JPH08102330A - Rectangular laminated lithium secondary battery - Google Patents
Rectangular laminated lithium secondary batteryInfo
- Publication number
- JPH08102330A JPH08102330A JP6236393A JP23639394A JPH08102330A JP H08102330 A JPH08102330 A JP H08102330A JP 6236393 A JP6236393 A JP 6236393A JP 23639394 A JP23639394 A JP 23639394A JP H08102330 A JPH08102330 A JP H08102330A
- Authority
- JP
- Japan
- Prior art keywords
- electrode plate
- electrode
- plate
- laminated
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
Abstract
(57)【要約】
【目的】サイクル特性に優れた信頼性の高いリチウム二
次電池を提供する。
【構成】角形積層リチウム二次電池において、積層電極
板の固定に際し固定面を電極板を積層して作られる直方
体において直方体を構成している長方形のうちで最大で
ない面に対して垂直方向に積層することにより充放電時
の電極板同士のまたは固定板と電極板との応力の分散低
減が可能となり、サイクル特性の改善を果たした。
【効果】本発明によりリチウム二次電池のサイクル特性
が改善されるため、サイクル特性に優れた信頼性の高い
リチウム二次電池の提供が可能となった。
(57) [Abstract] [Purpose] To provide a highly reliable lithium secondary battery with excellent cycle characteristics. [Structure] In a prismatic laminated lithium secondary battery, when fixing a laminated electrode plate, a fixing surface is a rectangular parallelepiped formed by laminating electrode plates. By doing so, it is possible to reduce the dispersion of the stress between the electrode plates during charging / discharging or between the fixed plate and the electrode plate, thus improving the cycle characteristics. [Effect] Since the cycle characteristics of the lithium secondary battery are improved by the present invention, it is possible to provide a highly reliable lithium secondary battery having excellent cycle characteristics.
Description
【0001】[0001]
【産業上の利用分野】本発明は、リチウムを挿入脱離で
きる負極および正極と非水電解液を主たる構成要素と
し、角形板状の負極板と正極板を積層したタイプの長寿
命,高エネルギー密度の角形積層リチウム二次電池に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly comprises a negative electrode and a positive electrode capable of inserting and desorbing lithium and a non-aqueous electrolyte, and has a long life and high energy of a type in which a rectangular plate-shaped negative plate and a positive plate are laminated. The present invention relates to a prismatic laminated lithium secondary battery having a high density.
【0002】[0002]
【従来の技術】従来から、リチウムを負極活物質として
用いる高エネルギー密度の電池については多くの提案が
なされている。例えば、リチウムを負極活物質とした二
次電池については、正極活物質としてチタン,ジルコニ
ウム,ハフニウム,ニオブ,タンタル,バナジウムの硫
化物あるいは酸化物等を用いた電池が提案されている
が、いずれも十分なサイクル特性とは言えない。特に角
形板状の負極と正極を積み重ねることによって使われる
角形積層タイプのリチウム二次電池では充放電サイクル
特性の劣化が著しく問題となる。この問題解決のため各
所で検討されているが、これらの検討の中で電極板を5
0〜500psi で圧縮加圧して稼働させる方法(特開昭
58−73968 号)が提案されている。しかしながら、前記
提案でも十分な充放電サイクル特性は得られておらず、
角形積層タイプのリチウム二次電池の充放電サイクル特
性の大幅な改善が望まれているのが現状である。2. Description of the Related Art Conventionally, many proposals have been made for batteries having high energy density using lithium as a negative electrode active material. For example, as a secondary battery using lithium as a negative electrode active material, a battery using a sulfide or oxide of titanium, zirconium, hafnium, niobium, tantalum, vanadium, etc. as a positive electrode active material has been proposed. It cannot be said that the cycle characteristics are sufficient. Particularly, in a prismatic laminated type lithium secondary battery used by stacking a prismatic plate-shaped negative electrode and a positive electrode, deterioration of charge / discharge cycle characteristics becomes a serious problem. It is being studied at various places to solve this problem.
A method of operating by compressing and pressurizing at 0-500 psi
No. 58-73968) has been proposed. However, even with the above proposal, sufficient charge / discharge cycle characteristics have not been obtained,
At present, there is a demand for a drastic improvement in charge / discharge cycle characteristics of a prismatic laminated type lithium secondary battery.
【0003】[0003]
【発明が解決しようとする課題】積層方法、あるいは加
圧方法の技術が確立されていないため、十分なサイクル
特性の角形積層リチウム二次電池が得られていない。本
発明の目的は、新規な角形電極板の積層方法を提供し、
サイクル特性の向上を図ることである。Since the technology of the stacking method or the pressing method has not been established, a prismatic stacked lithium secondary battery having sufficient cycle characteristics has not been obtained. An object of the present invention is to provide a novel method for laminating rectangular electrode plates,
It is to improve cycle characteristics.
【0004】[0004]
【課題を解決するための手段】一般に角形積層リチウム
二次電池の電極板は充放電時のリチウムイオンの挿入脱
離に伴って体積変化を起こすが、このため、正負極板間
に応力が発生し、電極板面内に歪応力が残留するととも
に、電極板を物理的に破壊し、サイクル寿命特性に悪影
響を及ぼす。一方、積層電極固定板と電極板の間では、
リチウムの挿入脱離に伴い応力が発生し、さらには積層
電極板を固定する力が直接作用して擦れあうために電極
板を物理的に破壊する確率が大きくなり、サイクル寿命
を低下させる一因となる。[Means for Solving the Problems] Generally, the electrode plate of a prismatic laminated lithium secondary battery undergoes a volume change due to the insertion and desorption of lithium ions during charge and discharge, which causes stress between the positive and negative electrode plates. However, strain stress remains in the surface of the electrode plate, and the electrode plate is physically destroyed, which adversely affects the cycle life characteristics. On the other hand, between the laminated electrode fixing plate and the electrode plate,
Stress is generated as lithium is inserted and desorbed, and the force that fixes the laminated electrode plates acts directly on each other to rub them against each other, which increases the probability that the electrode plates will be physically destroyed. Becomes
【0005】本発明は、リチウムを挿入脱離できる負極
及び正極と非水電解液を主たる構成要素とし、角形板状
の該負極板と該正極板を積層することにより形成される
電極板積層体と該電極板積層体の両端を固定する固定板
より構成される角形積層リチウム二次電池において、形
状寸法が縦Acm,横Bcm,高さCcmの直方体を呈する該
電極板積層体において、A×B,B×C,A×Cで算出
される値のうち最大値を示さない面に対して垂直方向に
積層することを特徴とする。The present invention mainly comprises a negative electrode and a positive electrode capable of inserting and releasing lithium and a non-aqueous electrolyte, and an electrode plate laminated body formed by laminating the rectangular plate-shaped negative electrode plate and the positive electrode plate. And a fixed plate for fixing both ends of the electrode plate laminate to a rectangular laminated lithium secondary battery, the electrode plate laminate having a rectangular parallelepiped shape having dimensions of A cm in length, B cm in width and C cm in height, A × It is characterized in that the layers are stacked in the direction perpendicular to the surface that does not show the maximum value among the values calculated by B, B × C, and A × C.
【0006】また、電極板積層体の第1層目の電極板と
最終層の電極板を、充放電時におけるリチウムの挿入脱
離による体積変化がより小さい電極板とすることを特徴
とする。Further, the electrode plate of the first layer and the electrode plate of the final layer of the electrode plate laminate are characterized in that the volume change due to insertion / desorption of lithium during charge / discharge is small.
【0007】充放電時のリチウムの挿入脱離による体積
変化がより小さい電極板の枚数をN枚,充放電時のリチ
ウムの挿入脱離による体積変化がより大きい電極板の枚
数を2N枚とし、体積変化がより小さい電極板1枚をセ
パレータを介して体積変化のより大きい電極板2枚では
さんだ電極体をN個積層することを特徴とする。The number of electrode plates having a smaller volume change due to lithium insertion / desorption during charging / discharging is N, and the number of electrode plates having a larger volume change due to lithium insertion / desorption during charging / discharging is 2N. It is characterized in that N electrode bodies sandwiching one electrode plate having a smaller volume change and two electrode plates having a larger volume change are stacked with a separator interposed therebetween.
【0008】電極板積層体の固定板がセラミックス材料
を用いて作られたことを特徴とする。The fixed plate of the electrode plate laminate is characterized by being made of a ceramic material.
【0009】具体的には、前記課題を解決するには、次
の2項の何れかまたは両方を満足させることにより達成
できる。充放電時の電極板の体積変化から生じる積層
電極固定板と電極板との間もしくは電極板間の応力を低
減する。発生応力を分散させる。Specifically, the above-mentioned problems can be solved by satisfying either or both of the following two items. The stress between the laminated electrode fixing plate and the electrode plates or between the electrode plates caused by the volume change of the electrode plates during charge / discharge is reduced. Disperses the generated stress.
【0010】[0010]
【作用】項目は以下の方法で解決される。同一容量の
角形積層リチウム二次電池において充放電時の板状電極
板の体積変化によって生じる応力をできるだけ均一に発
生させ低減するためには、電極板の積層方向は、角形電
極板を積層することによって作られる直方体において最
も面積の小さい長方形面に垂直方向に積層した方が好適
である。より小さな面の電極板積層は必然的に固定板の
面積も小さくなることから固定板による電極板の加圧は
より均一なものとなり、電池としての容量密度の増大及
びサイクル特性向上が可能となる。さらに電極板の固定
板の材料として、電極板を構成している何れの材料より
も硬い材料を選定することによっても、積層電極固定板
と電極板との間の発生応力の均一化が可能となる。電極
板を構成している材料の中で最も硬い材料としては正極
活物質である遷移金属の酸化物があげられ、金属や樹脂
材料などに比べて著しく硬い。このため、積層電極板固
定に際して例えば金属板を用いると容易に変形が生じ
る。これを回避し長寿命化を果たすには積層電極の固定
板として、硬くて塑性変形しにくいセラミックス材料を
用いて作製するのが好適である。電極固定板としてセラ
ミックス材料製のものを用いた場合には、加圧固定時に
固定板の塑性変形が生じないため、電極面を均一な力で
固定することができ、電池としての容量密度の増大も期
待される。さらに、金属板の中でも鋼板による固定では
充放電時、特に充電時には電池電圧が高くなり、鉄の溶
出を引き起こし容量密度の低下を起こすが、セラミック
ス材料を用いて作製された固定板では、そのようなこと
が起こらない長所もあり高容量での長寿命化を果たすこ
とができる。[Operation] Items are solved by the following methods. In order to reduce and uniformly generate as much as possible the stress caused by the volume change of the plate-shaped electrode plates during charge / discharge in a prismatic laminated lithium secondary battery of the same capacity, the electrode plates should be laminated in the direction of lamination. It is preferable to stack the rectangular parallelepiped formed by the method on the rectangular surface having the smallest area in the vertical direction. Since the area of the fixed plate is inevitably small when the electrode plate is laminated on a smaller surface, the pressure applied to the electrode plate by the fixed plate becomes more uniform, and the capacity density as a battery and the cycle characteristics can be improved. . Furthermore, by selecting a material that is harder than any of the materials that make up the electrode plate as the material for the electrode plate fixing plate, the stress generated between the laminated electrode fixing plate and the electrode plate can be made uniform. Become. The hardest material among the materials forming the electrode plate is an oxide of a transition metal, which is a positive electrode active material, and is significantly harder than a metal or a resin material. Therefore, when a laminated electrode plate is fixed, for example, a metal plate is easily deformed. In order to avoid this and achieve a long service life, it is preferable that the fixed plate of the laminated electrode is made of a ceramic material that is hard and is not easily plastically deformed. When a ceramic material is used as the electrode fixing plate, the fixing plate does not undergo plastic deformation during pressure fixing, so the electrode surface can be fixed with a uniform force, increasing the capacity density of the battery. Is also expected. Furthermore, among the metal plates, fixing with a steel plate increases the battery voltage during charge / discharge, especially during charging, causing the elution of iron and lowering the capacity density, but with a fixing plate made using a ceramic material, There is an advantage that nothing happens, and a long life can be achieved with a high capacity.
【0011】一方、項目の発生応力の分散は以下に述
べるような方法で可能となる。固定板に接する電極板を
充放電時の体積変化がより小さい電極板とすることによ
り充放電時の固定板に接した電極板の摩耗量を低減し長
寿命化を果たし得る。また、電極板積層体の構造とし
て、充放電時の体積変化がより小さい電極板を充放電時
の体積変化がより大きな電極板ではさんだ形を1組と
し、これを積層する手法も長寿命化に効果がある。これ
は体積変化の大きい電極板側を薄くして構成枚数を多く
することで電極板に生じる歪応力を分散させ、電極板内
に残留する歪を緩和することができるためである。すな
わち、体積変化の大きい電極を薄くすることにより、集
電体からの活物質の距離が短くなるため、電極反応がよ
り均一になり局所的な体積膨張が避けられ、電極板に生
じる歪応力を均一化して緩和できる。上記の角形積層タ
イプのリチウム二次電池用電極板は、所定の活物質粉末
に結着剤とアセチレンブラックのような導電性剤粉末を
添加混練し、これをステンレス鋼等でできた電極基体上
に塗布後乾燥し準備される。On the other hand, it is possible to disperse the generated stress of the item by the following method. By making the electrode plate in contact with the fixed plate an electrode plate having a smaller volume change during charge / discharge, the amount of wear of the electrode plate in contact with the fixed plate during charge / discharge can be reduced and the service life can be extended. In addition, as the structure of the electrode plate laminate, one electrode plate having a smaller volume change during charging / discharging is sandwiched by electrode plates having a larger volume change during charging / discharging, and the method of stacking them also has a long service life. Has an effect on. This is because it is possible to disperse the strain stress generated in the electrode plate and reduce the strain remaining in the electrode plate by thinning the electrode plate side having a large volume change and increasing the number of components. That is, by thinning the electrode having a large volume change, the distance of the active material from the current collector is shortened, so that the electrode reaction becomes more uniform, the local volume expansion is avoided, and the strain stress generated in the electrode plate is reduced. Can be made uniform and relaxed. The above prismatic laminated type lithium secondary battery electrode plate is prepared by adding and kneading a binder and a conductive agent powder such as acetylene black to a predetermined active material powder, and kneading the mixture on an electrode substrate made of stainless steel or the like. After coating, it is dried and prepared.
【0012】さらに電解質としてはプロピレンカーボネ
ート,2−メチルテトラヒドロフラン,ジオキソレン,
テトラヒドロフラン、1,2−ジメトキシエタン、エチ
レンカーボネート,γ−ブチルラクトン,ジエチルカー
ボネート,ジメチルカーボネート,メチルエチルカーボ
ネート,ジメチルスルホキシド,アセトニトリル,ホル
ムアミド,ジメチルホルムアミド,ニトロメタンなどの
1種以上の非プロトン性極性有機溶媒にLiAsF6,
LiClO4,LiAlCl4,LiBF4,LiPF6
等のリチウム塩を溶質として溶解させた有機電解液、ま
たはリチウムイオンを伝導体とする固体電解質あるいは
溶融塩など、一般にリチウムを負極活物質として用いた
電池で使用される既知の電解質を用いることができる。
また電池の構成上必要に応じセパレータを用いても本発
明の効果は何ら変わらない。Further, as the electrolyte, propylene carbonate, 2-methyltetrahydrofuran, dioxolene,
One or more aprotic polar organic solvents such as tetrahydrofuran, 1,2-dimethoxyethane, ethylene carbonate, γ-butyl lactone, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethyl sulfoxide, acetonitrile, formamide, dimethylformamide, nitromethane. LiAsF 6 ,
LiClO 4 , LiAlCl 4 , LiBF 4 , LiPF 6
It is possible to use a known electrolyte that is generally used in a battery that uses lithium as a negative electrode active material, such as an organic electrolyte solution in which a lithium salt such as is dissolved as a solute, or a solid electrolyte or a molten salt that uses lithium ions as a conductor. it can.
Further, the effect of the present invention does not change at all even if a separator is used if necessary in view of the structure of the battery.
【0013】[0013]
【実施例】以下に本発明を実施例により詳細に説明す
る。本発明は以下の実施例のみに限定されるものではな
い。なお、以下の実施例の評価セル作製とその測定評価
は、全てアルゴン雰囲気中で行った。The present invention will be described below in detail with reference to examples. The invention is not limited to the following examples. The production of evaluation cells and the measurement and evaluation thereof in the following examples were all performed in an argon atmosphere.
【0014】実施例1 先ず始めに電池構成を図1〜図3に示す。図1は最小面
積の面に電極板を積層した場合を、図2は2番目に大き
な面に積層した場合を、図3は最大面積の面に積層した
場合の電極板と電極固定板の構成を示したものである。
図1から図3の固定板2に接している電極板はいずれも
充放電時の体積変化が小さい正極板3である。図1から
図3までの電池の電極板積層部分の体積はいずれも84
cm3(7cm×5cm×2.4cm )と同じであるが電極板の積
層方向が異なるために、電極板の面積は異なる。即ち、
図3では35cm2 であるが、図2は16.8cm2、図1は
12.0cm2と小さくなり、それに従い構成枚数は増加す
る。Example 1 First, the battery structure is shown in FIGS. FIG. 1 shows the structure of the electrode plate and the electrode fixing plate when the electrode plate is laminated on the surface of the smallest area, FIG. 2 is the case of laminating it on the second largest surface, and FIG. 3 is the structure of the electrode plate and the electrode fixing plate when laminated on the surface of the largest area. Is shown.
The electrode plates in contact with the fixed plate 2 in FIGS. 1 to 3 are all positive electrode plates 3 whose volume change during charge / discharge is small. The volume of the electrode plate laminated portion of each of the batteries shown in FIGS. 1 to 3 is 84.
It is the same as cm 3 (7 cm × 5 cm × 2.4 cm), but the area of the electrode plate is different because the stacking directions of the electrode plates are different. That is,
Although it is 35 cm 2 in FIG. 3, it is as small as 16.8 cm 2 in FIG. 2 and 12.0 cm 2 in FIG. 1, and the number of constituents increases accordingly.
【0015】次に本実施例で作製した二次電池の作製法
を以下に説明する。先ず、正極活物質LiV3O8粉末に
結着剤としてEPDM(エチレン−プロピレン−ジエン
共重合体の略称)を4.0wt% ,導電性剤粉末として
アセチレンブラック粉末を9.0wt% 添加,キシレン
を用いて混練し正極用ペーストとして準備した。図1〜
図3の1−A(負極用は1−B)に示すような端子部の
長方形(1.0×3.0cm)と電極部の長方形(5×7c
m,2.4×7cm,5×2.4cm)とからなる形状のアル
ミニウム製エキスパンドメタルの電極基体に準備したペ
ーストを塗布し、室温で真空中5時間保持乾燥後、ポリ
プロピレン製の不織布で包み正極用電極板3として使用
した。負極用電極板4も正極板とほぼ同じような方法で
作製使用した。なお、負極は活物質にはLi−Pb−L
a合金粉末を用い、結着剤としてEPDMを3.0wt
%添加,導電剤粉末としてアセチレンブラック粉末を
7.0wt%添加した。エキスパンドメタルの材質はSUS
304製とした。このようにして作られた電極の厚さは負
極が0.06cm,正極が0.03cmである。なお、評価セ
ルの電極枚数は電極板の設置方向により異なるが、3.
0Ah の出力が得られる正極活物質量を算出し、これ
を基準にして求めた。電極板は図1〜図3に示すように
最外側電極(第1層と最終層の電極)が体積変化の小さ
い正極板3となるように交互に積層し、この積層体を厚
さ0.5cm の鋼板の固定板2ではさみ、8本のボルト
(図中5−1〜5−8)で固定した。Next, a method for manufacturing the secondary battery manufactured in this embodiment will be described below. First, 4.0 wt% of EPDM (abbreviation of ethylene-propylene-diene copolymer) as a binder and 9.0 wt% of acetylene black powder as a conductive agent powder were added to positive electrode active material LiV 3 O 8 powder, and xylene was added. Was kneaded and prepared as a positive electrode paste. Figure 1
As shown in 1-A of FIG. 3 (1-B for negative electrode), the rectangle of the terminal portion (1.0 × 3.0 cm) and the rectangle of the electrode portion (5 × 7c)
m, 2.4 x 7 cm, 5 x 2.4 cm), the prepared paste was applied to an aluminum expanded metal electrode substrate, and the product was kept at room temperature in vacuum for 5 hours and dried, and then wrapped with polypropylene non-woven fabric. It was used as the positive electrode plate 3. The negative electrode plate 4 was also prepared and used in the same manner as the positive electrode plate. The negative electrode was made of Li-Pb-L as the active material.
A alloy powder is used, and EPDM as a binder is 3.0 wt.
%, And 7.0 wt% of acetylene black powder was added as a conductive agent powder. Expanded metal material is SUS
Made from 304. The thickness of the electrode thus manufactured is 0.06 cm for the negative electrode and 0.03 cm for the positive electrode. The number of electrodes in the evaluation cell depends on the installation direction of the electrode plate, but 3.
The amount of the positive electrode active material that gives an output of 0 Ah was calculated, and the amount was calculated based on this. As shown in FIGS. 1 to 3, the electrode plates are alternately laminated so that the outermost electrodes (first and last layer electrodes) become the positive electrode plate 3 having a small volume change, and the laminated body has a thickness of 0. It was clamped by a fixing plate 2 made of a steel plate of 5 cm and fixed with eight bolts (5-1 to 5-8 in the figure).
【0016】電解液には1.0M濃度のLiPF6のプロ
ピレンカーボネート(PC)と1,2−ジメトキシエタ
ン(DME)の混合溶媒溶液を用いた。電極板積層体を
鋼板で固定した後、耐電解液性の合成樹脂で包み、この
中に電解液を注入し液漏れがないことを確認後、熱圧着
封止し電池としての評価を行った。As the electrolytic solution, a mixed solvent solution of 1.0 M LiPF 6 propylene carbonate (PC) and 1,2-dimethoxyethane (DME) was used. After fixing the electrode plate laminated body with a steel plate, it was wrapped with an electrolytic solution resistant synthetic resin, and after checking that there was no liquid leakage by injecting an electrolytic solution into this, thermocompression sealing was performed and the battery was evaluated. .
【0017】充放電サイクル試験は定電流試験とし、電
流密度1.0mA/cm2で放電スタート、終止電圧は充電
時4.0V,放電時2.0Vとした。正極活物質LiV3
O8の容量密度が100Ah/kg以下になったときのサ
イクル数を電池のサイクル寿命とした。The charge-discharge cycle test and a constant current test, the discharge started at a current density of 1.0 mA / cm 2, termination voltage was charged at 4.0V, discharging at 2.0 V. Positive electrode active material LiV 3
The cycle life of the battery was defined as the number of cycles when the capacity density of O 8 was 100 Ah / kg or less.
【0018】表1は図1〜図3に示した電極板および固
定板の構成で作られた試作セルのサイクル寿命評価結果
を示したものである。セル1,2,3を比較すると、積
層面の面積が小さくなるに従って電池寿命が長くなり、
サイクル特性が改善されていることがわかる。このこと
は、最小面積の面で電極板を積層することにより、効果
的に応力低減が図れたものと考えられる。Table 1 shows the cycle life evaluation results of the prototype cell made of the electrode plate and the fixed plate shown in FIGS. Comparing cells 1, 2, and 3, the battery life increases as the area of the stacking surface decreases,
It can be seen that the cycle characteristics are improved. This is considered to be because the stress was effectively reduced by stacking the electrode plates on the surface of the minimum area.
【0019】[0019]
【表1】 [Table 1]
【0020】実施例2 図4〜図7には本実施例で作製した評価セルの構成及び
電極の作製法を示した。本実施例での電極板積層面は3
セルとも5cm×2.4cm の面で、電極固定板は厚さ0.
5cm の鋼板を用いている。以下各評価セルの特徴を図
番順に説明する。図4のセルは、積層面の面積は実施例
1のセル1と同じであるが、最外側電極板(第1層と最
終層の電極)をセル1とは逆に負極板4として、負極と
正極を交互に積層したセルでセル番号4である。図5は
充放電時の体積変化の小さい1枚の正極板3を体積変化
の大きい2枚の負極板4ではさみ1セットとし、これを
積層して作ったセルでセル番号5である。図6は図5の
逆で体積変化の大きい1枚の負極板4を体積変化の小さ
い2枚の正極板3ではさみ1セットとし、これを積層し
て作ったセルでセル番号6である。図7はセル5に用い
た電極板の構成を示したものである。セル5は先ずセル
4の負極板の半分の厚さの負極板4を2枚用いて片方の
体積変化の小さい正極板3をはさみ込むようにしている
ことが特徴となる。具体的には図7の左側に示すような
負極板4を作製する。これをポリプロピレン製の不織布
で包み、中央の電極合剤がないところで2つに折り、こ
の間に正極板3を設置して1組とした。これを積層して
電池として組み立てたものである。図6は図5と逆で充
放電時における体積変化の小さい正極板3を2枚として
もう一方の体積変化の大きい負極板4をはさみ込むよう
にして構成されていることが特徴となる。なお、他の電
池作製条件および評価条件等は実施例1に準じて行っ
た。表2はこれら電池の評価結果を纏めて示したもので
ある。比較のために実施例1のセル1の結果も合わせて
示した。Example 2 FIGS. 4 to 7 show the structure of the evaluation cell manufactured in this example and the method of manufacturing the electrodes. In this embodiment, the electrode plate stacking surface is 3
Both cells have a surface of 5 cm x 2.4 cm, and the electrode fixing plate has a thickness of 0.
A 5 cm steel plate is used. The features of each evaluation cell will be described below in the order of the drawing numbers. The cell of FIG. 4 has the same laminated surface area as the cell 1 of Example 1, but the outermost electrode plate (electrodes of the first layer and the last layer) is used as the negative electrode plate 4 contrary to the cell 1 and the negative electrode is used. And cell number 4 is a cell in which positive electrodes and positive electrodes are alternately laminated. FIG. 5 shows a cell number 5 in which one positive electrode plate 3 having a small volume change during charge / discharge is sandwiched between two negative electrode plates 4 having a large volume change to form a set and laminated. FIG. 6 is the reverse of FIG. 5, in which one negative electrode plate 4 having a large volume change is sandwiched between two positive electrode plates 3 having a small volume change, and one set is sandwiched. FIG. 7 shows the structure of the electrode plate used in the cell 5. The cell 5 is characterized in that two negative electrode plates 4 each having a thickness half that of the negative electrode plate of the cell 4 are used and one positive electrode plate 3 having a small volume change is sandwiched. Specifically, the negative electrode plate 4 as shown on the left side of FIG. 7 is manufactured. This was wrapped with a non-woven fabric made of polypropylene, folded in two in the center where there was no electrode mixture, and the positive electrode plate 3 was placed between them to form one set. This is laminated and assembled as a battery. In contrast to FIG. 5, FIG. 6 is characterized in that it is configured such that two positive electrode plates 3 having a small volume change at the time of charging / discharging and two negative electrode plates 4 having a large volume change are sandwiched. The other battery manufacturing conditions and evaluation conditions were the same as in Example 1. Table 2 summarizes the evaluation results of these batteries. The results of the cell 1 of Example 1 are also shown for comparison.
【0021】[0021]
【表2】 [Table 2]
【0022】体積変化が小さい正極を最外側にして正負
極を交互に積層したセル1は390サイクルの寿命を示
したが、体積変化が大きい負極を最外側にしたセル4の
寿命は98サイクルと著しく低下した。体積変化の大き
い負極を薄くして2枚作製し、これで体積変化の小さい
正極板をはさんで組み立てる方式のセル5は、積層構成
が逆のセル6に比較してサイクル特性が大幅に改善され
た。これは充放電時の電極の体積変化から生じる電極板
間の応力が分散緩和されるためと考えられる。 実施例3 表3は実施例1に示したセル1と図8のセル8、即ち、
電極板構成や固定法はまったく同じで、固定板の材質が
厚さ1cmのアルミナ板(セル8)と厚さ0.5cmの鋼板
(セル1)と異なっているセルの所定の充放電サイクル
数と放電容量との関係を示したものである。The cell 1 in which the positive and negative electrodes having the small volume change are placed on the outermost side and the positive and negative electrodes are alternately laminated has a life of 390 cycles, while the cell 4 having the negative electrode having the large volume change as the outermost has a life of 98 cycles. Remarkably decreased. The cell 5 of the method in which two negative electrodes with a large volume change are made thin and the positive electrode plate with a small volume change is assembled between them, the cell 5 has significantly improved cycle characteristics compared to the cell 6 with the opposite laminated structure. Was done. It is considered that this is because the stress between the electrode plates caused by the volume change of the electrodes during charge / discharge is dispersed and relaxed. Example 3 Table 3 shows cell 1 shown in Example 1 and cell 8 of FIG.
The electrode plate structure and fixing method are exactly the same, and the material of the fixing plate is different from the 1 cm thick alumina plate (cell 8) and the 0.5 cm thick steel plate (cell 1). And the discharge capacity.
【0023】[0023]
【表3】 [Table 3]
【0024】表3から鋼板押さえでは100サイクルで
既に放電容量が初期のほぼ70%位に低下しているが、
アルミナ板を用いて固定した場合では200サイクルで
も放電容量が190Ah/kg以上を示し、400サイク
ル以上の寿命を示した。このように固定板にセラミック
スであるアルミナを用いることによりサイクル特性の改
善が図れることがわかる。これは電極板の均一な加圧に
よるためと考えられる。From Table 3, in the steel plate pressing, the discharge capacity has already dropped to about 70% of the initial value after 100 cycles.
When fixed using an alumina plate, the discharge capacity was 190 Ah / kg or more even after 200 cycles, and the life was 400 cycles or more. Thus, it is understood that the cycle characteristics can be improved by using alumina, which is a ceramic, for the fixing plate. It is considered that this is due to the uniform pressing of the electrode plate.
【0025】[0025]
【発明の効果】角形積層タイプの電池では、充放電を行
ったとき電極板の体積変化が生じるため、電極板同士お
よび電極板と固定板との間に応力が発生し、電極板の崩
壊を起こし、十分なサイクル特性が得られにくかった。
本発明によれば、電極板同士または電極板と固定板との
応力分散により低減を図ることができ、さらに、セラミ
ックス板で固定することにより均一な加圧固定も可能と
なるためサイクル特性の改善ばかりでなく放電容量密度
の向上も期待され信頼性の高い二次電池の提供が可能と
なる。EFFECTS OF THE INVENTION In the prismatic type battery, the volume change of the electrode plates occurs during charging and discharging, so that stress is generated between the electrode plates and between the electrode plate and the fixing plate, and the electrode plates are prevented from collapsing. It was difficult to obtain sufficient cycle characteristics.
According to the present invention, it is possible to reduce the stress by dispersing the stress between the electrode plates or between the electrode plate and the fixing plate, and further, by fixing with the ceramics plate, it is possible to perform uniform pressure fixation, so that cycle characteristics are improved. Not only is it possible to improve the discharge capacity density, but it is possible to provide a highly reliable secondary battery.
【図1】角形電極板積層部寸法5cm×7cm×2.4cmの
リチウム二次電池で、5cm×2.4cmの面を加圧固定面と
した電池の概略形状(最も外側の電極板が正極板となる
ように積層)。[Fig. 1] Schematic shape of a lithium secondary battery with 5 cm x 7 cm x 2.4 cm square electrode plate stacking dimensions, with a 5 cm x 2.4 cm surface as a pressure fixing surface (the outermost electrode plate is the positive electrode plate) Stacked so that).
【図2】角形電極板積層部寸法5cm×7cm×2.4cmの
リチウム二次電池で、7cm×2.4cmの面を加圧固定面と
した電池の概略形状(最も外側の電極板が正極板となる
ように積層)。[Fig.2] Schematic shape of a lithium secondary battery with a 5 cm x 7 cm x 2.4 cm square electrode plate stacking section, with a 7 cm x 2.4 cm surface as a pressure fixing surface (the outermost electrode plate is the positive electrode plate). Stacked so that).
【図3】角形電極板積層部寸法5cm×7cm×2.4cm の
リチウム二次電池で、7cm×5cmの面を加圧固定面とし
た電池の概略形状(最も外側の電極板が正極板となるよ
うに積層)。[Fig. 3] Schematic shape of a lithium secondary battery with 5 cm x 7 cm x 2.4 cm square electrode plate stacking part, with a 7 cm x 5 cm surface as a pressure fixing surface (the outermost electrode plate is the positive electrode plate). Laminated so that).
【図4】角形電極板積層部寸法5cm×7cm×2.4cmの
リチウム二次電池で、5cm×2.4cmの面を加圧固定面と
した電池の概略形状(最も外側の電極板が負極板になる
ように積層)。[Fig. 4] Schematic shape of a lithium secondary battery with square electrode plate stacking dimensions of 5 cm x 7 cm x 2.4 cm, with a 5 cm x 2.4 cm surface as a pressure fixing surface (the outermost electrode plate is the negative electrode plate). Stacked so that).
【図5】角形電極板積層部寸法5cm×7cm×2.4cmの
リチウム二次電池で、5cm×2.4cmの面を加圧固定面と
し、正極板1枚を負極板2枚ではさんだ電極体を積層し
た電池の概略形状(最も外側の電極板は負極板)。[Fig. 5] A lithium secondary battery with 5 cm x 7 cm x 2.4 cm square electrode plate stacking section, the 5 cm x 2.4 cm surface is the pressure fixing surface, and one positive electrode plate is sandwiched between two negative electrode plates. Schematic shape of a stacked battery (the outermost electrode plate is the negative electrode plate).
【図6】角形電極板積層部寸法5cm×7cm×2.4cmの
リチウム二次電池で、5cm×2.4cmの面を加圧固定面と
し、負極板1枚を正極板2枚ではさんだ電極体を積層し
た電池の概略形状(最も外側の電極板は正極板)。[Figure 6] Rectangular electrode plate stacking section: A lithium secondary battery with dimensions of 5 cm x 7 cm x 2.4 cm, a 5 cm x 2.4 cm surface is the pressure fixing surface, and one negative electrode plate is sandwiched between two positive electrode plates. Schematic shape of a stacked battery (the outermost electrode plate is the positive electrode plate).
【図7】図5の負極電極板の形状概略。FIG. 7 is a schematic shape of the negative electrode plate of FIG.
【図8】角形電極板積層部寸法5cm×7cm×2.4cmの
リチウム二次電池で、5cm×2.4cmの面を加圧固定面と
し、加圧固定板をセラミックス製とした電池の概略形状
(最も外側の電極板は正極板)。[Fig. 8] Schematic shape of a lithium secondary battery with rectangular electrode plate stacking dimensions of 5 cm x 7 cm x 2.4 cm, with a 5 cm x 2.4 cm surface as a pressure fixing surface, and a pressure fixing plate made of ceramics. (The outermost electrode plate is the positive electrode plate).
1−A…正極板端子、1−B…負極板端子、1−C…負
極基板露出部、2…電極板固定鋼板、3…セパレータで
被覆された正極板、4…セパレータで被覆された負極
板、5−1〜5−8…電極板固定用ボルトナット、8…
正極板用セパレータ、9…負極板用セパレータ、10…
電極固定用アルミナ板。1-A ... Positive electrode plate terminal, 1-B ... Negative electrode plate terminal, 1-C ... Negative electrode substrate exposed part, 2 ... Electrode plate fixing steel plate, 3 ... Positive electrode plate covered with separator, 4 ... Negative electrode covered with separator Plates, 5-1 to 5-8 ... Bolts and nuts for fixing electrode plates, 8 ...
Separator for positive electrode plate, 9 ... Separator for negative electrode plate, 10 ...
Alumina plate for fixing electrodes.
Claims (4)
非水電解液を主たる構成要素とし、角形板状の該負極板
と該正極板を積層することにより形成される電極板積層
体と該電極板積層体の両端を固定する固定板より構成さ
れる角形積層リチウム二次電池において、形状寸法が縦
Acm,横Bcm,高さCcmの直方体を呈する該電極板積層
体において、A×B,B×C,A×Cで算出される値の
うち最大値を示さない面に対して垂直方向に積層するこ
とを特徴とする角形積層リチウム二次電池。1. An electrode plate laminate comprising a negative electrode and a positive electrode capable of inserting and releasing lithium and a non-aqueous electrolyte as main constituent elements, and an electrode plate laminate formed by stacking the rectangular plate-shaped negative electrode plate and the positive electrode plate. In a prismatic laminated lithium secondary battery composed of fixing plates for fixing both ends of the electrode plate laminated body, in the electrode plate laminated body having a rectangular parallelepiped shape having dimensions of Acm in length, Bcm in width and Ccm in height, A × B, A prismatic laminated lithium secondary battery characterized by being laminated in a direction perpendicular to a surface which does not show the maximum value among the values calculated by B × C and A × C.
の電極板を、充放電時におけるリチウムの挿入脱離によ
る体積変化がより小さい電極板とすることを特徴とする
請求項第1項記載の角形積層リチウム二次電池。2. The electrode plate of the first layer and the electrode plate of the final layer of the electrode plate laminated body are electrode plates having a smaller volume change due to insertion and desorption of lithium during charge and discharge. Item 2. A prismatic laminated lithium secondary battery according to item 1.
変化がより小さい電極板の枚数をN枚,充放電時のリチ
ウムの挿入脱離による体積変化がより大きい電極板の枚
数を2N枚とし、体積変化がより小さい電極板1枚をセ
パレータを介して体積変化のより大きい電極板2枚では
さんだ電極体をN個積層することを特徴とする請求項第
1項記載の角形積層リチウム二次電池。3. The number of electrode plates whose volume change due to lithium insertion / desorption during charging / discharging is N, and the number of electrode plates whose volume change due to lithium insertion / desorption during charging / discharging is greater is 2N. 2. The rectangular laminated lithium battery according to claim 1, wherein N electrode bodies sandwiching one electrode plate having a smaller volume change and two electrode plates having a larger volume change are stacked with a separator interposed therebetween. Next battery.
を用いて作られたことを特徴とする請求項第1〜3項記
載の角形積層リチウム二次電池。4. The prismatic laminated lithium secondary battery according to claim 1, wherein the fixing plate of the electrode plate laminated body is made of a ceramic material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6236393A JPH08102330A (en) | 1994-09-30 | 1994-09-30 | Rectangular laminated lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6236393A JPH08102330A (en) | 1994-09-30 | 1994-09-30 | Rectangular laminated lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08102330A true JPH08102330A (en) | 1996-04-16 |
Family
ID=17000108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6236393A Pending JPH08102330A (en) | 1994-09-30 | 1994-09-30 | Rectangular laminated lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08102330A (en) |
-
1994
- 1994-09-30 JP JP6236393A patent/JPH08102330A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3615491B2 (en) | Non-aqueous electrolyte secondary battery and manufacturing method thereof | |
US8263248B2 (en) | Cell structure for electrochemical devices and method of making same | |
KR101336309B1 (en) | Electrode assembly, battery cell and device comprising the same | |
US7195840B2 (en) | Cell structure for electrochemical devices and method of making same | |
JP4752574B2 (en) | Negative electrode and secondary battery | |
JP4352475B2 (en) | Solid electrolyte secondary battery | |
EP1128450A2 (en) | Electrode connection for battery and methods of producing the same | |
US20130101900A1 (en) | Lithium secondary battery | |
EP2950370A1 (en) | Lithium secondary battery | |
JPH09213338A (en) | Battery and lithium-ion secondary battery | |
JPH09199179A (en) | Lithium ion cell | |
CN106025169B (en) | Electric storage element | |
US20030134186A1 (en) | Non-aqueous electrolyte secondary battery | |
US20120007564A1 (en) | Nonaqueous electrolyte secondary battery and method for charging the same | |
EP3993089B1 (en) | Method for manufacturing electrode on which resistance layer is formed | |
JP6656370B2 (en) | Lithium ion secondary battery and battery pack | |
JP2001068160A (en) | Flat nonaqueous electrolyte secondary battery | |
KR101515672B1 (en) | Electrode assembly including anode and cathod electrode more than 2 and electrochemical device using the same | |
US20030134202A1 (en) | Lithium polymer battery | |
KR101435212B1 (en) | Multilayered-Secondary battery including electrodes with different thickness | |
JP2002251991A (en) | Lithium ion polymer secondary battery and its manufacturing method | |
JPH08102330A (en) | Rectangular laminated lithium secondary battery | |
CN108292752B (en) | Electric storage element | |
JP3246553B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2021077476A (en) | Lithium ion battery |