができる。光源と光照射位
置、光検出位置と光検出器の間は光ファイバーで接続す
ることができる。
The intensity of the light emitted from the light source is modulated and only the frequency component of the detection signal is extracted, so that the noise caused by the outside can be removed. An optical fiber can be connected between the light source and the light irradiation position and between the light detection position and the light detector.

【0010】[0010]

【作用】第1の検出位置と第2の検出位置をそれぞれ光
照射位置から等距離の位置に設定すると、生体内部の全
体的な血液動態変化に伴って、各検出位置における通過
光強度信号は等しく変化する。従って、第1の検出位置
における通過光強度信号と第2の検出位置における通過
光強度信号の対数差分を取ると、全体的な血液動態変化
に由来する信号変化は除去される。さらに、第1あるい
は第2の一方の検出位置における通過光強度信号にの
み、局所の血液動態変化に伴う変化が含まれていれば、
通過光強度対数差分信号は局所の血液動態変化のみを反
映していることになる。
When the first detection position and the second detection position are set at positions equidistant from the light irradiation position, the transmitted light intensity signal at each detection position is changed in accordance with the overall hemodynamic change in the living body. Change equally. Therefore, by taking the logarithmic difference between the transmitted light intensity signal at the first detection position and the transmitted light intensity signal at the second detection position, the signal change due to the overall hemodynamic change is removed. Furthermore, if only the transmitted light intensity signal at one of the first and second detection positions includes a change associated with a local hemodynamic change,
The transmitted light intensity logarithmic difference signal reflects only local hemodynamic changes.

【0011】光線は、光照射位置から生体内に入って光
検出位置で生体外に出るまでの間に複雑な経路を通って
種々の生体組織と相互作用し、散乱や減衰を受けること
になる。本発明では、光照射位置から等距離の位置で生
体から出射する光強度の対数差分をとるため、生体組織
による散乱や減衰の影響も相殺され、局所の血液動態変
化を反映する微小な信号を高精度で検出できることにな
る。
[0011] The light beam interacts with various living tissues through a complicated path from the light irradiation position into the living body to the outside of the living body at the light detection position, and is scattered and attenuated. . In the present invention, since the logarithmic difference of the light intensity emitted from the living body at a position equidistant from the light irradiation position is taken, the influence of scattering and attenuation by living tissue is canceled out, and a minute signal reflecting a local hemodynamic change is obtained. It can be detected with high accuracy.

【0012】[0012]

【実施例】以下、実施例により本発明を詳細に説明す
る。 〔実施例1〕本発明による生体光計測装置の第1の実施
例の概略構成を図1に示す。光源1から発せられる光を
レンズ系を用いて集光し、光源用光ファイバー2に入射
する。光源から発せられる光は、外来起因の雑音を除去
するために発振器23により100Hz〜10MHz程
度の任意の周波数fで強度変調されている。光源用光フ
ァイバー2は光ファイバー連結器3aを介して光照射用
光ファイバー4と接続しているため、光源からの光は光
照射用光ファイバー4に伝達し、光照射位置5より被検
体6に照射される。用いる光の波長は生体内の注目物質
の分光特性によるが、HbとHbO2 の濃度から酸素飽
和度や血液量を計測する場合には600nm〜1400
nmの波長範囲の光の中から1あるいは複数波長選択し
て用いる。光源としては、半導体レーザ、チタンサファ
イアレーザ、発光ダイオード等を用いることができる。
The present invention will be described in detail below with reference to examples. [Embodiment 1] FIG. 1 shows a schematic configuration of a first embodiment of a biological optical measurement device according to the present invention. The light emitted from the light source 1 is condensed using a lens system and is incident on the optical fiber 2 for a light source. The light emitted from the light source is intensity-modulated by the oscillator 23 at an arbitrary frequency f of about 100 Hz to 10 MHz in order to remove noise caused by external sources. Since the light source optical fiber 2 is connected to the light irradiation optical fiber 4 via the optical fiber coupler 3a, the light from the light source is transmitted to the light irradiation optical fiber 4 and irradiated to the subject 6 from the light irradiation position 5. . The wavelength of the light used depends on the spectral characteristics of the substance of interest in the living body, but when measuring the oxygen saturation or the blood volume from the concentrations of Hb and HbO 2 , it is 600 nm to 1400.
One or more wavelengths are selected from the light in the wavelength range of nm and used. As the light source, a semiconductor laser, a titanium sapphire laser, a light emitting diode or the like can be used.

【0013】被検体6を通過して出射する光を検出する
ための2本の光検出用光ファイバー7a及び7bを、被
検体6上の異なる2箇所に配置する。本実施例では、上
記2本の光検出用光ファイバー7aと7bを光照射位置
5を対称中心として点対称の2箇所に配置する。光照射
用光ファイバー4と光検出用光ファイバー7a,7b
は、表面を黒色に塗装された光ファイバー固定部材8で
固定されている。また、光照射用光ファイバー4、光検
出用光ファイバー7a,7b及び光ファイバー固定部材
8は、簡便を期するために光検出プローブとして一体化
されており、詳細については後述する。光検出用光ファ
イバー7a,7bは、光ファイバー連結器3b,3cを
介して光検出器用光ファイバー9a,9bに連結してい
るため、光検出用光ファイバー7a,7bで検出された
通過光は、光検出器10a,10bまで伝達し、光検出
器10a,10bで光電変換され、通過光強度が電気信
号強度として出力される。光検出器10a,10bとし
ては、例えばフォトダイオードや光電子増倍管などの様
な光電変換素子を用いる。
Two photodetection optical fibers 7a and 7b for detecting the light emitted after passing through the subject 6 are arranged at two different locations on the subject 6. In the present embodiment, the two optical fibers for light detection 7a and 7b are arranged at two points of point symmetry with the light irradiation position 5 as the center of symmetry. Optical fiber 4 for light irradiation and optical fibers 7a and 7b for light detection
Are fixed by an optical fiber fixing member 8 whose surface is painted black. The light irradiation optical fiber 4, the light detection optical fibers 7a and 7b, and the optical fiber fixing member 8 are integrated as a light detection probe for the sake of simplicity, and the details will be described later. Since the optical fibers 7a and 7b for light detection are connected to the optical fibers 9a and 9b for photodetector via the optical fiber couplers 3b and 3c, the passing light detected by the optical fibers 7a and 7b for photodetection is detected by the optical detector. The light is transmitted to 10a and 10b, photoelectrically converted by the photodetectors 10a and 10b, and the passing light intensity is output as the electric signal intensity. As the photodetectors 10a and 10b, for example, photoelectric conversion elements such as photodiodes and photomultiplier tubes are used.

【0014】光検出器10aと10bから出力された通
過光強度を表わす電気信号は、それぞれロックインアン
プ24aと24bで光源の光強度変調周波数成分のみ抽
出される。ロックインアンプ24aからの出力は、対数
増幅器25aで対数変換された後に差動増幅器11の負
極に入力され、ロックインアンプ24bからの出力は、
対数増幅器25bで対数変換された後に差動増幅器11
の正極に入力される。その結果として、異なる2ヵ所の
位置での通過光強度の差分信号が、出力信号として差動
増幅器11より出力される。差動増幅器11からの出力
信号を逐次A/D変換器12でデジタル信号に変換し、
計算機13に取り込み表示装置14に時系列データとし
て表示する。
The electric signals representing the transmitted light intensity output from the photodetectors 10a and 10b are extracted by the lock-in amplifiers 24a and 24b, respectively, only the light intensity modulation frequency component of the light source. The output from the lock-in amplifier 24a is logarithmically converted by the logarithmic amplifier 25a and then input to the negative electrode of the differential amplifier 11, and the output from the lock-in amplifier 24b is
After being logarithmically converted by the logarithmic amplifier 25b, the differential amplifier 11
Is input to the positive electrode of. As a result, the differential signal of the passing light intensity at two different positions is output from the differential amplifier 11 as an output signal. The output signal from the differential amplifier 11 is sequentially converted into a digital signal by the A / D converter 12,
The data is taken into the computer 13 and displayed on the display device 14 as time series data.

【0015】ここで、図1に示すように、局所的に血液
動態が変化する領域15が、光検出用光ファイバーの視
野16bのみに含まれていれば、計測される対数差分信
号は局所領域15の血液動態の変化のみを反映している
ことになる。近赤外光に対しては血液中の主成分である
ヘモグロビンが光吸収に対して支配的に働くことを前提
に、計測される対数差分信号の意味を以下に説明する。
Here, as shown in FIG. 1, if the region 15 in which the hemodynamics locally changes is included only in the visual field 16b of the optical fiber for light detection, the measured logarithmic difference signal is the local region 15. It reflects only the changes in hemodynamics of. Meaning of the logarithmic difference signal to be measured will be described below on the assumption that hemoglobin, which is the main component in blood, acts predominantly on near infrared light.

【0016】計測時間をt、光源波長をλ、照射光強度
をI0(t)、酸化ヘモグロビンと還元ヘモグロビン濃度を
それぞれCox(t),Cdeox(t) 、局所領域15で変化した
酸化ヘモグロビン濃度と還元ヘモグロビン濃度をそれぞ
れΔCox(t),ΔCdeox(t) 、光源波長λに対する酸化ヘ
モグロビンと還元ヘモグロビンの吸光係数をそれぞれε
ox(λ),εdeox(λ) 、散乱とヘモグロビン以外の吸収に
よる減衰をDs 、散乱によって生じる重み係数をdとす
ると、光検出器10bで検出される通過光強度信号I
d(t) は下式(1)で表され、光検出器10aで検出さ
れる通過光強度信号Id'(t)は下式(2)で表される。
Measurement time is t, light source wavelength is λ, irradiation light intensity is I 0 (t), oxyhemoglobin and deoxyhemoglobin concentrations are C ox (t), C deox (t), and the oxidization is changed in the local region 15. The hemoglobin concentration and the reduced hemoglobin concentration are ΔC ox (t) and ΔC deox (t), respectively, and the extinction coefficients of oxyhemoglobin and reduced hemoglobin with respect to the light source wavelength λ are ε, respectively.
Letting ox (λ), ε deox (λ) be D s be the attenuation due to scattering and absorption other than hemoglobin, and d be the weighting factor caused by scattering, the transmitted light intensity signal I detected by the photodetector 10b.
d (t) is represented by the following equation (1), and the passing light intensity signal I d '(t) detected by the photodetector 10a is represented by the following equation (2).

【0017】 Id(t)=Ds・exp[−[εox(λ)(Cox(t)+ΔCox(t)) +εdeox(λ)(Cdeox(t)+ΔCdeox(t))]d]I0(t) (1) Id'(t)=Ds・exp[−[εox(λ)Cox(t)+εdeox(λ)Cdeox(t)]d]I0(t) (2) 次に、(1)式と(2)式の自然対数をとった後に、
(1)式から(2)式を減算すると、次式(3)が得ら
れる。(3)式の左辺は計測された対数差分信号であ
る。 ln[Id(t)/Id'(t)]=−[εox(λ)ΔCox(t)+εdeox(λ)ΔCdeox(t)]d (3)
I d (t) = D s · exp [− [ε ox (λ) (C ox (t) + ΔC ox (t)) + ε deox (λ) (C deox (t) + ΔC deox (t)) ] d] I 0 (t) (1) I d '(t) = D s · exp [− [ε ox (λ) C ox (t) + ε deox (λ) C deox (t)] d] I 0 (t) (2) Next, after taking the natural logarithm of the equations (1) and (2),
By subtracting the expression (2) from the expression (1), the following expression (3) is obtained. The left side of the equation (3) is the measured logarithmic difference signal. ln [ Id (t) / Id '(t)] =-[[epsilon] ox ([lambda]) [ Delta ] Cox (t) + [epsilon] deox ([lambda]) [ Delta ] Cdeox (t)] d (3)

【0018】ここで特に、光源波長として805nm±
10nmを用いて計測すると、 εox(805±10)≒εdeox(805±10) (4) であるので、(3)式は定数Kを用いて ln[Id(t)/Id'(t)]=−[ΔCox(t)+ΔCdeox(t)]・K (5) と書き直すことができる。従って、光源波長805nm
±10nmを用いて計測された対数差分信号は、血液量
の変化量[ΔCox(t)+ΔCdeox(t)]に相当する値(以
下、相対血液変化量という)を表している。また、光源
に用いる波長数を2波長(λ12)にし、各波長に異
なる強度変調周波数(f1,f2)を与え、ロックインア
ンプで周波数分離すれば、各波長の通過光強度信号を計
測することができる。従って、(3)式が各波長で成り
立つので、次の(6)式及び(7)式からなる連立方程
式を導くことができる。
Here, in particular, the light source wavelength is 805 nm ±
When measured using 10 nm, ε ox (805 ± 10) ≈ ε deox (805 ± 10) (4) Therefore, the equation (3) uses the constant K to obtain ln [I d (t) / I d ' (t)] = − [ΔC ox (t) + ΔC deox (t)] · K (5) can be rewritten. Therefore, the light source wavelength is 805 nm
The logarithmic difference signal measured using ± 10 nm represents a value (hereinafter referred to as a relative blood change amount) corresponding to the change amount [ΔC ox (t) + ΔC deox (t)] of the blood amount. In addition, if the number of wavelengths used for the light source is set to two wavelengths (λ 1 , λ 2 ), different intensity modulation frequencies (f 1 , f 2 ) are given to each wavelength, and frequency is separated by the lock-in amplifier, then the transmitted light of each wavelength is transmitted. The intensity signal can be measured. Therefore, since the equation (3) holds for each wavelength, the simultaneous equations composed of the following equations (6) and (7) can be derived.

【0019】 ln[Id1,t)/Id'(λ1,t)] =−[εox1)ΔCox(t)+εdeox1)ΔCdeox(t)]d (6) ln[Id2,t)/Id'(λ2,t)] =−[εox2)ΔCox(t)+εdeox2)ΔCdeox(t)]d (7) 吸光係数εox1),εox2),εdeox1),ε
deox2) は既知であるので、酸化ヘモグロビンの変化
量に相当する値ΔCOX(t)dと還元ヘモグロビンの変化
量に相当するΔCdeox(t)dを、(6)式及び(7)式
を計算機13内で解くことで求めることができ、求めら
れた相対変化量の時系列データを表示装置14上にグラ
フ表示する。さらに拡張して波長数を増やし、dを消
去、または微量にあるヘモグロビン以外の吸光物質濃度
の相対変化量を求めることも可能である。
Ln [I d1 , t) / I d ′ (λ 1 , t)] = − [ε ox1 ) ΔC ox (t) + ε deox1 ) ΔC deox (t)] d (6) ln [ Id ([lambda] 2 , t) / Id '([lambda] 2 , t)] =-[[epsilon] ox ([lambda] 2 ) [ Delta ] Cox (t) + [epsilon] deox ([lambda] 2 ) [Delta] Cdeox (t) ] d (7) Extinction coefficient ε ox1 ), ε ox2 ), ε deox1 ), ε
Since deox2 ) is known, the value ΔC OX (t) d corresponding to the amount of change in oxyhemoglobin and the amount ΔC deox (t) d corresponding to the amount of change in reduced hemoglobin can be calculated using equations (6) and (7). ) Can be obtained by solving the equation in the computer 13, and the time series data of the obtained relative change amount is displayed as a graph on the display device 14. It is also possible to further expand to increase the number of wavelengths, eliminate d, or obtain the relative change amount of the concentration of a light-absorbing substance other than a small amount of hemoglobin.

【0020】また、図3に示すように、ロックインアン
プ、対数増幅器、差動増幅器を使用せずに、光検出器1
0a,10bからの検出信号をそれぞれA/D変換器1
2でデジタル信号に変化した後、計算機13内でFFT
処理をして光源の強度変調周波数に相当する信号のみを
抽出し、異なる2ヵ所の検出位置での通過光強度の対数
差分を上述の計算過程と同様の手順で計算して、求めら
れた相対変化量を時系列データとして表示装置14上に
グラフ表示することもできる。
Further, as shown in FIG. 3, without using a lock-in amplifier, a logarithmic amplifier and a differential amplifier, the photodetector 1
The detection signals from 0a and 10b are converted into A / D converters 1 respectively.
After changing to a digital signal in 2, the FFT in the computer 13
Only the signal corresponding to the intensity modulation frequency of the light source is extracted, and the logarithmic difference of the transmitted light intensity at two different detection positions is calculated in the same procedure as the above calculation process, and the calculated relative The amount of change can also be displayed as a graph on the display device 14 as time series data.

【0021】図4に光検出プローブの一例を示す。図4
(a)は光検出プローブの一断面を示し、図4(b)は
光検出プローブを被検体接触面から見た図を示してい
る。光検出プローブは、1本の光照射用光ファイバー4
と2本の光検出用光ファイバー7a,7bと表面を黒色
に塗装した金属又はプラスチック製の光ファイバー固定
部材8からなり、それぞれの光ファイバーには光ファイ
バー連結器3a,3b,3cが接続されている。それぞ
れの光ファイバーの屈曲性を保つためには、複数の光フ
ァイバーで構成する。光ファイバーの素材としては、プ
ラスチックか石英を用いる。本光検出プローブを生体に
使用する場合には、被検体接触面17を弾力のあるスポ
ンジなどで覆う。
FIG. 4 shows an example of the light detection probe. FIG.
FIG. 4A shows a cross section of the light detection probe, and FIG. 4B shows a view of the light detection probe as seen from the contact surface of the subject. The light detection probe is a single optical fiber 4 for light irradiation.
And two optical fibers for light detection 7a, 7b and a metal or plastic optical fiber fixing member 8 whose surface is painted black, and optical fiber couplers 3a, 3b, 3c are connected to the respective optical fibers. To maintain the flexibility of each optical fiber, it is composed of multiple optical fibers. Plastic or quartz is used as the material of the optical fiber. When the present light detection probe is used in a living body, the subject contact surface 17 is covered with a sponge having elasticity.

【0022】光検出用光ファイバー7a,7bの検出面
の大きさは目的や被検体の状態に応じて変える必要があ
るが、例えば脳機能の計測を行う場合には、断面形状を
径1mm〜20mm程度の円形あるいは1辺1mm〜2
0mm程度の正方形とする。また、2本の光検出用光フ
ァイバー7a,7bの配置位置は、光照射用光ファイバ
ー4から距離r(r=5mm〜50mm)の位置にここ
では対称的に配置する。距離rと光検出用光ファイバー
7a,7bの断面形状の異なる複数種類の光検出プロー
ブを用意しておき、計測目的に応じて交換することで、
簡便な計測が可能となる。光の到達深度は光源からの距
離rとほぼ等しいため、脳の大脳皮質程度の深さであれ
ば頭部表面から頭蓋骨を介して計測することが可能であ
る。
The size of the detection surface of the optical fibers 7a and 7b for light detection needs to be changed according to the purpose and the state of the subject. For example, when measuring brain function, the cross-sectional shape is 1 mm to 20 mm in diameter. Circular shape or 1 mm to 2 sides
The square is about 0 mm. Further, the positions of the two optical fibers for light detection 7a and 7b are symmetrically arranged at a position of a distance r (r = 5 mm to 50 mm) from the optical fiber for light irradiation 4. By preparing a plurality of types of photo-detecting probes having different distances r and cross-sectional shapes of the photo-detecting optical fibers 7a and 7b, and exchanging them according to the purpose of measurement,
Simple measurement is possible. Since the reach depth of light is almost equal to the distance r from the light source, it is possible to measure from the surface of the head through the skull if the depth is about the cerebral cortex of the brain.

【0023】光検出プローブにおいて光検出用光ファイ
バー7の配置にはさまざまな態様が考えられる。例えば
図5に示すように、光照射用光ファイバー4から等距離
rの位置に4本の光検出用光ファイバー7a,7b,7
c,7dを配置し、任意の2本の光検出用光ファイバー
を選択して計測することができる。また、光ファイバー
を用いず、レンズ系を用いたり、固定部材8に光源や光
検出器を直接設置することもできる。
Various arrangements can be considered for the arrangement of the optical fiber 7 for light detection in the light detection probe. For example, as shown in FIG. 5, four light detection optical fibers 7a, 7b, 7 are provided at positions equidistant from the light irradiation optical fiber 4.
By disposing c and 7d, it is possible to select and measure any two optical fibers for light detection. Alternatively, a lens system may be used without using an optical fiber, or a light source or a photodetector may be directly installed on the fixing member 8.

【0024】図6に、本発明による光計測装置を生体の
脳の計測に使用した例を示す。光ファイバー連結器3
a,3b,3cと、光照射用光ファイバー4と、光検出
用光ファイバー7a,7bと、光ファイバー固定部材8
からなる光検出プローブを、ゴム製の固定用ベルト18
で被検体6に固定する。光照射用光ファイバー4は光フ
ァイバー連結器3aを介して光源用光ファイバー2に接
続されており、光検出用光ファイバー7a,7bはそれ
ぞれ光ファイバー連結器3b,3cを介して光検出器用
光ファイバー9a,9bに接続されている。光計測装置
19前面パネルには、光源用光ファイバー2と光検出器
用光ファイバー9a,9bの接続部、出力信号調整つま
み20、出力信号値表示窓21、及び表示装置14があ
る。光計測装置19内部には、差動増幅器やA/D変換
器、マイクロプロセッサー、光源、光検出器、光スイッ
チ、その他必要な電気回路が配置されている。
FIG. 6 shows an example in which the optical measuring device according to the present invention is used for measuring the brain of a living body. Optical fiber coupler 3
a, 3b, 3c, optical fiber 4 for light irradiation, optical fibers 7a, 7b for light detection, and optical fiber fixing member 8
The optical detection probe consisting of a rubber fixing belt 18
It is fixed to the subject 6 with. The optical fiber 4 for light irradiation is connected to the optical fiber 2 for light source through the optical fiber coupler 3a, and the optical fibers 7a and 7b for light detection are respectively connected to the optical fibers 9a and 9b for photodetector through the optical fiber couplers 3b and 3c. Has been done. On the front panel of the optical measuring device 19, there are a connection part between the optical fiber 2 for light source and the optical fibers 9a and 9b for photodetector, an output signal adjusting knob 20, an output signal value display window 21, and a display device 14. Inside the optical measurement device 19, a differential amplifier, an A / D converter, a microprocessor, a light source, a photodetector, an optical switch, and other necessary electric circuits are arranged.

【0025】出力信号値表示窓21には2箇所で検出さ
れる通過光強度の対数差分信号値が表示されており、出
力信号調整つまみ20を用いて対数差分信号値のオフセ
ット値を決定する。例えば、被検体の脳内部において局
所的な血液動態の変化が無い時に、2箇所で検出される
通過光強度の対数差分信号が0になるように調整する。
その後計測を開始し、対数差分信号の時系列データ22
が表示装置14上にグラフ表示される。また、上述した
ような演算を行い、局所の血流量あるいは酸化ヘモグロ
ビン量あるいは還元ヘモグロビン量の相対変化量時間変
化をグラフ表示する。
The output signal value display window 21 displays the logarithmic difference signal value of the transmitted light intensity detected at two places, and the output signal adjusting knob 20 is used to determine the offset value of the logarithmic difference signal value. For example, when there is no local change in hemodynamics inside the brain of the subject, the logarithmic difference signal of the transmitted light intensity detected at two locations is adjusted to be zero.
After that, the measurement is started, and the time series data 22 of the logarithmic difference signal is obtained.
Is graphically displayed on the display device 14. In addition, the above-described calculation is performed, and the relative change amount time change of the local blood flow amount, the oxyhemoglobin amount or the reduced hemoglobin amount is displayed in a graph.

【0026】〔実施例2〕本発明による生体光計測装置
の第2の実施例の概略構成を図7に示す。光源1から発
せられる光をレンズ系を用いて集光し、光源用光ファイ
バー2に入射する。光源から発せられる光は、外来起因
の雑音を除去するために発振器23によって100Hz
〜10MHz程度の任意の周波数で強度変調されてい
る。光源用光ファイバー2は光ファイバー連結器3aを
介して光照射用光ファイバー4と接続しているため、光
源からの光は光照射用光ファイバー4に伝達し、光照射
位置5より被検体6に照射される。用いる光の波長は生
体内の注目物質の分光特性によるが、HbとHbO2
濃度から酸素飽和度や血液量を計測する場合には600
nm〜1400nmの波長範囲の光の中から1あるいは
複数波長選択して用いる。光源としては、半導体レー
ザ、チタンサファイアレーザ、発光ダイオード等を用い
ることができる。
[Embodiment 2] FIG. 7 shows a schematic configuration of a second embodiment of the biological light measuring device according to the present invention. The light emitted from the light source 1 is condensed using a lens system and is incident on the optical fiber 2 for a light source. The light emitted from the light source is set to 100 Hz by the oscillator 23 in order to remove external noise.
The intensity is modulated at an arbitrary frequency of about 10 MHz. Since the light source optical fiber 2 is connected to the light irradiation optical fiber 4 via the optical fiber coupler 3a, the light from the light source is transmitted to the light irradiation optical fiber 4 and irradiated to the subject 6 from the light irradiation position 5. . The wavelength of the light used depends on the spectral characteristics of the substance of interest in the living body, but is 600 when measuring the oxygen saturation and the blood volume from the concentrations of Hb and HbO 2.
One or a plurality of wavelengths are selected and used from the light in the wavelength range of 1 nm to 1400 nm. As the light source, a semiconductor laser, a titanium sapphire laser, a light emitting diode or the like can be used.

【0027】被検体6を通過して出射する光を検出する
ための4本の光検出用光ファイバー7a,7b,7c,
7dを、被検体6上の異なる4箇所に配置する。本実施
例では、2本の光検出用光ファイバー7bと7cを光照
射位置5を対称中心として点対称の2箇所に配置し、光
照射位置5の重心点を原点として光検出用光ファイバー
7bの重心点を通るような半直線上に光検出用光ファイ
バー7aの重心点が存在するように光検出用光ファイバ
ー7aを配置し、さらに、光照射位置5の重心点を原点
として光検出用光ファイバー7cの重心点を通るような
半直線上に光検出用光ファイバー7dの重心点が存在す
るように光検出用光ファイバー7dを配置する。光検出
用光ファイバー7aと光検出用光ファイバー7dの重心
点が上記半直線上に存在していればどこに配置してもよ
いが、本実施例では前記光照射位置5を対称中心として
点対称でかつ光検出用光ファイバー7bと7cの外側に
配置する。ここで、光照射用光ファイバー4と光検出用
光ファイバー7a,7b,7c,7dは、表面を黒色に
塗装した金属製の光ファイバー固定部材8で固定されて
いる。光検出用光ファイバー7a,7b,7c,7d
は、光ファイバー連結器3b,3c,3d,3eを介し
て光検出器用光ファイバー9a,9b,9c,9dに連
結しているため、光検出用光ファイバー7a,7b,7
c,7dで検出された通過光は、光検出器10a,10
b,10c,10dまで伝達し、光検出器10で光電変
換された通過光強度が電気信号強度として出力される。
光検出器10としては、例えばフォトダイオードや光電
子増倍管等の光電変換素子を用いることができる。
Four optical fibers for light detection 7a, 7b, 7c, for detecting the light emitted after passing through the subject 6.
7d are arranged at four different locations on the subject 6. In the present embodiment, two optical fibers for light detection 7b and 7c are arranged at two points of point symmetry with the light irradiation position 5 as the center of symmetry, and the center of gravity of the light irradiation position 5 is the origin and the center of gravity of the light detection optical fiber 7b is set. The light detecting optical fiber 7a is arranged so that the center of gravity of the light detecting optical fiber 7a exists on a half line passing through the points, and the center of gravity of the light irradiation position 5 is used as the origin for the center of gravity of the light detecting optical fiber 7c. The optical fiber 7d for light detection is arranged so that the center of gravity of the optical fiber 7d for light detection exists on a half line passing through the points. The center of gravity of the optical fiber 7a for detecting light and the optical fiber 7d for detecting light may be arranged anywhere as long as they exist on the above-mentioned half line, but in the present embodiment, they are point-symmetrical with the light irradiation position 5 as the center of symmetry and It is arranged outside the optical fibers for light detection 7b and 7c. Here, the light irradiation optical fiber 4 and the light detection optical fibers 7a, 7b, 7c, 7d are fixed by a metal optical fiber fixing member 8 whose surface is painted black. Optical fiber for light detection 7a, 7b, 7c, 7d
Is connected to the photodetector optical fibers 9a, 9b, 9c, 9d through the optical fiber couplers 3b, 3c, 3d, 3e, so that the photodetection optical fibers 7a, 7b, 7
The passing light detected by c and 7d is the photodetectors 10a and 10d.
b, 10c, and 10d are transmitted, and the passing light intensity photoelectrically converted by the photodetector 10 is output as the electric signal intensity.
As the photodetector 10, for example, a photoelectric conversion element such as a photodiode or a photomultiplier tube can be used.

【0028】光検出器10a及び10bで出力された通
過光強度を表わす電気信号は、それぞれロックインアン
プ24aと24bで光源の強度変調周波数成分のみを抽
出される。ロックインアンプ24aからの出力は、対数
増幅器25aで対数変換された後に差動増幅器11aの
負極に入力され、ロックインアンプ24bからの出力
は、対数増幅器25bで対数変換された後に差動増幅器
11aの正極に入力される。光検出器10c及び10d
で出力された通過光強度を表わす電気信号は、それぞれ
ロックインアンプ24cと24dで光源の強度変調周波
数成分のみを抽出される。ロックインアンプ24dから
の出力は、対数増幅器25dで対数変換された後に差動
増幅器11bの負極に入力され、ロックインアンプ24
cからの出力は、対数増幅器25cで対数変換された後
に差動増幅器11bの正極に入力される。さらに、差動
増幅器11aからの出力を差動増幅器11cの負極に入
力し、差動増幅器11bからの出力を差動増幅器11c
の正極に入力する。その結果として、異なる4ヵ所の位
置での通過光強度の対数差分信号が、出力信号として差
動増幅器11cより出力される。差動増幅器11cから
の出力信号を逐次、A/D変換器12でデジタル信号に
変換し、計算機13に取り込み表示装置14に時系列デ
ータとしてグラフ表示する。
The electric signals representing the transmitted light intensities output from the photodetectors 10a and 10b are extracted by the lock-in amplifiers 24a and 24b, respectively, only the intensity modulation frequency component of the light source. The output from the lock-in amplifier 24a is logarithmically converted by the logarithmic amplifier 25a and then input to the negative electrode of the differential amplifier 11a, and the output from the lock-in amplifier 24b is logarithmically converted by the logarithmic amplifier 25b and then differential amplifier 11a. Is input to the positive electrode of. Photodetectors 10c and 10d
The electric signals representing the intensity of the passing light output in step (4) are extracted by the lock-in amplifiers 24c and 24d, respectively, only the intensity modulation frequency component of the light source. The output from the lock-in amplifier 24d is logarithmically converted by the logarithmic amplifier 25d and then input to the negative electrode of the differential amplifier 11b.
The output from c is logarithmically converted by the logarithmic amplifier 25c and then input to the positive electrode of the differential amplifier 11b. Further, the output from the differential amplifier 11a is input to the negative electrode of the differential amplifier 11c, and the output from the differential amplifier 11b is input to the differential amplifier 11c.
Input to the positive electrode of. As a result, the logarithmic difference signal of the passing light intensity at four different positions is output from the differential amplifier 11c as an output signal. The output signal from the differential amplifier 11c is sequentially converted into a digital signal by the A / D converter 12 and taken into the computer 13 to be displayed as a graph on the display device 14 as time series data.

【0029】ここで、図7に示すように、局所的に血液
動態が変化する領域15が、光検出用光ファイバーの視
野16bのみに含まれていれば、差動増幅器11cより
出力される通過光強度の対数差分信号は、局所的な血液
動態の変化のみを反映していることになる。近赤外光に
対しては血液中の主成分であるヘモグロビンが光吸収に
対して支配的に働くことを前提に、差動増幅器11cよ
り出力される対数差分信号の意味を以下に説明する。
Here, as shown in FIG. 7, if the region 15 in which the hemodynamics locally changes is included only in the visual field 16b of the optical fiber for light detection, the transmitted light output from the differential amplifier 11c is obtained. The logarithmic difference signal of intensity will only reflect local hemodynamic changes. The meaning of the logarithmic difference signal output from the differential amplifier 11c will be described below on the assumption that hemoglobin, which is the main component in blood, acts predominantly on light absorption with respect to near-infrared light.

【0030】計測時間をt、光源波長をλ、照射光強度
をI0(t) 、酸化ヘモグロビンと還元ヘモグロビン濃度
をそれぞれCox(t),Cdeox(t)、局所領域15で変化し
た酸化ヘモグロビン濃度と還元ヘモグロビン濃度をそれ
ぞれΔCox(t),ΔCdeox(t)、光源波長λに対する酸化
ヘモグロビンと還元ヘモグロビンの吸光係数をそれぞれ
εox(λ),εdeox(λ)、光検出器10bと10cで検出
される通過光強度に含まれる散乱とヘモグロビン以外の
吸収による減衰をDs1、光検出器10aと10dで検出
される通過光強度に含まれる散乱とヘモグロビン以外に
吸収による減衰をDs2、光検出器10bと10cで検出
される通過光強度に含まれる散乱によって生じる重み係
数をd1 、光検出器10aと10dで検出される通過光
強度に含まれる散乱によって生じる重み係数をd2 とす
ると、光検出器10cで検出される通過光強度信号Id1
(t)、光検出器10dで検出される通過光強度信号I
d2(t)、光検出器10bで検出される通過光強度信号I
d1'(t)、及び光検出器10aで検出される通過光強度信
号Id2'(t)は、それぞれ下式(8)〜(11)で表され
る。
Measurement time is t, light source wavelength is λ, irradiation light intensity is I 0 (t), oxyhemoglobin and reduced hemoglobin concentrations are C ox (t), C deox (t), and oxidation changes in the local region 15. The hemoglobin concentration and the reduced hemoglobin concentration are ΔC ox (t) and ΔC deox (t), the absorption coefficients of oxyhemoglobin and reduced hemoglobin for the light source wavelength λ are ε ox (λ) and ε deox (λ), respectively, and the photodetector 10b D s1 is the scattering included in the intensity of the transmitted light detected by 10 and 10c, and D is the attenuation caused by absorption other than hemoglobin, and D is the attenuation included in the transmitted light intensity detected by the photodetectors 10a and 10d and the absorption caused by absorption other than hemoglobin. s2, raw by the scattering included a weighting factor caused by the scattering included in the passing light intensity detected by the photodetector 10b and 10c d 1, the passing light intensity detected by the photodetector 10a and 10d That if the weighting coefficient is d 2, passing light intensity is detected by the photodetector 10c signals I d1
(t), the transmitted light intensity signal I detected by the photodetector 10d
d2 (t), the transmitted light intensity signal I detected by the photodetector 10b
The d1 '(t) and the passing light intensity signal Id2 ' (t) detected by the photodetector 10a are expressed by the following equations (8) to (11), respectively.

【0031】 Id1(t)=Ds1・exp[−[εox(λ)(Cox(t)+ΔCox(t)) +εdeox(λ)(Cdeox(t)+ΔCdeox(t))]d1]I0(t) (8) Id2(t)=Ds2・exp[−[εox(λ)(Cox(t)+ΔCox(t)) +εdeox(λ)(Cdeox(t)+ΔCdeox(t))]d2]I0(t) (9) Id1'(t)=Ds1・exp[−[εox(λ)Cox(t)+εdeox(λ)Cdeox(t)]d1]I0(t) (10) Id2'(t)=Ds2・exp[−[εox(λ)Cox(t)+εdeox(λ)Cdeox(t)]d2]I0(t) (11)I d1 (t) = D s1 · exp [− [ε ox (λ) (C ox (t) + ΔC ox (t)) + ε deox (λ) (C deox (t) + ΔC deox (t) )] d 1 ] I 0 (t) (8) I d2 (t) = D s2 · exp [− [ε ox (λ) (C ox (t) + ΔC ox (t)) + ε deox (λ) (C deox (t) + ΔC deox (t))] d 2 ] I 0 (t) (9) I d1 ′ (t) = D s1 · exp [− [ε ox (λ) C ox (t) + ε deox ( λ) C deox (t)] d 1 ] I 0 (t) (10) I d2 '(t) = D s2 · exp [− [ε ox (λ) C ox (t) + ε deox (λ) C deox (t)] d 2 ] I 0 (t) (11)

【0032】次に、(8)式と(9)式の自然対数をと
った後に、(8)式から(9)式を減算すると、次式
(12)が得られる。 ln[Id1(t)/Id2(t)]=ln[Ds1/Ds2]−[εox(λ)(Cox(t) +ΔCox(t))+εdeox(λ)(Cdeox(t)+ΔCdeox(t))](d1−d2) (12) (10)式と(11)式の自然対数をとった後に(10)式か
ら(11)式を減算すると、次式(13)が得られる。 ln[Id1'(t)/Id2'(t)]=ln[Ds1/Ds2]−[εox(λ)(Cox(t) +ΔCox(t))+εdeox(λ)(Cdeox(t)+ΔCdeox(t))](d1−d2) (13) (12)式の左辺は差動増幅器11bの出力を表してお
り、(13)式の左辺は差動増幅器11aの出力を表して
いる。ここで、(12)式より(13)式を減算すると次式
(14)が得られる。
Next, after taking the natural logarithm of the equations (8) and (9), the equation (9) is subtracted from the equation (8) to obtain the following equation (12). ln [I d1 (t) / I d2 (t)] = ln [D s1 / D s2 ] − [ε ox (λ) (C ox (t) + ΔC ox (t)) + ε deox (λ) (C deox (t) + ΔC deox (t))] (d 1 −d 2 ) (12) After taking the natural logarithm of equations (10) and (11), subtracting equation (11) from equation (10) gives Equation (13) is obtained. ln [I d1 '(t) / I d2 ' (t)] = ln [D s1 / D s2 ] − [ε ox (λ) (C ox (t) + ΔC ox (t)) + ε deox (λ) ( C deox (t) + ΔC deox (t))] (d 1 −d 2 ) (13) The left side of the equation (12) represents the output of the differential amplifier 11b, and the left side of the equation (13) is the differential amplifier. 11a shows the output of 11a. Here, when the equation (13) is subtracted from the equation (12), the following equation (14) is obtained.

【0033】 ln[(Id1(t)/Id2(t))(Id2'(t)/Id1'(t))] =−[εox(λ)ΔCox(t)+εdeox(λ)ΔCdeox(t)](d1−d2) (14) (14)式の左辺は、差動増幅器11cからの出力、すな
わち計測された対数差分信号を表している。
Ln [(I d1 (t) / I d2 (t)) (I d2 '(t) / I d1 ' (t))] =-[ε ox (λ) ΔC ox (t) + ε deox ( λ) ΔC deox (t)] (d 1 −d 2 ) (14) The left side of the equation (14) represents the output from the differential amplifier 11c, that is, the measured logarithmic difference signal.

【0034】ここで特に、光源波長として805nm±
10nmを用いて計測すると、前述の(4)式の関係が
成立するので、(14)式は定数Kを用いて下式(15)の
ように書き直すことができる。 ln[(Id1(t)/Id2(t))(Id2'(t)/Id1'(t))] =−[ΔCox(t)+ΔCdeox(t)]・K (15)
Here, in particular, the light source wavelength is 805 nm ±
When the measurement is performed using 10 nm, the relationship of the above expression (4) is established, so the expression (14) can be rewritten as the following expression (15) using the constant K. ln [(I d1 (t) / I d2 (t)) (I d2 '(t) / I d1 ' (t))] =-[ΔC ox (t) + ΔC deox (t)] · K (15)

【0035】従って、光源波長805nm±10nmを
用いて計測された対数差分信号は、相対血液変化量[Δ
ox(t)+ΔCdeox(t)]に相当する値を表している。ま
た、光源に用いる波長数を2波長(λ12)にし、各
波長に異なる強度変調周波数(f1,f2)を与え、ロッ
クインアンプで周波数分離すれば、各波長の通過光強度
信号を計測することができる。従って、(14)式が各波
長で成り立つので、次の(16)式及び(17)式からなる
連立方程式を導くことができる。
Therefore, the logarithmic difference signal measured using the light source wavelength 805 nm ± 10 nm is the relative blood change amount [Δ
It represents a value corresponding to C ox (t) + ΔC deox (t)]. In addition, if the number of wavelengths used for the light source is set to two wavelengths (λ 1 , λ 2 ), different intensity modulation frequencies (f 1 , f 2 ) are given to each wavelength, and frequency is separated by the lock-in amplifier, then the transmitted light of each wavelength is transmitted. The intensity signal can be measured. Therefore, since the equation (14) holds at each wavelength, the simultaneous equations consisting of the following equations (16) and (17) can be derived.

【0036】 ln[(Id11,t)/Id21,t))(Id2'(λ1,t)/Id1'(λ1,t))] =−[εox1)ΔCox(t)+εdeox1)ΔCdeox(t)](d1−d2) (16) ln[(Id12,t)/Id22,t))(Id2'(λ2,t)/Id1'(λ2,t))] =−[εox2)ΔCox(t)+εdeox2)ΔCdeox(t)](d1−d2) (17) 吸光係数εox1),εox2),εdeox1),ε
deox2) は既知であるので、酸化ヘモグロビンの変化
量に相当する値ΔCox(t)(d1−d2)と還元ヘモグロビ
ンの変化量に相当するΔCdeox(t)(d1−d2)を、(1
6)式及び(17)式を計算機13内で解くことで求める
ことができ、求められた相対変化量の時系列データを表
示装置14上にグラフ表示する。さらに拡張して波長数
を増やし、(d1−d 2)を消去、または微量にあるヘモグ
ロビン以外の吸光物質濃度の相対変化量を求めることも
可能である。
Ln [(Id11, T) / Id21, T)) (Id2'(λ1, T) / Id1'(λ1, T))] =-[εox1) ΔCox(t) + εdeox1) ΔCdeox(t)] (d1-D2) (16) ln [(Id12, T) / Id22, T)) (Id2'(λ2, T) / Id1'(λ2, T))] =-[εox2) ΔCox(t) + εdeox2) ΔCdeox(t)] (d1-D2) (17) Extinction coefficient εox1), εox2), εdeox1), ε
deox2) Is known, the change in oxyhemoglobin
Value corresponding to quantity ΔCox(t) (d1-D2) And reduced hemoglobin
ΔC corresponding to the change amount ofdeox(t) (d1-D2), (1
Obtained by solving equations (6) and (17) in computer 13.
It is possible to display the time series data of the calculated relative change amount.
A graph is displayed on the display device 14. Further expand the number of wavelengths
Increase, (d1-D 2) Is erased, or a small amount of
It is also possible to calculate the relative change in the concentration of light-absorbing substances other than Robin.
It is possible.

【0037】また、図8に示すように、ロックインアン
プ、対数増幅器、差動増幅器を使用せずに、光検出器1
0a,10b,10c,10dからの検出信号をそれぞ
れA/D変換器12でデジタル信号に変換した後、計算
機13内でFFT処理をして光源の強度変調周波数に相
当する信号のみを抽出し、異なる4ヵ所の検出位置での
通過光強度の対数差分を上述の計算過程と同様の手順で
計算した後、求められた相対変化量を、時系列データと
して表示装置14上にグラフ表示することもできる。
Further, as shown in FIG. 8, without using a lock-in amplifier, a logarithmic amplifier and a differential amplifier, the photodetector 1
After converting the detection signals from 0a, 10b, 10c, and 10d into digital signals by the A / D converter 12, respectively, only the signal corresponding to the intensity modulation frequency of the light source is extracted by FFT processing in the computer 13. After calculating the logarithmic difference of the transmitted light intensity at four different detection positions in the same procedure as the above-described calculation process, the calculated relative change amount may be displayed as a time series data on the display device 14 in the form of a graph. it can.

【0038】〔実施例3〕本発明による生体光計測装置
の第3の実施例の概略構成を図9に示す。光源1aと1
bから発せられる光をレンズ系を用いて集光し、それぞ
れ光源用光ファイバー2aと2bに入射する。各光源か
ら発せられる光は、外来起因の雑音を除去するために各
発振器23a,23bによって100Hz〜10MHz
程度の異なる任意の周波数fで強度変調されている。こ
こでは、光源1aの強度変調周波数をf1とし、光源1
bの強度変調周波数をf2とする。光源用光ファイバー
2aは光ファイバー連結器3aを介して光照射用光ファ
イバー4aと接続しており、光源用光ファイバー2bは
光ファイバー連結器3cを介して光照射用光ファイバー
4bと接続しているため、各光源からの光は光照射用光
ファイバー4aと4bに伝達し、光照射位置5aと5b
より被検体6に照射される。また、参照光を得るために
光源用光ファイバー4a,4bの途中で分波器26a,
26bを用いて分波し、光検出器10aと10cで各光
源の強度を電気信号に変換する。光検出器10aから出
力される光源1aの参照光強度信号はロックインアンプ
24aに入力し、発振器23aからの参照周波数をもと
に分離される。ロックインアンプ24aからの出力は、
対数増幅器5aに入力されて対数変換された後に差動増
幅器11aの負極に入力される。光検出器10cから出
力される光源1bの参照光強度信号はロックインアンプ
24dに入力し、発振器23bからの参照周波数をもと
に分離される。ロックインアンプ24dからの出力は、
対数増幅器25dに入力されて対数変換された後に差動
増幅器11bの負極に入力する。用いる光の波長は生体
内の注目物質の分光特性によるが、HbとHbO2の濃
度から酸素飽和度や血流量を測定する場合には600n
m〜1400nmの波長範囲の光の中から1あるいは複
数波長選択して用いる。光源としては、半導体レーザ、
チタンサフィアレーザ、発光ダイオード等を用いること
ができる。
[Embodiment 3] FIG. 9 shows a schematic configuration of a third embodiment of the biological light measuring device according to the present invention. Light sources 1a and 1
The light emitted from b is condensed using a lens system and is incident on the optical fibers 2a and 2b for light sources, respectively. The light emitted from each light source is 100 Hz to 10 MHz by each oscillator 23a, 23b in order to remove the noise caused by the outside.
The intensity is modulated with an arbitrary frequency f having different degrees. Here, the intensity modulation frequency of the light source 1a is f 1 , and the light source 1a
Let f 2 be the intensity modulation frequency of b. The light source optical fiber 2a is connected to the light irradiation optical fiber 4a via the optical fiber coupler 3a, and the light source optical fiber 2b is connected to the light irradiation optical fiber 4b via the optical fiber coupler 3c. Light is transmitted to the light irradiation optical fibers 4a and 4b, and the light irradiation positions 5a and 5b.
The subject 6 is irradiated with the light. In order to obtain the reference light, the demultiplexer 26a,
26b is used for demultiplexing, and the photodetectors 10a and 10c convert the intensity of each light source into an electric signal. The reference light intensity signal of the light source 1a output from the photodetector 10a is input to the lock-in amplifier 24a, and is separated based on the reference frequency from the oscillator 23a. The output from the lock-in amplifier 24a is
After being input to the logarithmic amplifier 5a and logarithmically converted, it is input to the negative electrode of the differential amplifier 11a. The reference light intensity signal of the light source 1b output from the photodetector 10c is input to the lock-in amplifier 24d, and is separated based on the reference frequency from the oscillator 23b. The output from the lock-in amplifier 24d is
It is input to the logarithmic amplifier 25d and logarithmically converted, and then input to the negative electrode of the differential amplifier 11b. The wavelength of the light used depends on the spectral characteristics of the substance of interest in the living body, but when measuring the oxygen saturation and blood flow from the concentrations of Hb and HbO 2 , it is 600 n.
One or more wavelengths are selected and used from the light in the wavelength range of m to 1400 nm. As a light source, a semiconductor laser,
A titanium sapphire laser, a light emitting diode or the like can be used.

【0039】被検体6を通過して出射する光を検出する
ために1本の光検出用光ファイバー7を、被検体6上の
光照射位置5aと5bから等距離の位置に配置する。こ
こで、光照射用光ファイバー4aと4bと光検出用光フ
ァイバー7は、表面を黒色に塗装された光ファイバー固
定部材8で固定されている。光検出用光ファイバー7
は、光ファイバー連結器3bを介して光検出器用光ファ
イバー9に連結しているため、光検出用光ファイバー7
で検出された通過光は、光検出器10bまで伝達し、光
検出器10bで光電変換され通過光強度が電気信号強度
として出力される。光検出器10bとしては、例えばフ
ォトダイオードや光電子増倍管等の光電変換素子を用い
る。
A single optical fiber 7 for light detection is arranged at a position equidistant from the light irradiation positions 5a and 5b on the subject 6 in order to detect the light emitted after passing through the subject 6. Here, the light irradiation optical fibers 4a and 4b and the light detection optical fiber 7 are fixed by an optical fiber fixing member 8 whose surface is painted black. Optical fiber for light detection 7
Is connected to the optical fiber 9 for photodetector via the optical fiber coupler 3b.
The passing light detected in 1 is transmitted to the photodetector 10b, photoelectrically converted by the photodetector 10b, and the passing light intensity is output as the electric signal intensity. As the photodetector 10b, for example, a photoelectric conversion element such as a photodiode or a photomultiplier tube is used.

【0040】光検出器10bで出力された通過光強度を
表す電気信号は、光源1aに対する通過光強度信号と光
源1bに対する通過光強度信号を含んでいるため、ロッ
クインアンプ24bで光源1aに対する強度変調周波数
成分のみを抽出し、ロックインアンプ24cで光源1b
に対する強度変調周波数成分のみを抽出する。ロックイ
ンアンプ24bからの出力は、対数増幅器25bで対数
変換された後に、差動増幅器11aの正極に入力され
る。ロックインアンプ24cからの出力は、対数増幅器
25cで対数変換された後に、差動増幅器11bの正極
に入力される。その結果として、差動増幅器11aから
は、光源1aの強度と光源1aに対する通過光強度の対
数差分信号が出力信号として出力され、差動増幅器11
bからは、光源1bの強度と光源1aに対する通過光強
度の対数差分信号が出力信号として出力される。さら
に、差動増幅器11aからの出力を差動増幅器11cの
負極へ入力し、差動増幅器11bからの出力を差動増幅
器11cの正極へ入力すると、差動増幅器11cから光
源強度の揺らぎを除去した通過光強度の対数差分信号が
出力される。差動増幅器11cからの出力信号を逐次、
A/D変換器12でデジタル信号に変換し、計算器13
に取り込み表示装置14に時系列データとして表示す
る。
Since the electric signal representing the intensity of the passing light output from the photodetector 10b includes the passing light intensity signal for the light source 1a and the passing light intensity signal for the light source 1b, the intensity for the light source 1a is detected by the lock-in amplifier 24b. Only the modulation frequency component is extracted, and the lock-in amplifier 24c extracts the light source 1b.
Extract only the intensity-modulated frequency components for. The output from the lock-in amplifier 24b is logarithmically converted by the logarithmic amplifier 25b and then input to the positive electrode of the differential amplifier 11a. The output from the lock-in amplifier 24c is logarithmically converted by the logarithmic amplifier 25c and then input to the positive electrode of the differential amplifier 11b. As a result, the differential amplifier 11a outputs, as an output signal, a logarithmic difference signal between the intensity of the light source 1a and the intensity of the transmitted light with respect to the light source 1a.
From b, a logarithmic difference signal between the intensity of the light source 1b and the intensity of the passing light with respect to the light source 1a is output as an output signal. Further, when the output from the differential amplifier 11a is input to the negative electrode of the differential amplifier 11c and the output from the differential amplifier 11b is input to the positive electrode of the differential amplifier 11c, the fluctuation of the light source intensity is removed from the differential amplifier 11c. A logarithmic difference signal of passing light intensity is output. The output signal from the differential amplifier 11c is sequentially
The A / D converter 12 converts the digital signal, and the calculator 13
And displayed as time series data on the display device 14.

【0041】ここで、図9に示すように、局所的に血液
動態が変化する領域15が、光検出用光ファイバーの視
野16bにのみ含まれていれば、計測される対数差分信
号は局所的な血液動態の変化のみを反映していることに
なる。近赤外光に対して波血液中の主成分であるヘモグ
ロビンが光吸収に対して支配的に働くことを前提に、計
測される対数差分信号の意味を以下に説明する。
Here, as shown in FIG. 9, if the region 15 in which the hemodynamics locally changes is included only in the visual field 16b of the optical fiber for photodetection, the measured logarithmic difference signal is local. It reflects only changes in hemodynamics. Meaning of the logarithmic difference signal to be measured will be described below on the assumption that hemoglobin, which is a main component of blood in the near infrared light, predominantly acts on light absorption.

【0042】計測時間をt、光源波長をλ、照射位置5
bからの照射光強度をI0(t)、照射位置5aからの照射
光強度をI0'(t)、分波器26bからの参照光強度をIr
(t)、分波器26aからの参照光強度をIr'(t)、分波器
の参照光への分波比率をα、すなわち I0(t):Ir(t)=I0'(t):Ir'(t)=1:α とし、酸化ヘモグロビンと還元ヘモグロビン濃度をそれ
ぞれCox(t),Cdeox(t)局所領域15で変化した酸化ヘ
モグロビン濃度と還元ヘモグロビン濃度をそれぞれΔC
ox(t),ΔCdeox(t)、光源波長λに対する酸化ヘモグロ
ビンと還元ヘモグロビンの吸光係数をそれぞれε
ox(λ),εdeox(λ)、散乱とヘモグロビン以外の吸収に
よる減衰をDs、散乱によって生じる重み係数をdとす
ると、光検出器10bで検出される光源1bに対する通
過光強度信号Id(t)、即ちロックインアンプ24cから
の出力は下式(18)で表され、光検出器10bで検出さ
れる光源1aに対する通過光強度信号Id'(t)、即ちロ
ックインアンプ24bからの出力は下式(19)で表され
る。
Measurement time t, light source wavelength λ, irradiation position 5
The irradiation light intensity from b is I 0 (t), the irradiation light intensity from the irradiation position 5a is I 0 '(t), and the reference light intensity from the demultiplexer 26b is I r.
(t), the intensity of the reference light from the demultiplexer 26a is I r '(t), the demultiplexing ratio of the demultiplexer to the reference light is α, that is, I 0 (t): I r (t) = I 0 '(t): I r ' (t) = 1: α, and the oxyhemoglobin concentration and the reduced hemoglobin concentration changed in the local area 15 of C ox (t) and C deox (t) are respectively expressed as the oxyhemoglobin concentration and the reduced hemoglobin concentration. ΔC
ox (t), ΔC deox (t), and the extinction coefficient of oxyhemoglobin and deoxyhemoglobin with respect to the light source wavelength λ are ε, respectively.
ox (λ), ε deox (λ), where D s is the attenuation due to scattering and absorption other than hemoglobin, and d is a weighting factor caused by scattering, the passing light intensity signal I d for the light source 1b detected by the photodetector 10b. (t), that is, the output from the lock-in amplifier 24c is represented by the following formula (18), and the passing light intensity signal Id '(t) to the light source 1a detected by the photodetector 10b, that is, from the lock-in amplifier 24b The output of is expressed by the following equation (19).

【0043】 Id(t)=Ds・exp[−[εox(λ)(Cox(t)+ΔCox(t)) +εdeox(λ)(Cdeox(t)+ΔCdeox(t))]d]I0(t) (18) Id'(t)=Ds・exp[−[εox(λ)Cox(t)+εdeox(λ)Cdeox(t)]d]I0'(t) (19) 次に、(18)式と(19)式の自然対数をとった後に変形
すると、(18)式は下式(20)となり、式(19)は下式
(21)となる。
I d (t) = D s · exp [− [ε ox (λ) (C ox (t) + ΔC ox (t)) + ε deox (λ) (C deox (t) + ΔC deox (t)) ] d] I 0 (t) (18) I d '(t) = D s · exp [− [ε ox (λ) C ox (t) + ε deox (λ) C deox (t)] d] I 0 '(t) (19) Next, if the natural logarithms of equations (18) and (19) are taken and then transformed, equation (18) becomes equation (20) below, and equation (19) becomes equation (21) below. ).

【0044】 ln[Id(t)/I0(t)]=ln[Ds]−[εox(λ)(Cox(tΔCox(t)) +εdeox(λ)(Cdeox(t)+ΔCdeox(t))]d (20) ln[Id'(t)/I0'(t)] =ln[Ds]−[εox(λ)Cox(t)+εdeox(λ)Cdeox(t)]d (21) さらに(20)式から(21)式を減算すると、次式(22)
が得られる。
Ln [I d (t) / I 0 (t)] = ln [D s ] − [ε ox (λ) (C ox (tΔC ox (t)) + ε deox (λ) (C deox (t ) + ΔC deox (t))] d (20) ln [ Id ′ (t) / I 0 ′ (t)] = ln [D s ] − [ε ox (λ) C ox (t) + ε deox (λ ) C deox (t)] d (21) Further subtracting expression (21) from expression (20) gives the following expression (22)
Is obtained.

【0045】 ln[(Id(t)/Id'(t))(I0'(t)/I0(t))] =−[εox(λ)ΔCox(t)+εdeox(λ)ΔCdeox(t)]d (22) ここで、 Ir(t)=αI0(t) (23) Ir'(t)=αI0'(t) (24) であるから、差動増幅器11aからの出力は ln[Id'(t)/αI0'(t)] となり、従って、差動増幅器11cからの出力は ln[(Id(t)/Id'(t))(I0(t)'/I0(t))] (25) である。(25)式は(22)式の左辺と等しいので、差動
増幅器11cから出力された対数差分信号は(22)式と
等価である。
Ln [(I d (t) / I d ′ (t)) (I 0 ′ (t) / I 0 (t))] = − [ε ox (λ) ΔC ox (t) + ε deox ( λ) ΔC deox (t)] d (22) where I r (t) = αI 0 (t) (23) I r ′ (t) = αI 0 ′ (t) (24) The output from the dynamic amplifier 11a is ln [I d '(t) / αI 0 ' (t)], and therefore the output from the differential amplifier 11c is ln [(I d (t) / I d '(t)). ) (I 0 (t) '/ I 0 (t))] (25). Since the expression (25) is equal to the left side of the expression (22), the logarithmic difference signal output from the differential amplifier 11c is equivalent to the expression (22).

【0046】ここで特に、光源波長として805nm±
10nmを用いて計測すると、前述の(4)式の関係が
成立するので、(22)式は定数Kを用いて下式(26)の
ように書き直すことができる。 ln[(Id(t)/Id'(t))(I0'(t)/I0(t))] =−[ΔCox(t)+ΔCdeox(t)]K (26) 従って、光源波長805nm±10nmを用いて計測さ
れた対数差分信号は、相対血液変化量[ΔCox(t)+ΔC
deox(t)]に相当する値を表している。また、光源に用い
る波長数を2波長(λ12)にし、各波長と各照射位
置毎に異なる強度変調周波数(f1,f2,f3,f4)を与
え、ロックインアンプで周波数分離すれば、各波長と各
照射位置毎の通過光強度信号を計測することができる。
従って、(22)式が各波長で成り立つので、次の(27)
式及び(28)式からなる連立方程式を導くことができ
る。
Here, in particular, the light source wavelength is 805 nm ±
When the measurement is performed using 10 nm, the relationship of the above equation (4) is established, and therefore the equation (22) can be rewritten as the following equation (26) using the constant K. ln [(I d (t) / I d '(t)) (I 0' (t) / I 0 (t))] = - [ΔC ox (t) + ΔC deox (t)] K (26) Therefore, the logarithmic difference signal measured using the light source wavelength 805 nm ± 10 nm is the relative blood change amount [ΔC ox (t) + ΔC
deox (t)] is represented. In addition, the number of wavelengths used for the light source is set to 2 wavelengths (λ 1 , λ 2 ), and different intensity modulation frequencies (f 1 , f 2 , f 3 , f 4 ) are given to each wavelength and each irradiation position, and the lock-in amplifier is supplied. If the frequency is separated by, the passing light intensity signal for each wavelength and each irradiation position can be measured.
Therefore, since the formula (22) holds for each wavelength, the following (27)
It is possible to derive a simultaneous equation consisting of equation (28).

【0047】 ln[(Id1,t)/Id'(λ1,t))(I0'(λ1,t)/I01,t))] =−[εox1)ΔCox(t)+εdeox1)ΔCdeox(t)]d (27) ln[(Id2,t)/Id'(λ2,t))(I0'(λ2,t)/I02,t))] =−[εox2)ΔCox(t)+εdeox2)ΔCdeox(t)]d (28) 吸光係数εox1),εox2),εdeox1),ε
deox2) は既知であるので、酸化ヘモグロビンの変化
量に相当する値ΔCOX(t)dと還元ヘモグロビンの変化
量に相当するΔCdeox(t)dを、(27)式及び(28)式
を計算機13内で解くことで求めることができ、求めら
れた相対変化量の時系列データを表示装置14上にグラ
フ表示する。さらに拡張して波長数を増やし、dを消
去、または微量にあるヘモグロビン以外の吸光物質濃度
の相対変化量を求めることも可能である。
Ln [(I d1 , t) / I d ′ (λ 1 , t)) (I 0 ′ (λ 1 , t) / I 01 , t))] = − [ε ox1 ) ΔC ox (t) + ε deox1 ) ΔC deox (t)] d (27) ln [(I d2 , t) / I d '(λ 2 , t)) ( I 0 '(λ 2 , t) / I 02 , t))] = − [ε ox2 ) ΔC ox (t) + ε deox2 ) ΔC deox (t)] d (28 ) Extinction coefficient ε ox1 ), ε ox2 ), ε deox1 ), ε
Since deox2 ) is known, the value ΔC OX (t) d corresponding to the amount of change in oxyhemoglobin and ΔC deox (t) d corresponding to the amount of change in reduced hemoglobin can be calculated using equations (27) and (28 ) Can be obtained by solving the equation in the computer 13, and the time series data of the obtained relative change amount is displayed as a graph on the display device 14. It is also possible to further expand to increase the number of wavelengths, eliminate d, or obtain the relative change amount of the concentration of a light-absorbing substance other than a small amount of hemoglobin.

【0048】また、図10に示すように、ロックインア
ンプ、対数増幅器、差動増幅器を使用せずに、光検出器
10a,10b,10cからの検出信号をそれぞれA/
D変換器12でデジタル信号に変換した後、計算機13
内でFFT処理をして各光源の強度変調周波数に相当す
る信号のみを抽出し、上述の計算過程と同様の手順で計
算して、求められた相対変化量を時系列データとして表
示装置14上にグラフ表示することもできる。
Further, as shown in FIG. 10, the detection signals from the photodetectors 10a, 10b and 10c are respectively A / A without using the lock-in amplifier, the logarithmic amplifier and the differential amplifier.
After the digital signal is converted by the D converter 12, the calculator 13
FFT processing is performed in the inside to extract only the signal corresponding to the intensity modulation frequency of each light source, the calculation is performed in the same procedure as the above calculation process, and the obtained relative change amount is displayed on the display device 14 as time series data. It can also be displayed as a graph.

【0049】[0049]

【発明の効果】本発明によると、簡便な装置構成で被検
体内の局所的な血液動態の変化を計測することができ
る。
According to the present invention, it is possible to measure local changes in hemodynamics in a subject with a simple device configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による装置構成の説明図。FIG. 1 is an explanatory diagram of a device configuration according to an embodiment of the present invention.

【図2】従来法による生体頭部の通過光強度の時間変化
を示す図。
FIG. 2 is a view showing a temporal change in the intensity of light passing through a living body head according to a conventional method.

【図3】本発明の他の実施例による装置構成の説明図。FIG. 3 is an explanatory diagram of a device configuration according to another embodiment of the present invention.

【図4】光検出プローブの説明図。FIG. 4 is an explanatory diagram of a light detection probe.

【図5】光検出プローブの説明図。FIG. 5 is an explanatory diagram of a light detection probe.

【図6】光計測装置の使用例を説明する図。FIG. 6 is a diagram illustrating an example of use of the optical measurement device.

【図7】本発明の他の実施例による装置構成の説明図。FIG. 7 is an explanatory diagram of a device configuration according to another embodiment of the present invention.

【図8】本発明の他の実施例による装置構成の説明図。FIG. 8 is an explanatory diagram of a device configuration according to another embodiment of the present invention.

【図9】本発明の他の実施例による装置構成の説明図。FIG. 9 is an explanatory diagram of a device configuration according to another embodiment of the present invention.

【図10】本発明の他の実施例による装置構成の説明
図。
FIG. 10 is an explanatory diagram of a device configuration according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…光源、2…光源用光ファイバー、3a〜3c…光フ
ァイバー連結器、4…光照射用光ファイバー、5…光照
射位置、6…被検体、7a〜7d…光検出用光ファイバ
ー、8…光ファイバー固定部材、9a〜9d…光検出器
用光ファイバー、10a〜10d…光検出器、11…差
動増幅器、12…A/D変換器、13…計算機、14…
表示装置、15…局所的に血液動態が変化する領域、1
6a,16b…光検出用光ファイバーの視野、17…被
検体接触面、18…固定用ベルト、19…光計測装置、
20…出力信号調整つまみ、21…出力信号値表示窓、
22…時系列データ、23a〜23c…差動増幅器、2
4…ロックインアンプ、25…対数増幅器、26…分波
DESCRIPTION OF SYMBOLS 1 ... Light source, 2 ... Light source optical fiber, 3a-3c ... Optical fiber coupler, 4 ... Light irradiation optical fiber, 5 ... Light irradiation position, 6 ... Test object, 7a-7d ... Optical detection optical fiber, 8 ... Optical fiber fixing member , 9a to 9d ... Optical fiber for photodetector, 10a to 10d ... Photodetector, 11 ... Differential amplifier, 12 ... A / D converter, 13 ... Computer, 14 ...
Display device, 15 ... Region where hemodynamic changes locally, 1
6a, 16b ... Field of view of optical fiber for light detection, 17 ... Contact surface of specimen, 18 ... Belt for fixing, 19 ... Optical measuring device,
20 ... Output signal adjusting knob, 21 ... Output signal value display window,
22 ... Time series data, 23a to 23c ... Differential amplifier, 2
4 ... Lock-in amplifier, 25 ... Logarithmic amplifier, 26 ... Splitter

フロントページの続き (72)発明者 山下 優一 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内Continued Front Page (72) Yuichi Yamashita 1-280 Higashi Koigakubo, Kokubunji, Tokyo Inside Hitachi Central Research Laboratory

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 生体表面に光を照射する光照射手段と、
生体内部を通過して生体表面から出射する光強度を検出
する光検出手段とを備える生体光計測装置において、 光照射位置と光検出位置の組み合わせを少なくとも2組
有し、各組み合わせに対する検出信号の対数差分信号を
計測信号として用いることを特徴とする生体光計測装
置。
1. A light irradiation means for irradiating the surface of a living body with light,
A living body optical measurement device comprising a light detecting means for detecting the intensity of light passing through the inside of a living body and emitted from the living body surface, wherein at least two combinations of a light irradiation position and a light detection position are provided, and a detection signal for each combination is detected. A biomedical optical measurement apparatus characterized by using a logarithmic difference signal as a measurement signal.
【請求項2】 光照射位置から検出位置までの距離が等
しく設定されている少なくとも2組の光照射位置と光検
出位置の組み合わせを備えることを特徴とする請求項1
記載の生体光計測装置。
2. A combination of at least two sets of a light irradiation position and a light detection position in which the distance from the light irradiation position to the detection position is set equal to each other.
The biological optical measurement device described.
【請求項3】 対数増幅器と差動増幅器を含み、光検出
信号を対数増幅したのち差動増幅器によって対数差分信
号を発生することを特徴とする請求項1又は2記載の生
体光計測装置。
3. The biological optical measurement apparatus according to claim 1, further comprising a logarithmic amplifier and a differential amplifier, wherein the photodetection signal is logarithmically amplified and then the logarithmic difference signal is generated by the differential amplifier.
【請求項4】 光照射手段は光源と光照射位置の間を結
ぶ光ファイバーを含み、光検出手段は光検出器と光検出
位置の間を結ぶ光ファイバーを含むことを特徴とする請
求項1、2又は3記載の生体光計測装置。
4. The light irradiation means includes an optical fiber connecting the light source and the light irradiation position, and the light detection means includes an optical fiber connecting the light detector and the light detection position. Or the biological optical measurement device according to 3.
【請求項5】 光照射手段の光ファイバー端部及び光検
出手段の光ファイバー端部を固定した光検出プローブ部
と、光照射手段の光源と光検出手段の光検出器と電気信
号処理回路を含む光計測装置部とを備えることを特徴と
する請求項4記載の光計測装置。
5. A light detecting probe unit having the optical fiber end of the light irradiation unit and the optical fiber end of the light detection unit fixed, a light source of the light irradiation unit, a photodetector of the light detection unit, and an optical signal processing circuit. The optical measuring device according to claim 4, further comprising a measuring device section.
【請求項6】 光照射位置と第1検出位置と第2検出位
置と、光照射位置を原点として第1検出位置を通る半直
線上に設定された第3検出位置と、光照射位置を原点と
して第2検出位置を通る半直線上に設定された第4検出
位置とを有し、第1検出位置と第3検出位置で検出され
る光検出信号の対数差分信号(第1対数差分信号)と第
2検出位置と第4検出位置で検出される通過光強度の対
数差分信号(第2対数差分信号)を計測し、前記第1対
数差分信号と第2対数差分信号の差分信号を計測するこ
とを特徴とする請求項1〜6のいずれか1項記載の生体
光計測装置。
6. A light irradiation position, a first detection position, a second detection position, a third detection position set on a half line passing through the first detection position with the light irradiation position as the origin, and the light irradiation position as the origin. And a fourth detection position set on a half line passing through the second detection position as a logarithmic difference signal (first logarithmic difference signal) of the photodetection signals detected at the first detection position and the third detection position. And a logarithmic difference signal (second logarithmic difference signal) of passing light intensities detected at the second detection position and the fourth detection position, and a difference signal between the first logarithmic difference signal and the second logarithmic difference signal. The biological optical measurement device according to any one of claims 1 to 6, characterized in that.
【請求項7】 生体表面に光を照射する第1の光照射手
段と、前記第1の光照射手段からの照射光強度を検出す
る第1の照射光強度検出手段と、生体表面に光を照射す
る第2の光照射手段と、前記第2の光照射手段からの照
射光強度を検出する第2の照射光強度検出手段と、生体
内部を通過して生体表面から出射する第1の光照射手段
又は第2の光照射手段に起因する光強度を検出する光検
出手段と、前記第1の照射光強度検出手段の出力と前記
第1の光照射手段に起因する前記光検出手段の出力との
対数差分信号(第1対数差分信号)を発生する手段と、
前記第2の照射光強度検出手段の出力と前記第2の光照
射手段に起因する前記光検出手段の出力との対数差分信
号(第2対数差分信号)を発生する手段と、前記第1対
数差分信号と第2対数差分信号の差分信号を計測する手
段とを備えることを特徴とする請求項1〜5のいずれか
1項記載の生体光計測装置。
7. A first light irradiation means for irradiating the surface of the living body with light, a first irradiation light intensity detecting means for detecting the irradiation light intensity from the first light irradiation means, and a light for the surface of the living body. Second light irradiating means for irradiating, second irradiating light intensity detecting means for detecting irradiating light intensity from the second light irradiating means, and first light passing through the inside of the living body and emitted from the surface of the living body. Light detection means for detecting the light intensity caused by the irradiation means or the second light irradiation means, output of the first irradiation light intensity detection means, and output of the light detection means caused by the first light irradiation means Means for generating a logarithmic difference signal (first logarithmic difference signal) between
Means for generating a logarithmic difference signal (second logarithmic difference signal) between the output of the second irradiation light intensity detection means and the output of the light detection means due to the second light irradiation means, and the first logarithm The living body optical measurement system according to claim 1, further comprising: a unit that measures a difference signal of the difference signal and the second logarithmic difference signal.
【請求項8】 光照射手段からの照射光を強度変調し、
光検出手段からの検出信号のうち前記強度変調周波数と
同じ周波数成分のみをロックインアンプあるいはフーリ
エ変換処理によって抽出して用いることを特徴とする請
求項1〜7のいずれか1項記載の生体光計測装置。
8. The intensity of the irradiation light from the light irradiation means is modulated,
8. The living body light according to claim 1, wherein only a frequency component that is the same as the intensity modulation frequency in the detection signal from the light detection means is extracted by a lock-in amplifier or a Fourier transform process and used. Measuring device.
【請求項9】 照射光の波長数がm、光照射位置の数が
nであり、光源の強度変調周波数としてm×n種類用い
ることを特徴とする請求項1〜8のいずれか1項記載の
生体光計測装置。
9. The number of wavelengths of irradiation light is m, the number of light irradiation positions is n, and m × n types are used as the intensity modulation frequency of the light source. Biological light measurement device.
【請求項10】 請求項1〜9のいずれか1項記載の生
体光計測装置を用い、生体内で血液動態の変化に由来し
て局所的に光の吸収特性が変化する領域からの信号が少
なくとも1つの光検出位置で検出される光強度信号に含
まれ、少なくとも他の1つの光検出位置で検出される光
強度信号に含まれないように、生体表面上に光照射位置
と光検出位置を設定して計測を行うことを特徴とする生
体光計測方法。
10. The biological optical measurement device according to claim 1, wherein a signal from a region where light absorption characteristics locally change due to a change in hemodynamics in a living body is used. The light irradiation position and the light detection position on the living body surface are included in the light intensity signal detected at at least one light detection position and not included in the light intensity signal detected at at least one other light detection position. An optical measurement method for living body, characterized by setting and measuring.
【請求項11】 生体内に局所的に光の吸収特性が変化
する領域の変化が起こらない状態で検出位置の異なる2
箇所間の対数差分信号が0となるように調整した後に、
計測を開始し、差分信号の変位値を計測信号として用い
ることを特徴とする請求項10記載の生体光計測方法。
11. The detection position is different in a state where the region where the light absorption characteristic locally changes in the living body does not change.
After adjusting so that the logarithmic difference signal between the points becomes 0,
11. The living body optical measurement method according to claim 10, wherein the measurement is started and the displacement value of the difference signal is used as the measurement signal.
JP24259294A 1994-10-06 1994-10-06 Biological light measurement device Expired - Lifetime JP3359756B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP24259294A JP3359756B2 (en) 1994-10-06 1994-10-06 Biological light measurement device
US08/539,871 US5803909A (en) 1994-10-06 1995-10-06 Optical system for measuring metabolism in a body and imaging method
US09/149,155 US6128517A (en) 1994-10-06 1998-09-08 Optical system for measuring metabolism in a body and imaging method
US09/203,610 US6282438B1 (en) 1994-10-06 1998-12-02 Optical system for measuring metabolism in a body and imaging method
US09/900,144 US7286870B2 (en) 1994-10-06 2001-07-09 Optical system for measuring metabolism in a body and imaging method
US11/037,338 US8050744B2 (en) 1994-10-06 2005-01-19 Optical system for measuring metabolism in a body and imaging method
US11/037,339 US7715904B2 (en) 1994-10-06 2005-01-19 Optical system for measuring metabolism in a body and imaging method
US11/037,282 US7440794B2 (en) 1994-10-06 2005-01-19 Optical system for measuring metabolism in a body and imaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24259294A JP3359756B2 (en) 1994-10-06 1994-10-06 Biological light measurement device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002131347A Division JP3602111B2 (en) 2002-05-07 2002-05-07 Biological light measurement device

Publications (2)

Publication Number Publication Date
JPH08103434A true JPH08103434A (en) 1996-04-23
JP3359756B2 JP3359756B2 (en) 2002-12-24

Family

ID=17091348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24259294A Expired - Lifetime JP3359756B2 (en) 1994-10-06 1994-10-06 Biological light measurement device

Country Status (1)

Country Link
JP (1) JP3359756B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344442A (en) * 1998-03-25 1999-12-14 Iss Usa Inc Method for deciding medium parameter and self-reference type optical sensor
EP1598008A1 (en) 2004-05-18 2005-11-23 Hitachi, Ltd. Living body measurement system by light, image display methodology and program
JP2007229322A (en) * 2006-03-03 2007-09-13 Hitachi Ltd Biological light measurement device
JP2009189576A (en) * 2008-02-14 2009-08-27 Univ Of Tsukuba Blood flow measuring device and brain activity measuring device using blood flow measuring device
KR20110006032A (en) * 2009-07-13 2011-01-20 고쿠리쯔 다이가쿠 호징 츠쿠바 다이가쿠 Brain activity measuring device using blood flow measuring device and blood flow measuring device
US8369913B2 (en) 2007-03-23 2013-02-05 Hitachi, Ltd. Optical measurement instrument for living body semiconductor laser installation for living body light measuring device
US10194094B2 (en) 2016-06-17 2019-01-29 Panasonic Intellectual Property Management Co., Ltd. Imaging apparatus including light source that emits pulsed light, image sensor, and control circuit
US10257397B2 (en) 2016-03-31 2019-04-09 Panasonic Intellectual Property Management Co., Ltd. Imaging apparatus including light source, photodetector, and control circuit
JP2019184395A (en) * 2018-04-09 2019-10-24 コニカミノルタ株式会社 Light projecting/receiving system, and optical biological information measurement device using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182856B2 (en) * 2007-12-05 2013-04-17 独立行政法人産業技術総合研究所 Optical measuring device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5564417A (en) 1991-01-24 1996-10-15 Non-Invasive Technology, Inc. Pathlength corrected oximeter and the like

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344442A (en) * 1998-03-25 1999-12-14 Iss Usa Inc Method for deciding medium parameter and self-reference type optical sensor
EP1598008A1 (en) 2004-05-18 2005-11-23 Hitachi, Ltd. Living body measurement system by light, image display methodology and program
JP2007229322A (en) * 2006-03-03 2007-09-13 Hitachi Ltd Biological light measurement device
US8369913B2 (en) 2007-03-23 2013-02-05 Hitachi, Ltd. Optical measurement instrument for living body semiconductor laser installation for living body light measuring device
JP2009189576A (en) * 2008-02-14 2009-08-27 Univ Of Tsukuba Blood flow measuring device and brain activity measuring device using blood flow measuring device
KR20110006032A (en) * 2009-07-13 2011-01-20 고쿠리쯔 다이가쿠 호징 츠쿠바 다이가쿠 Brain activity measuring device using blood flow measuring device and blood flow measuring device
US10257397B2 (en) 2016-03-31 2019-04-09 Panasonic Intellectual Property Management Co., Ltd. Imaging apparatus including light source, photodetector, and control circuit
US10194094B2 (en) 2016-06-17 2019-01-29 Panasonic Intellectual Property Management Co., Ltd. Imaging apparatus including light source that emits pulsed light, image sensor, and control circuit
JP2019184395A (en) * 2018-04-09 2019-10-24 コニカミノルタ株式会社 Light projecting/receiving system, and optical biological information measurement device using the same

Also Published As

Publication number Publication date
JP3359756B2 (en) 2002-12-24

Similar Documents

Publication Publication Date Title
US7356365B2 (en) Method and apparatus for tissue oximetry
Fantini et al. Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry
JP3875798B2 (en) Method of operating a bloodless measuring device for blood component concentration and bloodless measuring device
Yamakoshi et al. Pulse glucometry: a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry
US9237850B2 (en) System and method for noninvasively monitoring conditions of a subject
US5564417A (en) Pathlength corrected oximeter and the like
JP3433498B2 (en) Method and apparatus for measuring internal information of scattering medium
US10925525B2 (en) Combined pulse oximetry and diffusing wave spectroscopy system and control method therefor
US20060195021A1 (en) Noninvasive blood analysis by optical probing of the veins under the tongue
US20120209094A1 (en) Monitoring blood constituent levels in biological tissue
JPH11244267A (en) Blood component concentration measuring device
JPH0998972A (en) Biological optical measurement device and image creation method
Pinto et al. Non-invasive hemoglobin measurement using embedded platform
WO1991015991A1 (en) Method and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography
JPH11506202A (en) Method for minimizing scatter and improving tissue sampling in non-invasive examination and imaging
JP3471788B1 (en) Oxygen saturation meter
KR20190038509A (en) Frequency domian based multi-wavelength bio-signal analysing apparatus
US20080144004A1 (en) Optical Spectrophotometer
JP4856477B2 (en) Biological light measurement device
JP3359756B2 (en) Biological light measurement device
Crespi et al. Near-infrared oxymeter prototype for noninvasive analysis of rat brain oxygenation
RU2040912C1 (en) Optical method and device for determining blood oxygenation
JPH07132120A (en) Nonaggressive measuring method and device of specimen concentration using discontinuous emission
Fernandez et al. Single-distance and dual-slope frequency-domain near-infrared spectroscopy to assess skeletal muscle hemodynamics
JP2000023947A (en) Biological light measurement method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131011

Year of fee payment: 11

EXPY Cancellation because of completion of term