JPH08101156A - Sensing device for atmospheric gas - Google Patents
Sensing device for atmospheric gasInfo
- Publication number
- JPH08101156A JPH08101156A JP23882094A JP23882094A JPH08101156A JP H08101156 A JPH08101156 A JP H08101156A JP 23882094 A JP23882094 A JP 23882094A JP 23882094 A JP23882094 A JP 23882094A JP H08101156 A JPH08101156 A JP H08101156A
- Authority
- JP
- Japan
- Prior art keywords
- sensor
- atmospheric gas
- temperature
- gas
- currents
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、大気ガス検出装置、よ
り詳細には、大気中に存在する、例えば、窒素、酸素、
アルゴン、二酸化炭素、水蒸気等の大気ガスを検出する
大気ガス検出装置に関する。FIELD OF THE INVENTION The present invention relates to an atmospheric gas detection device, and more particularly, to an atmospheric gas detector such as nitrogen, oxygen,
The present invention relates to an atmospheric gas detection device that detects atmospheric gas such as argon, carbon dioxide, and water vapor.
【0002】[0002]
【従来の技術】従来、白金薄膜抵抗体(なお、以下に白
金薄膜抵抗体をセンサとして用いる場合を例にして説明
するが、本発明におけるセンサは白金薄膜抵抗体に限定
されるものではない)を用いて大気ガスを検出するに
は、特定の大気ガスのみを検出する方法が多く、例え
ば、水蒸気を検出する場合などでは、白金薄膜抵抗体
(以下必要に応じ、抵抗体、或いは温度検出センサ、水
蒸気検出センサ、或いは単にセンサと呼ぶ)が温度及び
水蒸気の双方に反応するため、 (1)温度感度の等しい温度検出センサと水蒸気検出セ
ンサの2つのセンサを利用し、双方の反応量を引き算す
ることにより、残った反応量を基準反応量と比較して水
蒸気量を求める。 (2)温度感度の異なる温度検出センサと水蒸気検出セ
ンサの2つのセンサを利用し、温度検出センサで温度を
検出することにより、水蒸気検出センサの温度に対する
反応量を取り除き、残った水蒸気検出センサの反応量を
基準反応量と比較して水蒸気量を求める。 などの方法を用いているが、(1)では、温度感度の等
しい温度検出センサと水蒸気検出センサを得ることが製
造的に難しい。(2)では、温度検出センサも水蒸気の
影響を受けるので、水蒸気の量によって誤差を生じ、特
に、温度が増すと、水蒸気量が急激に増すので、この影
響を強く受ける。などの欠点があった。2. Description of the Related Art Conventionally, a platinum thin-film resistor (a platinum thin-film resistor will be described below as an example of the sensor, the sensor in the present invention is not limited to the platinum thin-film resistor). In order to detect atmospheric gas using, there are many methods of detecting only specific atmospheric gas. For example, in the case of detecting water vapor, a platinum thin film resistor (hereinafter, if necessary, a resistor or a temperature detection sensor) is used. , A water vapor detection sensor, or simply a sensor) responds to both temperature and water vapor. (1) Use two sensors, a temperature detection sensor and a water vapor detection sensor that have the same temperature sensitivity, and subtract the reaction amount of both. By doing so, the amount of water vapor is obtained by comparing the remaining amount of reaction with the reference amount of reaction. (2) By using two sensors, a temperature detection sensor and a water vapor detection sensor having different temperature sensitivities, and detecting the temperature with the temperature detection sensor, the reaction amount with respect to the temperature of the water vapor detection sensor is removed, and the remaining water vapor detection sensor The amount of water vapor is obtained by comparing the amount of reaction with the reference amount of reaction. However, in (1), it is difficult to manufacture a temperature detection sensor and a water vapor detection sensor having the same temperature sensitivity in terms of manufacturing. In (2), since the temperature detection sensor is also affected by the water vapor, an error occurs depending on the amount of the water vapor, and in particular, when the temperature increases, the water vapor amount rapidly increases, which is strongly affected by this. There were drawbacks such as.
【0003】図3は、電流をパタメータとして、白金薄
膜抵抗体に一定電流を流した時の該抵抗体の端子電圧と
大気中のガスの量或いは大気温度との関係を示した図
で、例として、図3(a)に大気中の水蒸気量と抵抗体
の端子電圧との関係を、図3(b)の大気中のヘリウム
濃度と抵抗体の端子電圧との関係を、図3(c)に大気
温度と抵抗体の端子電圧との関係を示すが、これらの図
から明らかなように、白金薄膜抵抗体に電流を流すと、
大気中のガス濃度又は大気温度を検出することができ
る。FIG. 3 is a diagram showing the relationship between the terminal voltage of the platinum thin film resistor and the amount of gas in the atmosphere or the atmospheric temperature when a constant current is applied to the platinum thin film resistor using the current as a parameter. 3A shows the relationship between the amount of water vapor in the atmosphere and the terminal voltage of the resistor, and FIG. 3B shows the relationship between the helium concentration in the atmosphere and the terminal voltage of the resistor. ) Shows the relationship between the atmospheric temperature and the terminal voltage of the resistor. As is clear from these figures, when a current is applied to the platinum thin film resistor,
The gas concentration in the atmosphere or the atmospheric temperature can be detected.
【0004】[0004]
(1)白金薄膜抵抗体を用いた湿度検出は、抵抗体その
ものが温度にも影響を受けるので、湿度を求める前に、
抵抗体の温度変化分を取り除かなければならなかった。
このため、温度検出と、湿度検出にそれぞれ別個のセン
サを用意しなければならなかった。 (2)温度感度の等しい温度検出センサーと湿度検出セ
ンサを使って、それぞれの出力電圧の差を取れば、温度
変化分が取り除けるので、残った湿度変化分から湿度を
求めるようにしている。ところが、温度感度の等しい温
度検出センサと湿度検出センサを作り込むことは製造的
に難しい。 (3)温度感度が等しくない温度検出センサと湿度検出
センサを使った場合は、最初、温度検出センサで温度を
求め、次にその温度の値を使って、湿度検出センサの温
度影響分を取り除き、残った値から湿度を求めるように
している。ところが、温度検出センサは、湿度が加わる
と熱平衡が崩れ、正しい温度が得られない。この傾向
は、高温度になるほど、湿度の絶対量が増すので、影響
を受けやすい。 (4)温度検出を湿度検出センサで行なわせる自己温度
補償方式も考えられているが、この原理は、湿度検出セ
ンサを湿度感度が0になる点の電流に調整することによ
り成り立つものである。しかしながら、湿度検出センサ
の湿度感度を0に調整することが難しく、周囲温度が変
化するとその0点がずれてしまう。(1) In the humidity detection using the platinum thin film resistor, the resistor itself is also affected by the temperature.
The temperature change of the resistor had to be removed.
Therefore, it is necessary to prepare separate sensors for temperature detection and humidity detection. (2) By using the temperature detection sensor and the humidity detection sensor having the same temperature sensitivity, the difference in temperature can be removed by calculating the difference between the output voltages, so that the humidity is obtained from the remaining humidity change. However, it is difficult to manufacture a temperature detection sensor and a humidity detection sensor having the same temperature sensitivity in terms of manufacturing. (3) When using a temperature detection sensor and a humidity detection sensor that have unequal temperature sensitivities, first find the temperature with the temperature detection sensor, and then use that temperature value to remove the temperature effect of the humidity detection sensor. , The humidity is calculated from the remaining value. However, the temperature detection sensor loses its thermal equilibrium when humidity is applied, and a correct temperature cannot be obtained. This tendency is likely to be affected because the absolute amount of humidity increases as the temperature rises. (4) A self-temperature compensation method in which temperature detection is performed by a humidity detection sensor is also considered, but this principle is established by adjusting the current at the point where the humidity sensitivity becomes zero. However, it is difficult to adjust the humidity sensitivity of the humidity detection sensor to zero, and the zero point shifts when the ambient temperature changes.
【0005】[0005]
【課題を解決するための手段】本発明は、上記課題を解
決するために、(1)所定の一定電流を流した時に端子
電圧が周囲ガスに反応して変化するセンサを有し、該セ
ンサに求めたい大気ガスの種類数分、波高値の異なる電
流を印加して各大気ガス量に対するセンサの反応値を推
定式として求めておき、前記センサを求めたい大気ガス
の条件下に置いて前記波高値の異なる電流を印加して前
記センサの反応値を求め、該反応値を前記推定式に代入
してその解を求め、それにより求めたい大気ガスの量を
検出することを特徴としたものであり、更には、(2)
所定の一定電流を流した時に端子電圧が周囲ガスに反応
して変化するセンサを少なくとも求めたい大気ガスの種
類数分有し、各センサに同時に波高値の異なる電流を印
加して各大気ガス量に対するセンサの反応値を推定式と
して求めておき、前記センサを求めたい大気ガスの条件
下に置いて前記波高値の異なる電流を同時に各センサに
印加して各センセの反応値を求め、該反応値を前記推定
式に代入してその解を求め、それにより求めたい大気ガ
スの量を検出すること、更には、(3)所定の一定電流
を流した時に端子電圧が周囲ガスに反応して変化する単
一のセンサを有し、求めたい大気ガスが1種類である場
合に、該センサの周囲温度に反応する性質を利用して、
該センサに波高値の異なる電流を2回印加して当該大気
ガス及び周囲温度に対する反応値を推定値として求めて
おき、前記センサを求めたい大気ガスの条件下において
前記波高値の異なる電流を印加して反応値を求め、その
反応値を前記推定式に代入してその解を求め、それより
前記大気ガスの量を求めることを特徴としたものであ
る。In order to solve the above-mentioned problems, the present invention has (1) a sensor having a terminal voltage which changes in response to ambient gas when a predetermined constant current is passed through the sensor. Depending on the number of kinds of atmospheric gas desired to be obtained, the reaction value of the sensor for each amount of atmospheric gas is applied as an estimation formula by applying currents with different peak values, and the sensor is placed under the conditions of the desired atmospheric gas. Characterizing that the reaction value of the sensor is obtained by applying currents having different peak values, the reaction value is substituted into the estimation formula to obtain the solution, and the amount of atmospheric gas to be obtained is detected thereby. And further (2)
There are at least as many sensors as the atmospheric gas that the terminal voltage changes in response to the ambient gas when a predetermined constant current is applied, and currents with different peak values are applied to each sensor at the same time. The reaction value of the sensor with respect to is obtained as an estimation formula, the sensor is placed under the conditions of the atmospheric gas to be obtained, currents with different peak values are simultaneously applied to each sensor to obtain the reaction value of each sensor, and the reaction The value is substituted into the above estimation formula to obtain the solution, and the amount of the atmospheric gas to be obtained is detected by the solution, and further, (3) the terminal voltage reacts with the ambient gas when a predetermined constant current is applied. When a single sensor that changes is used and only one kind of atmospheric gas is desired, by utilizing the property of the sensor to react to the ambient temperature,
A current having different peak values is applied twice to the sensor to obtain a reaction value with respect to the atmospheric gas and ambient temperature as an estimated value, and the current having different peak values is applied under the conditions of the atmospheric gas for which the sensor is desired. Then, the reaction value is obtained, the reaction value is substituted into the estimation formula to obtain the solution, and the amount of the atmospheric gas is obtained from the solution.
【0006】[0006]
【作用】白金薄膜抵抗体に電流を印加すると温度または
湿度に反応した電圧が発生すること、及び白金薄膜抵抗
体に印加した電流を変化させると、その反応度合いが変
わって、電圧が変化することを利用し、白金薄膜抵抗体
を温度と湿度の2元配置にし、2因子分(温度及び湿
度)の波高値の異なる電流を加え、その場合の電圧変化
分をそれぞれ推定式として求めておき、それらの推定式
に直交性を持たせ、その推定式から未知数を求める(こ
の場合、波高値の異なる電流は湿度検出センサに加えら
れる電流範囲で、且つ反応が得られる電流値であれば、
どのような値でもよい)。このようにすると、湿度検出
センサ1個で、温度または湿度を求めることができ、か
つ、湿度検出を湿度検出センサ1個で行なわせる自己温
度補償方式の難しい湿度感度0点の電流がいらなくな
る。[Function] When a current is applied to the platinum thin film resistor, a voltage is generated in response to temperature or humidity, and when the current applied to the platinum thin film resistor is changed, the degree of reaction changes and the voltage changes. , The platinum thin-film resistors are arranged in two directions of temperature and humidity, currents with different peak values of two factors (temperature and humidity) are added, and the voltage change in that case is obtained as an estimation formula, Give orthogonality to those estimation formulas, and obtain an unknown number from the estimation formula (in this case, the currents with different peak values are in the current range applied to the humidity detection sensor, and if the reaction current value is obtained,
Any value). By doing so, the temperature or humidity can be obtained with one humidity detection sensor, and the current at zero humidity sensitivity, which is difficult for the self-temperature compensation method to perform humidity detection with one humidity detection sensor, is unnecessary.
【0007】[0007]
【実施例】本発明は、白金薄膜抵抗体に電流を印加する
と、窒素、酸素、アルゴン、二酸化炭素、及び水蒸気等
の大気ガスに反応する性質、及ぞその電流の波高値を変
えることにより、反応の度合いが変わる性質を利用し、
予め求めたい大気ガスの種類数分、波高値の異なる電流
を抵抗体に印加し、大気ガスの量に対する抵抗体の反応
値を推定式として求めておき、求めたい大気ガスの条件
下に抵抗体を設置し、前記の波高値の異なる電流を印加
した場合の抵抗体の反応値を、前記の推定式に代入且つ
連立させ、その推定式の解を求めることにより、求めた
い大気ガスの量を直接得るようにしたものである。EXAMPLES The present invention shows that when a current is applied to a platinum thin film resistor, it reacts with atmospheric gases such as nitrogen, oxygen, argon, carbon dioxide, and water vapor, and by changing the peak value of the current, Utilizing the property that the degree of reaction changes,
Currents with different peak values are applied to the resistor for the number of types of atmospheric gas desired in advance, and the reaction value of the resistor with respect to the amount of atmospheric gas is obtained as an estimation formula. , The reaction values of the resistors when different currents with different crest values are applied are substituted into the above estimation formula and are made simultaneous, and the solution of the estimation formula is obtained to determine the amount of atmospheric gas to be obtained. It's something I got directly.
【0008】説明を簡明にするために、水蒸気、ヘリウ
ム、温度などを例にして説明すれば、白金薄膜抵抗体に
電流を印加すると、該白金薄膜抵抗体は大気ガス中のこ
れら水蒸気、ヘリウムの濃度または温度に対して図3に
示したような特性を示す。このことから、大気ガスの量
または温度を多元配置し、推定式に直交性を持たせ、そ
れぞれの推定式を連立させれば、大気ガス(水蒸気、ヘ
リウム)の量または温度を求めることができることにな
る。ここでは、水蒸気と温度の2変数の次数を1次式に
した(式1)及び(式2)に示すチェビシェフの直交多
項式を用いて推定式を求める例について説明する。To simplify the explanation, water vapor, helium, temperature, etc. will be described as an example. When a current is applied to the platinum thin film resistor, the platinum thin film resistor will show the vapor and helium in the atmospheric gas. It exhibits the characteristics as shown in FIG. 3 with respect to the concentration or the temperature. From this, it is possible to obtain the amount or temperature of atmospheric gas (water vapor, helium) by arranging the amount or temperature of atmospheric gas in multiple ways, giving orthogonality to the estimation formulas, and connecting the respective estimation formulas simultaneously. become. Here, an example will be described in which the Chebyshev orthogonal polynomials shown in (Equation 1) and (Equation 2) in which the orders of the two variables of water vapor and temperature are made linear are used to obtain the estimation equation.
【0009】[0009]
【数1】 [Equation 1]
【0010】ここで、I1,I2:抵抗体に印加する電流
[A] V1,V2:I1及びI2における抵抗体の端子電圧[V] dH :水蒸気量の変化分、H−Hb[g/m3] H :水蒸気量[g/m2] Hb:水蒸気量の平均値[g/m3] dT :温度の変化分、T−Tb[℃] T :温度[℃] Tb:温度の平均値[℃] m1:I1,Hb及びTbにおける抵抗体の端子電圧[V] h1:I1におけるHの1次式の係数[v]/[g/
m3] t1:I1におけるTの1次式の係数[v]/[℃] m2:I2,Hb及びTbにおける抵抗体の端子電圧[V] h2:I2におけるHの1次式の係数[V]/[g/
m3] t2:I2におけるTの1次式の係数[V]/[℃] 係数m1,h1,t1,m2,h2及びt2は、数学の公式集など
に記載されているチェビシェフの直交多項式の表などに
より、簡単に求めることができる。これにより、V1及
びV2を与えればdH及びdTを求めることができることに
なる。Here, I 1, I 2 : current applied to the resistor [A] V 1, V 2 : terminal voltage of the resistor at I 1 and I 2 [V] dH: change of water vapor amount, H -H b [g / m 3 ] H: Water vapor amount [g / m 2 ] H b : Average value of water vapor amount [g / m 3 ] dT: Change in temperature, T−T b [° C.] T: Temperature [° C.] T b : average value of temperature [° C.] m 1 : terminal voltage of the resistor at I 1, H b and T b [V] h 1 : coefficient of linear equation [v] / of H at I 1 [G /
m 3 ] t 1 : coefficient [v] / [° C.] of the linear expression of T at I 1 m 2 : terminal voltage of the resistor at I 2, H b and T b [V] h 2 : H at I 2 Coefficient of linear equation [V] / [g /
m 3 ] t 2 : The coefficient [V] / [° C.] of the linear expression of T in I 2 The coefficients m 1, h 1, t 1, m 2, h 2 and t 2 are described in mathematical formulas, etc. It can be easily obtained from the table of Chebyshev's orthogonal polynomials. As a result, dH and dT can be obtained by giving V 1 and V 2 .
【0011】図1は、本発明による大気ガス検出装置の
一実施例として、前述の(式1)及び(式2)を用いた
水蒸気と温度を求めるための検出回路の例を説明するた
めの図で、図中、I1〜Inは定電流回路(及び定電
流)、Rsは白金薄膜抵抗体、CHは求めたい環境下、
A/Dはアナログ/ディジタル変換回路、ALUは演算
回路、DISPは表示装置、CONTは制御回路であ
る。FIG. 1 is a diagram for explaining an example of a detection circuit for obtaining water vapor and temperature using the above-mentioned (Equation 1) and (Equation 2) as an embodiment of the atmospheric gas detection apparatus according to the present invention. In the figure, in the figure, I 1 to In are constant current circuits (and constant current), Rs is a platinum thin film resistor, CH is the desired environment,
A / D is an analog / digital conversion circuit, ALU is an arithmetic circuit, DISP is a display device, and CONT is a control circuit.
【0012】図1において、まず、白金薄膜抵抗体Rs
を求めたい環境下CHに設置し、次いで、波高値の異な
る電流I1及びI2を順次印加し、この時発生する白金薄
膜抵抗体Rsの端子電圧V1及びV2をアナログ/ディジ
タルコンバーターA/Dを通して演算回路ALUに与え
る。演算回路ALUには、(式3)に示す行列式解法プ
ログラムが組み込まれており、得られた水蒸気量の変化
分dH及び温度の変化分dTに水蒸気の平均値Hb及び温度
の平均値Tbを加えて水蒸気量H及び温度Tを算出す
る。制御回路CONTは電流値を切り換えるためのスイ
ッチSWを作動させると同時に、アナログ/ディジタル
コンバーターA/Dに現われる電圧を順序よく演算回路
ALUに与えるものである。また、表示回路DISP
は、水蒸気量H及び温度Tを表示するものである。以上
の例は、水蒸気と温度の2つの未知数の場合であるが、
3つ以上の場合でも同様の手続きを行なえば、この未知
数を求めることができることになる。In FIG. 1, first, a platinum thin film resistor Rs
In the environment where it is desired to obtain, the currents I 1 and I 2 having different peak values are sequentially applied, and the terminal voltages V 1 and V 2 of the platinum thin film resistor Rs generated at this time are converted into analog / digital converter A. / D to the arithmetic circuit ALU. The arithmetic circuit ALU incorporates the determinant solution program shown in (Equation 3), and the average value H b of water vapor and the average value T of temperature T are included in the obtained amount of change dH of water vapor and amount of change dT of temperature. The amount of water vapor H and the temperature T are calculated by adding b . The control circuit CONT operates the switch SW for switching the current value, and at the same time, supplies the voltage appearing in the analog / digital converter A / D to the arithmetic circuit ALU in order. In addition, the display circuit DISP
Indicates the amount of water vapor H and the temperature T. The above example is for two unknowns, water vapor and temperature,
Even if there are three or more, this unknown can be obtained by performing the same procedure.
【0013】図2は、電流印加方法を説明するための図
で、図2(a),(b)は、検出センサを1個用いた場
合の検出方法を示す図で、これらは、図示のように、波
高値の異なる電流I1,I2を時間をずらせて印加するよ
うにしたものであり、各電流のパルスフ幅は50ms程度
であればよい。また、図2(c)は、大気ガスの種類を
複数個求める場合の図で、このように複数種求める場合
は、検出状態が時間的に遅れ、誤差を招くので、温度検
出センサーを複数個用いこれらに同時に波高値の異なる
電流を印加するようにすれば、高速に大気ガスを検出す
ることができる。FIG. 2 is a diagram for explaining the current application method, and FIGS. 2 (a) and 2 (b) are diagrams showing the detection method when one detection sensor is used. As described above, the currents I 1 and I 2 having different crest values are applied at different times, and the pulse width of each current may be about 50 ms. Further, FIG. 2C is a diagram in the case of obtaining a plurality of types of atmospheric gas, and in the case of obtaining a plurality of types of atmospheric gas in this way, the detection state is delayed in time, which causes an error. If atmospheric currents having different peak values are simultaneously applied to these, atmospheric gas can be detected at high speed.
【0014】[0014]
【発明の効果】以上の説明から明らかなように、請求項
1の発明によると、単一のセンサを用いて、複数種の大
気ガスを周囲温度の影響を設けることなく、検出するこ
とができる。また、請求項2の発明によると、複数個の
センサを用いて同一時間内に全てのセンサの反応値を検
出するようにしているので、大気ガスが時間的に変化し
ているような場合であっても、時間的ずれを生じること
なく、大気ガスを検出することができる。更に、請求項
3の発明によると、求めたい大気ガスが1つであって
も、周囲温度に対する反応を利用することにより、周囲
温度の影響を受けることなく、大気ガスの検出を行うこ
とができる。As is apparent from the above description, according to the first aspect of the invention, a single sensor can be used to detect a plurality of types of atmospheric gases without being affected by ambient temperature. . Further, according to the invention of claim 2, since the reaction values of all the sensors are detected within the same time by using a plurality of sensors, it is possible to detect the case where the atmospheric gas changes with time. Even if there is, the atmospheric gas can be detected without causing a time lag. Further, according to the invention of claim 3, even if the number of the atmospheric gas to be obtained is one, the atmospheric gas can be detected without being affected by the ambient temperature by utilizing the reaction to the ambient temperature. .
【図1】 本発明による大気ガス検出装置の一実施例を
説明するための構成図である。FIG. 1 is a configuration diagram for explaining an embodiment of an atmospheric gas detection device according to the present invention.
【図2】 本発明による大気ガス検出装置に印加する電
流のタイミングを説明するための図である。FIG. 2 is a diagram for explaining the timing of a current applied to the atmospheric gas detection device according to the present invention.
【図3】 本発明に使用するセンサの反応特性の例を示
す図である。FIG. 3 is a diagram showing an example of reaction characteristics of a sensor used in the present invention.
I1〜In…定電流回路、Rs…白金薄膜抵抗体、CH
…周囲雰囲気、A/D…アナログ/ディジタル変換回
路、ALU…演算回路、DISP…表示装置、CONT
…制御回路。I 1 to In ... Constant current circuit, Rs ... Platinum thin film resistor, CH
... ambient atmosphere, A / D ... analog / digital conversion circuit, ALU ... arithmetic circuit, DISP ... display device, CONT
... control circuit.
Claims (3)
周囲ガスに反応して変化するセンサを有し、該センサに
求めたい大気ガスの種類数分、波高値の異なる電流を印
加して各大気ガス量に対するセンサの反応値を推定式と
して求めておき、前記センサを求めたい大気ガスの条件
下に置いて前記波高値の異なる電流を印加して前記セン
サの反応値を求め、該反応値を前記推定式に代入してそ
の解を求め、それにより求めたい大気ガスの量を検出す
ることを特徴とする大気ガス検出装置。1. A sensor having a terminal voltage that changes in response to ambient gas when a predetermined constant current is applied, and currents having different peak values are applied to the sensor by the number of kinds of atmospheric gas desired. The reaction value of the sensor for each atmospheric gas amount is obtained as an estimation formula, the sensor is placed under the conditions of the atmospheric gas desired to obtain the reaction value of the sensor by applying currents with different peak values, and the reaction An atmospheric gas detection device, characterized in that a value is substituted into the estimation formula to obtain a solution thereof, and the amount of atmospheric gas to be obtained is detected by the solution.
周囲ガスに反応して変化するセンサを少なくとも求めた
い大気ガスの種類数分有し、各センサに同時に波高値の
異なる電流を印加して各大気ガス量に対するセンサの反
応値を推定式として求めておき、前記センサを求めたい
大気ガスの条件下に置いて前記波高値の異なる電流を同
時に各センサに印加して各センセの反応値を求め、該反
応値を前記推定式に代入してその解を求め、それにより
求めたい大気ガスの量を検出することを特徴とする大気
ガス検出装置。2. A sensor in which the terminal voltage changes in response to ambient gas when a predetermined constant current is applied is provided for at least as many kinds of atmospheric gases as desired, and currents having different peak values are simultaneously applied to each sensor. Then, the reaction value of the sensor for each atmospheric gas amount is obtained as an estimation formula, and the sensor is placed under the condition of the atmospheric gas desired to be obtained, and the currents having different peak values are simultaneously applied to the respective sensors to obtain the reaction value of each sensor. And the reaction value is substituted into the estimation formula to obtain a solution thereof, and the amount of the atmospheric gas desired to be obtained is detected thereby.
周囲ガスに反応して変化する単一のセンサを有し、求め
たい大気ガスが1種類である場合に、該センサの周囲温
度に反応する性質を利用して、該センサに波高値の異な
る電流を2回印加して当該大気ガス及び周囲温度に対す
る反応値を推定値として求めておき、前記センサを求め
たい大気ガスの条件下において前記波高値の異なる電流
を印加して反応値を求め、その反応値を前記推定式に代
入してその解を求め、それより前記大気ガスの量を求め
ることを特徴とする大気ガス検出装置。3. An ambient temperature of a sensor, which has a single sensor whose terminal voltage changes in response to an ambient gas when a predetermined constant current is applied, and which has only one type of atmospheric gas to be obtained. Utilizing the property of reacting, currents having different peak values are applied twice to the sensor, and a reaction value with respect to the atmospheric gas and ambient temperature is obtained as an estimated value, and the sensor is measured under the atmospheric gas conditions. An atmospheric gas detection device, characterized in that a reaction value is obtained by applying currents having different peak values, the reaction value is substituted into the estimation formula to obtain a solution thereof, and the amount of the atmospheric gas is obtained therefrom.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23882094A JP3321315B2 (en) | 1994-10-03 | 1994-10-03 | Atmospheric gas detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23882094A JP3321315B2 (en) | 1994-10-03 | 1994-10-03 | Atmospheric gas detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08101156A true JPH08101156A (en) | 1996-04-16 |
JP3321315B2 JP3321315B2 (en) | 2002-09-03 |
Family
ID=17035771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23882094A Expired - Fee Related JP3321315B2 (en) | 1994-10-03 | 1994-10-03 | Atmospheric gas detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3321315B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004354210A (en) * | 2003-05-29 | 2004-12-16 | Matsushita Electric Ind Co Ltd | Gas sensor, fuel cell system using same, and automobile using same |
WO2006095719A1 (en) * | 2005-03-08 | 2006-09-14 | Matsushita Electric Industrial Co., Ltd. | Gas sensor |
US7360396B2 (en) | 2004-04-15 | 2008-04-22 | Matsushita Electric Industrial Co., Ltd. | Gas sensor and fuel cell system and automobile employing the same |
JP2016170161A (en) * | 2015-03-12 | 2016-09-23 | Tdk株式会社 | Thermal conductivity gas sensor |
-
1994
- 1994-10-03 JP JP23882094A patent/JP3321315B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004354210A (en) * | 2003-05-29 | 2004-12-16 | Matsushita Electric Ind Co Ltd | Gas sensor, fuel cell system using same, and automobile using same |
EP1510814A1 (en) * | 2003-05-29 | 2005-03-02 | Matsushita Electric Industrial Co., Ltd. | Gas sensor, fuel cell system employing it, and automobile |
US7058518B2 (en) | 2003-05-29 | 2006-06-06 | Matsushita Electric Industrial Co., Ltd. | Gas sensor, fuel cell system therewith, and automobile therewith |
EP1510814A4 (en) * | 2003-05-29 | 2008-06-25 | Matsushita Electric Ind Co Ltd | GAS DETECTOR, FUEL CELL SYSTEM USING SAME AND AUTOMOBILE |
US7360396B2 (en) | 2004-04-15 | 2008-04-22 | Matsushita Electric Industrial Co., Ltd. | Gas sensor and fuel cell system and automobile employing the same |
CN100427938C (en) * | 2004-04-15 | 2008-10-22 | 松下电器产业株式会社 | Gas sensor and fuel cell system and automobile employing the same |
WO2006095719A1 (en) * | 2005-03-08 | 2006-09-14 | Matsushita Electric Industrial Co., Ltd. | Gas sensor |
JP2006250535A (en) * | 2005-03-08 | 2006-09-21 | Matsushita Electric Ind Co Ltd | Gas sensor |
US7631537B2 (en) | 2005-03-08 | 2009-12-15 | Panasonic Corporation | Gas sensor |
JP4692026B2 (en) * | 2005-03-08 | 2011-06-01 | パナソニック株式会社 | Gas sensor |
JP2016170161A (en) * | 2015-03-12 | 2016-09-23 | Tdk株式会社 | Thermal conductivity gas sensor |
Also Published As
Publication number | Publication date |
---|---|
JP3321315B2 (en) | 2002-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001201478A (en) | Measuring method and measuring system for humidity sensor or gas concentration sensor | |
US10451575B2 (en) | Gas measurement device and measurement method thereof | |
JP2810541B2 (en) | Lambda sensor internal resistance measurement circuit | |
JP2000088891A (en) | Bridge circuit and detector using the same | |
WO2003029759A1 (en) | Flow rate measuring instrument | |
JP3321315B2 (en) | Atmospheric gas detector | |
JP2946400B2 (en) | Heating resistor temperature control circuit | |
JP2010085339A (en) | Zero point adjustment method of gas sensor using contact combustion type gas detection element | |
JP3300110B2 (en) | Gas detector | |
JPH0564762U (en) | Gas detector | |
US20170131250A1 (en) | Device and method for detecting a gas component | |
JPH07260730A (en) | Environment sensor output correction device | |
JP2007285849A (en) | Gas concentration detector | |
JPH08105803A (en) | Method and apparatus for measuring temperature and moisture | |
JPH0829370A (en) | Thermal-conductivity moisture sensor | |
JP2010256172A (en) | Gas detection device and temperature detection method for gas detection device | |
JP2741569B2 (en) | Measuring device that compensates temperature dependency of chemical sensor | |
JP5511120B2 (en) | Gas concentration detector | |
JP2001083019A (en) | Temperature measurement apparatus | |
JPH09229891A (en) | Sensor life judgment method | |
JPH06242046A (en) | Temperature correction circuit for gas sensor | |
JP2001272367A (en) | Reaction heat detection type gas sensor | |
JPH09178687A (en) | Gas detector | |
JP2009075021A (en) | Apparatus and method for gas concentration measurement, and program | |
JP2004150836A (en) | Correction method and correction circuit for cold junction compensation in thermocouple input of programmable controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080621 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080621 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20090621 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100621 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20110621 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20110621 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120621 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |