JPH08103028A - Non-contact charger - Google Patents
Non-contact chargerInfo
- Publication number
- JPH08103028A JPH08103028A JP6237225A JP23722594A JPH08103028A JP H08103028 A JPH08103028 A JP H08103028A JP 6237225 A JP6237225 A JP 6237225A JP 23722594 A JP23722594 A JP 23722594A JP H08103028 A JPH08103028 A JP H08103028A
- Authority
- JP
- Japan
- Prior art keywords
- transistor
- charging
- capacitor
- coil
- charged
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Dc-Dc Converters (AREA)
Abstract
(57)【要約】
【目的】 発熱を極力抑えて小型化設計を可能にする。
【構成】 充電台1に被充電器5を置いた時に、充電台
1のコイル4から磁界を出し、被充電器5のコイルL1
でその磁束を受信し、トランジスターQ2の回路で定電
流動作させ、2次電池Eを充電する。急速充電時は、ト
ランジスターQ1はオン状態になり、充電台1からの発
振周波数に共振させるようにする。トリクル充電時(微
小電流を電池Eに流すモード)は、コンデンサーC4と
トランジスターQ1のVCEとQ1のエミッタ・コレクタ
間の逆方向を流すためのダイオードD2のインピーダン
スとコンデンサーC3とによってL1共振をとり、トラ
ンジスターQ1の消費電力および発熱を抑える。
(57) [Summary] [Purpose] Minimize heat generation and enable downsizing design. [Structure] When the device to be charged 5 is placed on the charging stand 1, a magnetic field is emitted from the coil 4 of the charging stand 1 and the coil L1 of the device to be charged 5
Then, the magnetic flux is received, and the circuit of the transistor Q2 is operated at a constant current to charge the secondary battery E. At the time of rapid charging, the transistor Q1 is turned on and resonates with the oscillation frequency from the charging stand 1. During trickle charging (a mode in which a minute current is passed through the battery E), L1 resonance is obtained by the capacitor C4 and the impedance of the diode D2 for flowing in the opposite direction between the V CE of the transistor Q1 and the emitter / collector of Q1 and the capacitor C3. , Suppresses power consumption and heat generation of the transistor Q1.
Description
【0001】[0001]
【産業上の利用分野】本発明は、2次電池等を有する機
器に充電台から充電を行なう非接触充電器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contactless charger for charging a device having a secondary battery or the like from a charging stand.
【0002】[0002]
【従来の技術】図3は従来の非接触充電器の構成を示し
ている。図3において、1は充電台であり、2は整流用
ダイオードブリッジで構成された整流回路、3は電磁誘
導用の発振回路、4は電磁誘導供給用コイルである。5
は被充電器であり、Eは2次電池(ニッカド電池)、L
1は電磁誘導受信用コイル、C2は共振用コンデンサ
ー、Q1はインピーダンスを可変するためのトランジス
ター、D2はトランジスターQ1のエミッタ・コレクタ
間に逆方向の電流を流すためのタイオード、D1は整流
用ダイオード、C1は平滑用コンデンサー、R1はトラ
ンジスターQ1のバイアス抵抗、Q2は定電流用トラン
ジスター、6は充電コントロール用CPUであり、2次
電池Eの充電電流を急速充電/トリクル充電に切り換え
る制御を行なっている。Q3、Q4はCPU6の制御信
号によりオン/オフするトランジスターである。2. Description of the Related Art FIG. 3 shows the structure of a conventional contactless charger. In FIG. 3, 1 is a charging stand, 2 is a rectifying circuit composed of a rectifying diode bridge, 3 is an oscillation circuit for electromagnetic induction, and 4 is a coil for supplying electromagnetic induction. 5
Is a charger, E is a secondary battery (nickel battery), L
Reference numeral 1 is an electromagnetic induction receiving coil, C2 is a resonance capacitor, Q1 is a transistor for varying the impedance, D2 is a diode for flowing a reverse current between the emitter and collector of the transistor Q1, and D1 is a rectifying diode. C1 is a smoothing capacitor, R1 is a bias resistor of the transistor Q1, Q2 is a constant current transistor, and 6 is a charge control CPU, which controls to switch the charging current of the secondary battery E between quick charging and trickle charging. . Q3 and Q4 are transistors which are turned on / off by a control signal of the CPU 6.
【0003】次に上記従来例の動作について説明する。
図3において、充電台1の上に被充電器5を置くと、2
次電池Eが未充電の場合は、CPU6から充電制御信号
aが“L”の信号が出され、トランジスターQ4がオン
し、トランジスターQ3もオンとなり、定電流回路は、
抵抗R3<<R2の時Vc ≒VBEとなり、急速充電電流
I1 ≒VBE/R3//R4が流れるように制御され、ト
ランジスターQ2のコレクタから抵抗R1を介して電流
が流れるとともに、トランジスターQ1のVBEが制御さ
れ、I1 を流せるようにトランジスターQ1が動作す
る。ここで充電台1の発振周波数をf0 とすると、被充
電器のコイルL1とコンデンサーC1の値はf≒1/2
π√(L1・C2)で共振を取るようにしている(L1
の内部抵抗RS が小さいと仮定)。図4(a)はこの急
速充電時の等価回路であり、急速充電時は、電流を2次
電池Eへ多く流すためトランジスターQ1は、ほぼオン
の状態になっている。したがって、急速充電時の被充電
器5における消費電力は、以下のようになる。Next, the operation of the above conventional example will be described.
In FIG. 3, when the device to be charged 5 is placed on the charging stand 1, 2
When the secondary battery E is not charged, the CPU 6 outputs the charge control signal a of "L", the transistor Q4 is turned on, the transistor Q3 is also turned on, and the constant current circuit is
When the resistance R3 << R2, V c ≉V BE , and the rapid charging current I 1 ≉V BE / R3 // R4 is controlled so that the current flows from the collector of the transistor Q2 through the resistor R1 and the transistor Q2. The V BE of Q1 is controlled, and the transistor Q1 operates so that I 1 can flow. Here, when the oscillation frequency of the charging stand 1 is f 0 , the values of the coil L1 and the capacitor C1 of the charger are f≈1 / 2
Resonance is set at π√ (L1 · C2) (L1
It is assumed that the internal resistance R S is small). FIG. 4A is an equivalent circuit at the time of this rapid charging, and since a large amount of current flows to the secondary battery E at the time of rapid charging, the transistor Q1 is almost in the ON state. Therefore, the power consumption of the device to be charged 5 at the time of rapid charging is as follows.
【0004】[0004]
【数1】 [Equation 1]
【0005】次に、2次電池Eが充分充電され、自己放
電を補うためのトリクル充電時は、CPU6からの充電
制御信号aが“H”となり、トランジスターQ4がオ
フ、トランジスターQ3もオフとなり、トリクル充電電
流I2 ≒VBE/R3が2次電池Eに充電される。この時
トランジスターQ1は、図4(b)からも分かるよう
に、I1 >>I2 の時に充電台1から一定の電力が供給
され、急速充電時に出力パワーが取れるように設計され
ており、トリクル充電時の不要電力は、トランジスター
Q1で消費される。このためトリクル充電時の被充電器
5における消費電力は、以下のようになる。Next, when the secondary battery E is fully charged and trickle charging for compensating for self-discharge, the charge control signal a from the CPU 6 becomes "H", the transistor Q4 is turned off, and the transistor Q3 is also turned off. The trickle charge current I 2 ≈V BE / R3 is charged in the secondary battery E. At this time, the transistor Q1 is designed so that constant power is supplied from the charging stand 1 when I 1 >> I 2 and output power can be obtained during quick charging, as can be seen from FIG. 4B. Unnecessary power during trickle charging is consumed by the transistor Q1. Therefore, the power consumption of the device to be charged 5 during trickle charging is as follows.
【0006】[0006]
【数2】 [Equation 2]
【0007】図5は共振に関する等価回路であり、充電
台1のコイル4から磁束が作られ、被充電器5のコイル
L1に蓄えられるエネルギーは(1/2)LI2 で表さ
れる。また流れる電流は、以下のようになる。FIG. 5 is an equivalent circuit relating to resonance, in which a magnetic flux is generated from the coil 4 of the charging stand 1 and the energy stored in the coil L1 of the charger 5 is represented by (1/2) LI 2 . The flowing current is as follows.
【0008】[0008]
【数3】 ωL=1/ωCの時に最大電流(Equation 3) Maximum current when ωL = 1 / ωC
【0009】[0009]
【数4】 が流れ、[Equation 4] Flows,
【0010】[0010]
【数5】 の電圧が取り出せる。(Equation 5) The voltage of can be taken out.
【0011】また共振点がずれてf1 になると、When the resonance point shifts to f 1 ,
【0012】[0012]
【数6】 の電圧がVC に印加され、共振時f0 と比べ、出力電圧
が下がってしまう。(Equation 6) Is applied to V C , and the output voltage decreases as compared with f 0 at the time of resonance.
【0013】図6は充電台1から被充電器5で取り出せ
る電圧レベルを表したものである。被充電器5の共振周
波数が充電台1の発振周波数と合った場合に最大電圧V
C (f0 )が得られるが、被充電器のf0 がずれてf1
になった場合は、(数6)で示した電圧しか得られな
い。FIG. 6 shows the voltage levels that can be taken out from the charging stand 1 by the device to be charged 5. When the resonance frequency of the to-be-charged device 5 matches the oscillation frequency of the charging stand 1, the maximum voltage V
C (f 0 ) is obtained, but f 0 of the device to be charged is shifted and f 1 is changed.
In case of, only the voltage shown in (Equation 6) can be obtained.
【0014】[0014]
【発明が解決しようとする課題】しかしながら、上記従
来の非接触充電器では、トリクル充電時に、図4(b)
からも分かるように不要電力がトランジスターQ1で消
費されるため、トランジスターQ1に、However, in the above-mentioned conventional non-contact charger, when the trickle is charged, as shown in FIG.
As can be seen from the above, unnecessary power is consumed in the transistor Q1.
【0015】[0015]
【数7】 の発熱(IC ×VCE+VF ・IF )が発生し、特に小型
の被充電器の場合、ケースが熱くなったり、パワーの大
きなトランジスターが必要となるため、広い実装面積を
必要とし、被充電器の小型化設計を妨げるという問題が
あった。(Equation 7) Heat generation (I C × V CE + V F · I F ) occurs, and especially in the case of a small charged device, the case becomes hot and a transistor with a large power is required, which requires a large mounting area, There is a problem that it hinders the miniaturization design of the charger.
【0016】本発明は、このような従来の問題を解決す
るものであり、小型化設計および発熱を極力抑えた優れ
た非接触充電器を提供することを目的とするものであ
る。[0016] The present invention solves such a conventional problem, and an object thereof is to provide an excellent non-contact charger which is miniaturized and suppresses heat generation as much as possible.
【0017】[0017]
【課題を解決するための手段】本発明は、上記目的を達
成するために、共振用コンデンサーを2つに分け、1つ
を電磁誘導受信用コイルの両端に接続し、もう1つのコ
ンデンサーをインピーダンス制御用コンデンサーとして
トランジスターに直列に接続し、その両端を同様に電磁
誘導受信用コイルの両端に接続したものである。In order to achieve the above-mentioned object, the present invention divides a resonance capacitor into two, one is connected to both ends of an electromagnetic induction receiving coil, and the other is an impedance. A control capacitor is connected in series with a transistor, and both ends thereof are similarly connected to both ends of an electromagnetic induction receiving coil.
【0018】[0018]
【作用】したがって、本発明によれば、被充電器の電磁
誘導受信用コイルの両端にインピーダンス制御用のコン
デンサーを接続することにより、トリクル充電時に共振
用のコンデンサーに流れる交流電流を減らすことがで
き、被充電器の発熱を抑え、さらに小型化設計を可能に
することができる。Therefore, according to the present invention, by connecting the capacitor for impedance control to both ends of the coil for electromagnetic induction reception of the device to be charged, it is possible to reduce the alternating current flowing through the capacitor for resonance during trickle charging. Further, it is possible to suppress the heat generation of the device to be charged and further enable the downsizing design.
【0019】[0019]
【実施例】図1は本発明の一実施例の構成を示すもので
あり、充電台1は図3に示した従来例と同様であり、被
充電器5については、コンデンサーC3がコイルL1に
並列に接続されている点を除いては、図3の回路と同様
である。この変更に伴い、図1では図3のコンデンサー
C2がC4と表示されている。FIG. 1 shows the configuration of an embodiment of the present invention, the charging stand 1 is the same as the conventional example shown in FIG. 3, and in the charged object 5, the capacitor C3 is connected to the coil L1. It is similar to the circuit of FIG. 3 except that it is connected in parallel. With this change, the condenser C2 in FIG. 3 is shown as C4 in FIG.
【0020】次に、上記実施例の動作について説明す
る。コンデンサーC4、C3の値は、充電台の発振周波
数と共振をとるためf0 ≒1/2π√{(L1×(C4
+C3)}を満足する値とし、基本的動作は従来例と同
じである。Next, the operation of the above embodiment will be described. Since the values of the capacitors C4 and C3 resonate with the oscillation frequency of the charging stand, f 0 ≈1 / 2π√ {(L1 × (C4
+ C3)} is satisfied, and the basic operation is the same as the conventional example.
【0021】急速充電時は、トランジスターQ1がオン
状態となり、VCEがVCE(SAT) となって、図2(a)の
等価回路となり、急速充電電流I1 が2次電池Eへ充電
される。消費電力は、従来例と同様にコイルL1の内部
抵抗RS 分の発熱のみである。At the time of rapid charging, the transistor Q1 is turned on, V CE becomes V CE (SAT) , the equivalent circuit of FIG. 2 (a) is obtained, and the rapid charging current I 1 is charged to the secondary battery E. It The power consumption is only the heat generation corresponding to the internal resistance R S of the coil L1 as in the conventional example.
【0022】次に、トリクル充電時は、図2(b)のよ
うに、Next, during trickle charging, as shown in FIG.
【0023】[0023]
【数8】 の電力がトランジスターQ1に消費される。(Equation 8) Is consumed by the transistor Q1.
【0024】ここで、コンデンサーC4を通れる電流、Here, the current passing through the capacitor C4,
【0025】[0025]
【外1】 を従来例の図4(b)内の、[Outside 1] In FIG. 4 (b) of the conventional example,
【0026】[0026]
【外2】 の1/2となるようにコンデンサーC4の値を決める
と、[Outside 2] If the value of the condenser C4 is determined to be 1/2 of
【0027】[0027]
【数9】 であり、インピーダンス制御用トランジスターQ1の消
費電力は、VCEのインピーダンスが、[Equation 9] , And the power consumption of the impedance control transistor Q1, the impedance of the V CE is,
【0028】[0028]
【外3】 で同じであると仮定すると、[Outside 3] Assuming the same in
【0029】[0029]
【数10】 となり、従来例の1/4の抑えることができる。[Equation 10] Therefore, it can be suppressed to 1/4 of the conventional example.
【0030】なお上記実施例において、トランジスター
Q1の代わりに電界効果型トランジスターFETを用い
ても同様の効果を有する。またコンデンサーC4、C3
の容量は、被充電器の充電スペックにより最適値を決め
ることにより、温度上昇を考慮した最適回路が実現でき
る。In the above embodiment, a field effect transistor FET is used instead of the transistor Q1 to obtain the same effect. Also condensers C4, C3
An optimal circuit considering the temperature rise can be realized by determining the optimal value of the capacity of the device according to the charging specifications of the device to be charged.
【0031】[0031]
【発明の効果】本発明は、上記実施例から明らかなよう
に、共振用コンデンサーを2つに分け、1つを電磁誘導
受信用コイルの両端に接続し、もう1つのコンデンサー
をインピーダンス制御用コンデンサーとしてトランジス
ターに直列に接続し、その両端を同様に電磁誘導受信用
コイルの両端に接続しているため、共振周波数を変えず
に、トリクル充電時のトランジスターの発熱を抑えるこ
とができ、小型化設計を可能にするという効果を有す
る。As is apparent from the above embodiment, the present invention divides the resonance capacitor into two, one is connected to both ends of the electromagnetic induction receiving coil, and the other is an impedance control capacitor. As it is connected in series to the transistor and both ends are connected to both ends of the electromagnetic induction receiving coil in the same way, it is possible to suppress the heat generation of the transistor during trickle charging without changing the resonance frequency, and a compact design Has the effect of enabling
【図1】本発明の一実施例における非接触充電器の要部
回路図FIG. 1 is a circuit diagram of a main part of a non-contact charger according to an embodiment of the present invention.
【図2】(a)実施例における急速充電時の等価回路図 (b)実施例におけるトリクル充電時の等価回路図FIG. 2A is an equivalent circuit diagram during rapid charging in the embodiment. FIG. 2B is an equivalent circuit diagram during trickle charging in the embodiment.
【図3】従来例における非接触充電器の要部回路図FIG. 3 is a circuit diagram of a main part of a non-contact charger in a conventional example.
【図4】(a)従来例における急速充電時の等価回路図 (b)従来例におけるトリクル充電時の等価回路図FIG. 4A is an equivalent circuit diagram during rapid charging in the conventional example. FIG. 4B is an equivalent circuit diagram during trickle charging in the conventional example.
【図5】従来例における共振等価回路図FIG. 5 is a resonance equivalent circuit diagram in a conventional example.
【図6】従来例における電圧レベル特性図FIG. 6 is a voltage level characteristic diagram in a conventional example.
1 充電台 2 整流回路 3 発振回路 4 電磁誘導供給用コイル 5 被充電器 6 2 次電池充電電流コントロール用のCPU L1 電磁誘導受信用コイル C4 第1のコンデンサー C3 第2のコンデンサー Q1 インピーダンス可変回路のトランジスター Q2 定電流回路のトランジスター E 2次電池(ニッカド電池) 1 Charging stand 2 Rectifier circuit 3 Oscillation circuit 4 Electromagnetic induction supply coil 5 Charged device 6 CPU for controlling secondary battery charging current L1 Electromagnetic induction receiving coil C4 First capacitor C3 Second capacitor Q1 Impedance variable circuit Transistor Q2 Constant current circuit transistor E Rechargeable battery (NiCd battery)
Claims (2)
誘導用の発振回路および電力供給用のコイルを備え、被
充電器には電磁誘導受信用コイル、充電台の発振周波数
と共振を取るための第1のコンデンサーおよび第2のコ
ンデンサーを設け、前記第1のコンデンサーにトランジ
スターを用いたインピーダンス可変回路を直列に接続
し、前記インピーダンス可変回路のコントロールを2次
電池充電のための定電流回路で行なうようにし、前記第
2のコンデンサーを前記電磁誘導受信用コイルの両端に
接続した非接触充電器。1. A charging stand for charging is provided with a rectifying circuit, an oscillation circuit for electromagnetic induction, and a coil for supplying power, and a charged device is resonant with an electromagnetic induction receiving coil and an oscillation frequency of the charging stand. A first capacitor and a second capacitor for connecting a variable impedance circuit using a transistor to the first capacitor in series, and controlling the variable impedance circuit to a constant current circuit for charging a secondary battery. And a non-contact charger in which the second capacitor is connected to both ends of the electromagnetic induction receiving coil.
4、C3とし、電磁誘導電力受信用コイルの値をL1と
し、充電台の発振周波数をf0 としたとき、C4、C3
の値をf0 ≒1/2π√{L1×(C4+C3)}とし
たことを特徴とする請求項1記載の非接触充電器。2. The value of the first and second capacitors is C
4, C3, the value of the coil for electromagnetic induction power reception is L1, and the oscillation frequency of the charging stand is f 0 , C4, C3
The contactless charger according to claim 1, wherein the value of is set to f 0 ≅1 / 2π√ {L1 × (C4 + C3)}.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23722594A JP3300547B2 (en) | 1994-09-30 | 1994-09-30 | Contactless charger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23722594A JP3300547B2 (en) | 1994-09-30 | 1994-09-30 | Contactless charger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08103028A true JPH08103028A (en) | 1996-04-16 |
JP3300547B2 JP3300547B2 (en) | 2002-07-08 |
Family
ID=17012241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23722594A Expired - Fee Related JP3300547B2 (en) | 1994-09-30 | 1994-09-30 | Contactless charger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3300547B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996038898A1 (en) * | 1995-05-29 | 1996-12-05 | Matsushita Electric Industrial Co., Ltd. | Power source apparatus |
JP2001197736A (en) * | 2000-01-07 | 2001-07-19 | Shinko Electric Co Ltd | Non-contact power supply |
JP2006325350A (en) * | 2005-05-20 | 2006-11-30 | Nichicon Corp | Power supply device |
EP1962305A2 (en) | 2007-02-20 | 2008-08-27 | Seiko Epson Corporation | Coil unit, method of manufacturing the same, and electronic instrument |
EP2017860A2 (en) | 2007-07-20 | 2009-01-21 | Seiko Epson Corporation | Coil unit and electronic instrument |
JP2009027781A (en) * | 2007-07-17 | 2009-02-05 | Seiko Epson Corp | Power reception controller, power receiver, contactless power transmitting system, charge controller, battery device, and electronic equipment |
JP2016105690A (en) * | 2008-07-28 | 2016-06-09 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | Wireless power transmission for electronic devices provided with parasitic resonant tank |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5592504A (en) * | 1978-04-25 | 1980-07-14 | Bolger John George | Vehicle used on road in combination with electric power source for generating magnetic field |
JPS63229594A (en) * | 1987-03-18 | 1988-09-26 | Omron Tateisi Electronics Co | Article discrimination system |
JPH04256226A (en) * | 1991-02-08 | 1992-09-10 | Omron Corp | Non-contact medium communication circuit provided with resonance circuit |
JPH07131376A (en) * | 1993-04-14 | 1995-05-19 | Texas Instr Deutschland Gmbh | Transponder |
-
1994
- 1994-09-30 JP JP23722594A patent/JP3300547B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5592504A (en) * | 1978-04-25 | 1980-07-14 | Bolger John George | Vehicle used on road in combination with electric power source for generating magnetic field |
JPS63229594A (en) * | 1987-03-18 | 1988-09-26 | Omron Tateisi Electronics Co | Article discrimination system |
JPH04256226A (en) * | 1991-02-08 | 1992-09-10 | Omron Corp | Non-contact medium communication circuit provided with resonance circuit |
JPH07131376A (en) * | 1993-04-14 | 1995-05-19 | Texas Instr Deutschland Gmbh | Transponder |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996038898A1 (en) * | 1995-05-29 | 1996-12-05 | Matsushita Electric Industrial Co., Ltd. | Power source apparatus |
US6075433A (en) * | 1995-05-29 | 2000-06-13 | Matsushita Electric Industrial Co., Ltd. | Power supply unit |
JP2001197736A (en) * | 2000-01-07 | 2001-07-19 | Shinko Electric Co Ltd | Non-contact power supply |
JP2006325350A (en) * | 2005-05-20 | 2006-11-30 | Nichicon Corp | Power supply device |
US7750783B2 (en) | 2007-02-20 | 2010-07-06 | Seiko Epson Corporation | Electronic instrument including a coil unit |
EP1962305A2 (en) | 2007-02-20 | 2008-08-27 | Seiko Epson Corporation | Coil unit, method of manufacturing the same, and electronic instrument |
JP2009027781A (en) * | 2007-07-17 | 2009-02-05 | Seiko Epson Corp | Power reception controller, power receiver, contactless power transmitting system, charge controller, battery device, and electronic equipment |
EP2017940A3 (en) * | 2007-07-17 | 2010-04-14 | Seiko Epson Corporation | Power reception control device, power reception device, non-contact power transmission system, charge control device, battery device, and electronic instrument |
US8344688B2 (en) | 2007-07-17 | 2013-01-01 | Seiko Epson Corporation | Power reception device, non-contact power transmission system, and electronic instrument |
US8836273B2 (en) | 2007-07-17 | 2014-09-16 | Seiko Epson Corporation | Power reception control device, power reception device, non-contact power transmission system, electronic instrument and power reception control method |
US9209636B2 (en) | 2007-07-17 | 2015-12-08 | Seiko Epson Corporation | Power reception control device and power reception control method for non-contact power transmission |
US9673636B2 (en) | 2007-07-17 | 2017-06-06 | Seiko Epson Corporation | Power reception control device and power reception control method for non-contact power transmission |
US10516299B2 (en) | 2007-07-17 | 2019-12-24 | Seiko Epson Corporation | Power reception device and power reception method for non-contact power transmission |
US10903695B2 (en) | 2007-07-17 | 2021-01-26 | Seiko Epson Corporation | Power reception device and power reception method for non-contact power transmission |
EP2017860A2 (en) | 2007-07-20 | 2009-01-21 | Seiko Epson Corporation | Coil unit and electronic instrument |
US8541977B2 (en) | 2007-07-20 | 2013-09-24 | Seiko Epson Corporation | Coil unit and electronic instrument |
JP2016105690A (en) * | 2008-07-28 | 2016-06-09 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | Wireless power transmission for electronic devices provided with parasitic resonant tank |
Also Published As
Publication number | Publication date |
---|---|
JP3300547B2 (en) | 2002-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2803943B2 (en) | Non-contact power supply | |
JP3247328B2 (en) | Non-contact power transmission device | |
US8111041B2 (en) | Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic instrument | |
JP4775176B2 (en) | Power supply circuit and power supply system | |
JP3692541B2 (en) | Power transmission device and power transmission method | |
US10069340B2 (en) | Wireless power receiver for adjusting magnitude of wireless power | |
JP5599875B2 (en) | Circuit apparatus and method for inductive energy transfer | |
JPH0879976A (en) | Non-contact type charger | |
JP2010022076A (en) | Contactless power transmitter | |
JP2003047179A (en) | Contactless electric power transmission device | |
JP3772350B2 (en) | Power supply | |
JP3300547B2 (en) | Contactless charger | |
US5317494A (en) | Power supply circuit utilizing voltage and current resonance for reducing switching loss | |
JPH09182304A (en) | Non-contact charger | |
JP3678047B2 (en) | Power supply circuit for charging device | |
JP3821156B2 (en) | Power supply | |
EP0534379A2 (en) | Power supply circuit | |
US6657402B2 (en) | Portable device with reduced power dissipation | |
JP2003037950A (en) | Non-contact power transmission device | |
US20240178691A1 (en) | On-board charger system with integrated auxiliary power supply | |
JP3371694B2 (en) | Power supply | |
JPH11252912A (en) | Secondary side power receiving circuit of noncontact power feeding installation | |
JP2563527B2 (en) | Induction heating iron | |
JP2001119930A (en) | Power-feeding apparatus | |
JPH06311746A (en) | Switching power supply circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080419 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090419 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100419 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110419 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120419 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130419 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |