[go: up one dir, main page]

JPH0799979A - New gene, transformant using the same and use thereof - Google Patents

New gene, transformant using the same and use thereof

Info

Publication number
JPH0799979A
JPH0799979A JP5265447A JP26544793A JPH0799979A JP H0799979 A JPH0799979 A JP H0799979A JP 5265447 A JP5265447 A JP 5265447A JP 26544793 A JP26544793 A JP 26544793A JP H0799979 A JPH0799979 A JP H0799979A
Authority
JP
Japan
Prior art keywords
amylase
acid
cdna
resistant
transformant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5265447A
Other languages
Japanese (ja)
Inventor
Toshiteru Oba
俊輝 大場
Shigetoshi Sudo
茂俊 須藤
Akihiro Kaneko
明裕 金子
Gakuzo Tamura
學造 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JOZO SHIGEN KENKYUSHO KK
TAX ADM AGENCY
National Tax Administration Agency
Original Assignee
JOZO SHIGEN KENKYUSHO KK
TAX ADM AGENCY
National Tax Administration Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JOZO SHIGEN KENKYUSHO KK, TAX ADM AGENCY, National Tax Administration Agency filed Critical JOZO SHIGEN KENKYUSHO KK
Priority to JP5265447A priority Critical patent/JPH0799979A/en
Publication of JPH0799979A publication Critical patent/JPH0799979A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:To obtain a new gene encoding alpha-amylase derived from Aspergillus kawachii, providing a large amount of an acid-resistant, thermostable and raw starch hydrolyzing alpha-amylase by gene manipulation, capable of directly producing an alcohol by transducing it into a yeast. CONSTITUTION:A conidium of Aspergillus kawachii IFO 4308 is inoculated into a medium and subjected to rotary shaking culture at 30 deg.C for 120 hours to give a mold. The prepared cell is collected by a filter, frozen with liquid nitrogen and ground and whole RNA is extracted from the ground cell by guanidine thiocyanate method and mRNA is isolated from the whole RNA by using an oligo alphaT column. Then the mRNA is used as a template to synthesize cDNA, a cDNA library is prepared by a conventional method and screened by using a DNA fragment containing part of a gene encoding an acid-resistant alpha-amylase as a probe to select a positive clone and to recover DNA, which is treated with a restriction enzyme to give the objective new gene encoding alpha-amylase having acid resistance, thermostability and raw starch hydrolyzing proprety.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアスペルギルス・カワチ
から得られた新規α−アミラーゼ遺伝子、これを含むベ
クター、そのベクターをアスペルギルス属、又は、サッ
カロミセス・セレビシアエに移入した形質転換体及びそ
の利用に関するものである。
TECHNICAL FIELD The present invention relates to a novel α-amylase gene obtained from Aspergillus kawachi, a vector containing the same, a transformant obtained by transferring the vector into Aspergillus or Saccharomyces cerevisiae, and its use. Is.

【0002】アスペルギルス・カワチの耐酸性α−アミ
ラーゼは、酸性条件下で失活しないα−アミラーゼであ
り、これを産出する遺伝子を含むベクターで形質転換し
たアスペルギルス属やサッカロミセス・セレビシアエを
用いれば酸性条件下で酒類、アルコール等を製造するこ
とができるようになり、発酵工業界に大いに貢献するも
のである。
The acid-resistant α-amylase of Aspergillus kawachi is an α-amylase which is not inactivated under acidic conditions, and if Aspergillus sp. Or Saccharomyces cerevisiae transformed with a vector containing a gene producing this is used. It is now possible to produce alcoholic beverages, alcohols, etc., which greatly contributes to the fermentation industry.

【0003】また、アスペルギルス・カワチの耐酸性α
−アミラーゼは生デンプンを分解する事ができるので、
これを産出する遺伝子を含むベクターで形質転換したア
スペルギルス属やサッカロミセス・セレビシアエを用い
れば生デンプンから酒類、アルコール等を製造すること
ができるようになり、発酵工業界に大いに貢献するもの
である。
Acid resistance α of Aspergillus kawachi
-Because amylase can break down raw starch,
By using Aspergillus or Saccharomyces cerevisiae transformed with a vector containing a gene producing this, it becomes possible to produce alcoholic beverages, alcohols and the like from raw starch, which greatly contributes to the fermentation industry.

【0004】[0004]

【従来の技術及び問題点】現在、清酒醸造に用いられて
いるα−アミラーゼはアスペルギルス・オリゼーの生産
する酵素であって、耐酸性が低く、酵素の安定なpHが
5〜9の範囲であってpH3以下では100%失活す
る。また、生デンプンに対する分解力もない。
2. Description of the Related Art The α-amylase currently used for sake brewing is an enzyme produced by Aspergillus oryzae, has low acid resistance, and has a stable pH in the range of 5-9. When the pH is 3 or less, 100% is deactivated. Also, it has no decomposing power for raw starch.

【0005】一方、焼酎醸造等で広く利用されているア
スペルギルス・カワチの分泌生産するα−アミラーゼは
アスペルギルス・オリゼーのα−アミラーゼ(タカアミ
ラーゼA)に比較して耐熱性及び耐酸性が高く、pH3
以下の酸性域においても反応する。
On the other hand, α-amylase secreted and produced by Aspergillus kawachi, which is widely used in shochu brewing and the like, has higher heat resistance and acid resistance than that of Aspergillus oryzae α-amylase (taka amylase A), and has a pH of 3
It also reacts in the following acidic range.

【0006】また他の種のアスペルギルス属のα−アミ
ラーゼにない顕著な特徴として、アスペルギルス・カワ
チのα−アミラーゼは、生デンプン分解力を有すること
が挙げられ本酵素の焼酎醸造以外の分野への利用に期待
がかけられているのである。
[0006] As a salient feature that is not found in the α-amylases of the genus Aspergillus of other species, the α-amylase of Aspergillus kawachi has the ability to decompose raw starch. It is expected to be used.

【0007】また、これとは別にサッカロミセス・セレ
ビシアエは酒類醸造をはじめとするアルコール発酵に広
く利用されている微生物であるが、α−アミラーゼ生産
能を有しないため、直接デンプンを原料にして、アルコ
ール発酵を行なうことができない。しかし、近年、醸造
工程の簡略化等の目的で直接デンプンを糖化できる酵素
を生産できるサッカロミセス・セレビシアエが求められ
ているが、その目的に叶った株の分離がなされていな
い。
[0007] Separately, Saccharomyces cerevisiae is a microorganism widely used in alcoholic fermentation such as brewing alcohol, but since it does not have the ability to produce α-amylase, it is directly used as a raw material for alcohol production. Fermentation is not possible. However, in recent years, Saccharomyces cerevisiae capable of producing an enzyme capable of directly saccharifying starch for the purpose of simplifying the brewing process has been sought, but a strain satisfying the purpose has not been isolated.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、耐酸
性、耐熱性及び生デンプン分解性を有するα−アミラー
ゼの効率的生産及び効率的アルコールないし酒類醸造を
目的とし、この目的を遺伝子操作によって達成すること
である。
SUMMARY OF THE INVENTION An object of the present invention is to efficiently produce α-amylase having acid resistance, heat resistance and raw starch degrading property and to efficiently brew alcohol or liquor. Is achieved by.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記目的
達成のために鋭意研究の結果、アスペルギルス・カワチ
の耐酸性α−アミラーゼ遺伝子に注目し、アスペルギル
ス・カワチの全mRNAを調製し、これに基づいてcD
NAライブラリーを作成し、その中からアスペルギルス
・カワチの耐酸性α−アミラーゼをコードするクローン
を分離することに成功した。そして、耐酸性α−アミラ
ーゼ遺伝子の塩基配列の決定に成功し、このcDNAを
発現ベクターに連結した後サッカロミセス・セレビシア
エに移入することにより、アスペルギルス・カワチと同
等のα−アミラーゼを生産する形質転換体を得ることに
も成功し、本発明を完成したものである。
[Means for Solving the Problems] As a result of earnest research for achieving the above-mentioned object, the present inventors have focused on the acid-resistant α-amylase gene of Aspergillus kawachi and prepared total mRNA of Aspergillus kawachi, CD based on this
The NA library was prepared, and a clone encoding the acid-resistant α-amylase of Aspergillus kawachi was successfully isolated from it. Then, a transformant that succeeded in determining the nucleotide sequence of the acid-resistant α-amylase gene, ligated this cDNA to an expression vector, and then transferred into Saccharomyces cerevisiae to produce an α-amylase equivalent to Aspergillus kawachi. The present invention has been completed, and the present invention has been completed.

【0010】すなわち本発明は、 (1)配列表の配列番号1で示される配列 を基本的技術思想のひとつとするものであり、更に次の
ような態様を包含するものである。
That is, the present invention (1) has the sequence represented by SEQ ID NO: 1 in the sequence listing as one of the basic technical ideas, and further includes the following aspects.

【0011】(2)アスペルギルス・カワチから単離し
たα−アミラーゼのcDNA配列。 (3)(2)のcDNAを含むサッカロミセス・セレビ
シアエのα−アミラーゼを分泌させるベクター。 (4)(3)のベクターをサッカロミセス・セレビシア
エに移入することによって得られる耐酸性、耐熱性及び
生デンプン分解力を有するα−アミラーゼを分泌する形
質転換体。 (5)(4)の形質転換体を培養することにより耐酸性
α−アミラーゼの製造ないし、効率的アルコール発酵。
(2) cDNA sequence of α-amylase isolated from Aspergillus kawachi. (3) A vector for secreting α-amylase of Saccharomyces cerevisiae, which comprises the cDNA of (2). (4) A transformant which secretes α-amylase having acid resistance, heat resistance and raw starch degrading power, which is obtained by transferring the vector of (3) into Saccharomyces cerevisiae. (5) Production of acid-resistant α-amylase or efficient alcoholic fermentation by culturing the transformant of (4).

【0012】以下、本発明について説明するが、本発明
に用いたmRNAの供与体は、焼酎用白麹菌(アスペル
ギルス・カワチ)であり、具体的には例えばAsper
gillus kawachii(IFO 4308)
である。
The present invention will be described below. The donor of mRNA used in the present invention is Aspergillus kawachi for shochu, and specifically, for example, Asper.
gillus kawachii (IFO 4308)
Is.

【0013】本発明を実施するには、耐酸性α−アミラ
ーゼを高生産する条件にて、アスペルギルス・カワチI
FO 4308株を培養し、全RNAを抽出した後、常
法によりcDNAを合成し、cDNAのジーンライブラ
リーを作成する。
In order to carry out the present invention, Aspergillus kawachi I is produced under conditions that produce a high amount of acid-resistant α-amylase.
The FO 4308 strain is cultured, total RNA is extracted, and then cDNA is synthesized by a conventional method to prepare a cDNA gene library.

【0014】一方、耐酸性α−アミラーゼ精製酵素のペ
プチドシークエンスからN末及び活性中心付近のアミノ
酸配列をもとにプライマーを合成し、PCR法によりプ
ローブを作成、cDNAライブラリーよりスクリーニン
グを行いポジティブクローンを得る。
On the other hand, a primer was synthesized from the peptide sequence of the acid-resistant α-amylase purified enzyme based on the amino acid sequence near the N-terminus and the active center, a probe was prepared by the PCR method, and screening was carried out from a cDNA library to obtain a positive clone. To get

【0015】ポジティブクローンからcDNAを回収
し、cDNAを酵母(S.cerevisiae)にプ
ラスミドベクターにて導入し、形質転換体を得る。そし
てこの形質転換体を各種の用途に利用するのである。
CDNA is recovered from the positive clone, and the cDNA is introduced into yeast (S. cerevisiae) with a plasmid vector to obtain a transformant. And this transformant is utilized for various purposes.

【0016】以下、更に具体的に本発明について説明す
る。
The present invention will be described in more detail below.

【0017】先ず、アスペルギルス・カワチから全mR
NAを抽出し、それに基づいてcDNAライブラリーを
作成するが、その作業は次に記載の方法による。
First, all mR from Aspergillus Kawachi
NA is extracted and a cDNA library is prepared based on the extracted NA, which is performed by the method described below.

【0018】すなわち、デンプンを唯一の炭素源、トリ
プトンを唯一の窒素源とすることにより、α−アミラー
ゼ生産の誘導がかかる培地をpH3.0に調製し、培養
したアスペルギルス・カワチの菌体から実施例で後述す
る方法により全RNAを抽出する。得られた全RNAか
Proc.Natl.Acad.Sci.USA,V
ol.69,1408〜1412(1972)に記載の
方法によりポリA含有RNAをオリゴ(dT)−セファ
ロースを用いて精製し全RNAを得る。この全mRNA
からcDNAをGene,Vol.222,263〜2
69(1983)に記載の方法で合成しScienc
,Vol.222,778〜782(1983)に記
載の方法でファージDNAλgt10に導入し、in
vitroでパッケージングを行なった後cDNAのジ
ーンライブラリーを作成する。
That is, by using starch as a sole carbon source and tryptone as a sole nitrogen source, a medium for inducing α-amylase production was adjusted to pH 3.0, and cultured from Aspergillus kawachi cells. Total RNA is extracted by the method described below in the examples. From the obtained total RNA, Proc. Natl. Acad. Sci. USA , V
ol. 69, 1408-1412 (1972), poly A-containing RNA is purified using oligo (dT) -sepharose to obtain total RNA. This total mRNA
CDNA from Gene , Vol. 222,263-2
69 (1983) and synthesized by the method described in Science.
e , Vol. Was introduced into phage DNAλgt10 by the method described in 222,778~782 (1983), in
After packaging in vitro , a gene library of cDNA is prepared.

【0019】上記で得られたジーンライブラリーから、
当該α−アミラーゼ遺伝子cDNAのクローニングは、
アスペルギルス・カワチの生産する酵素α−アミラーゼ
の部分アミノ酸配列より推定した塩基配列をプライマー
としたPCR法により約0.9Kbpsの塩基配列をプ
ローブに用いたプラークハイブリダイゼーションによっ
て行なう。単離された当該α−アミラーゼ遺伝子cDN
Aに含まれるコーディング領域はアスペルギルス・カワ
チの生産する酵素α−アミラーゼの部分アミノ酸配列を
有していた。
From the gene library obtained above,
Cloning of the α-amylase gene cDNA
It is carried out by plaque hybridization using a base sequence of about 0.9 Kbps as a probe by the PCR method using the base sequence deduced from the partial amino acid sequence of the enzyme α-amylase produced by Aspergillus kawachi as a primer. The isolated α-amylase gene cDNA
The coding region contained in A had a partial amino acid sequence of the enzyme α-amylase produced by Aspergillus kawachi.

【0020】次に得られたアスペルギルス・カワチのα
−アミラーゼ遺伝子のcDNAをサッカロミセス・セレ
ビシアエの発現ベクター、例えば酵母アルコールデヒド
ロゲナーゼ遺伝子(ADH1)プロモーターを持つ酵母
発現ベクターpYCDE1に挿入し、サッカロミセス・
セレビシアエに移入することにより、形質転換体を作成
する。それぞれ形質転換方法としては公知の方法たとえ
J.Bacteriol,Vol.153,163〜
168(1983)に記載された方法あるいはそれに準
じた方法がとられる。
Α of Aspergillus kawachi obtained next
-Inserting the cDNA for the amylase gene into a Saccharomyces cerevisiae expression vector, for example the yeast expression vector pYCDE1 with the yeast alcohol dehydrogenase gene (ADH1) promoter,
A transformant is created by transferring into S. cerevisiae. As transformation methods, known methods such as J. Bacteriol , Vol. 153,163 ~
The method described in 168 (1983) or a method similar thereto is adopted.

【0021】以下、本発明の実施例について述べる。Examples of the present invention will be described below.

【0022】[0022]

【実施例1】 アスペルギルス・カワチのcDNAライブラリーの作
成:
Example 1 Construction of Aspergillus kawachi cDNA Library:

【0023】アスペルギルス・カワチIFO 4308
の分生胞子1白金耳をクエン酸バッファーによりpH
3.0に調製した。デンプン・ペプトン培地(2.0%
スターチ,0.3%NaNO3,0.1%K2HPO4
0.05%KCl,0.05%MgSO4・7H2O,
0.001%FeSO4・7H2O,1.0%トリプト
ン,pH3.0)に接種し、30℃、120時間、回転
振とう培養後、得られた菌体をフィルターで集め、水洗
した。次に、この菌体を予め冷却した乳鉢にガラスビー
ズ(直径約0.5mm)数gと一緒に加え、これに液体
窒素20〜50mlを加え、凍結させ、摩砕した。さら
に同様に液体窒素を加え、摩砕操作をさらに2回繰り返
した後、得られた破砕菌体に6Mグアニジンチオシアネ
ート水溶液10mlを加え、これに等量のフェノールを
添加した後、5分間振とうした。この混合液を1200
0rpm、10分間の冷却遠心にかけ、水層を分取し
た。この水層を等量のフェノールで2回、続けてクロロ
ホルム−フェノール(1:1)で2回処理して、混在す
るタンパク質を除去した後、1/10容の3M酢酸ナト
リウムを添加し、さらに2容の冷エタノールを加えて、
全RNAを凍結乾燥後、水2mlに溶かした。この一連
の操作によって3.5mgの全RNAを得た。
Aspergillus Kawachi IFO 4308
PH of conidiospores of 1 platinum loop with citrate buffer
It was adjusted to 3.0. Starch-peptone medium (2.0%
Starch, 0.3% NaNO 3 , 0.1% K 2 HPO 4 ,
0.05% KCl, 0.05% MgSO 4 · 7H 2 O,
0.001% FeSO 4 .7H 2 O, 1.0% tryptone, pH 3.0) was inoculated and cultivated by rotary shaking at 30 ° C. for 120 hours, and the obtained cells were collected with a filter and washed with water. Next, the bacterial cells were added to a pre-cooled mortar together with several g of glass beads (diameter: about 0.5 mm), and 20 to 50 ml of liquid nitrogen was added thereto, frozen, and ground. Further, liquid nitrogen was added in the same manner, and the grinding operation was repeated twice more. Then, 10 ml of a 6M guanidine thiocyanate aqueous solution was added to the obtained crushed cells, and an equal amount of phenol was added thereto, followed by shaking for 5 minutes. . 1200 this mixture
The mixture was subjected to cooling centrifugation at 0 rpm for 10 minutes to separate the aqueous layer. This aqueous layer was treated twice with an equal amount of phenol and then twice with chloroform-phenol (1: 1) to remove contaminating proteins, and then 1/10 volume of 3M sodium acetate was added. Add 2 volumes of cold ethanol,
Total RNA was lyophilized and then dissolved in 2 ml of water. By this series of operations, 3.5 mg of total RNA was obtained.

【0024】次に、全RNAからmRNAの抽出は以下
の方法で行なった。一般に真核生物のmRNAは3′末
端にポリAを持っている。アスペルギルス・カワチのm
RNAの場合もポリAを持つと考えられるので、オリゴ
dTを固定したカラムを用いて“Molecular
Cloning”pp197〜198,Cold Sp
ring Laboratory(1982)に記載の
方法で行なった。なおオリゴdTカラムはファルマシア
製type7を0.5g用いた。この方法により2mg
の全RNAから10μgのmRNAを得た。
Next, extraction of mRNA from total RNA was performed by the following method. Generally, eukaryotic mRNA has poly A at the 3'end. M of Aspergillus Kawachi
In the case of RNA as well, it is considered to have poly A.
Cloning "pp197-198, Cold Sp
It was performed by the method described in the Ring Laboratory (1982). As the oligo dT column, 0.5 g of type 7 manufactured by Pharmacia was used. 2 mg by this method
10 μg of mRNA was obtained from the total RNA.

【0025】次にこのmRNAからcDNAを以下の方
法により作成した。原理はMol.Celi.Bio
.,Vol.,161〜170(1982)及び
ene,Vol.25,263〜269(1983)に
記載のRNase H法を用い、実際の操作にはcDN
A合成システム・プラス(アマシャム製)を用いた。こ
の一連の操作によって5μgのmRNAから1.5μg
のcDNAを得た。
Next, cDNA was prepared from this mRNA by the following method. The principle is Mol. Celi. Bio
l . , Vol. 2 , 161-170 (1982) and G
ene , Vol. 25, 263-269 (1983), the RNase H method was used, and cDNA was used for the actual operation.
A synthesis system plus (manufactured by Amersham) was used. By this series of operations, 1.5 μg from 5 μg mRNA
CDNA was obtained.

【0026】次に、このcDNAを用いてライブラリー
の作製を以下の方法によって行なった。まず、前述のc
DNA 1μgをEcoRIメチラーゼで処理して、c
DNA鎖内に存在する制限酵素EcoRI切断部位をす
べて、マスキングした。続いて、このcDNAにEco
RIリンカーをT4DNAリガーゼで連結した後、制限
酵素EcoRIで消化し、両末端にEcoRIの粘着末
端を持つcDNAを得た。これらのcDNAをファージ
ベクターλgt10のEcoRI部位につなぎ、in
vitroパッケージングを行なった後、E.coli
NW514にトランスフェクションして、cDNAラ
イブラリー(約20万プラーク)を作製した。なお、こ
のcDNAのクローニングに関する操作はcDNAクロ
ーニングシステムλgt10キット(アマシャム社製)
を用いて行なった。
Next, using this cDNA, a library was prepared by the following method. First, the above-mentioned c
1 μg of DNA was treated with EcoRI methylase and c
All restriction enzyme EcoRI cleavage sites present in the DNA strand were masked. Then, the Eco
After ligating the RI linker with T4 DNA ligase, it was digested with the restriction enzyme EcoRI to obtain cDNA having EcoRI cohesive ends at both ends. These cDNA tie into the EcoRI site of the phage vector λgt10, in
After performing the vitro packaging, E. coli
NW514 was transfected to prepare a cDNA library (about 200,000 plaques). The procedure for cloning this cDNA is the cDNA cloning system λgt10 kit (manufactured by Amersham).
Was performed using.

【0027】[0027]

【実施例2】 cDNAライブラリーからアスペルギルス・カワチの耐
酸性α−アミラーゼ(AAA)cDNAのクローニン
グ:
Example 2 Cloning of Aspergillus kawachi acid-resistant α-amylase (AAA) cDNA from a cDNA library:

【0028】実施例1に記載のcDNAライブラリーに
保存されたファージのプラークを形成後、プラークハイ
ブリダイゼーションにより、耐酸性α−アミラーゼのc
DNAを含むクローンの選択を行なった。この一連の操
作は“MolecularCloning”pp.63
−67,Cold Spring HarborLab
oratory(1982)に記載の常法によった。プ
ラークハイブリダイゼーションに用いたプローブは、次
に示すアミノ酸配列から推定される塩基配列を合成して
プライマーとし、cDNAをテンプレートにPCR法に
より作製した。
After forming plaques of the phages stored in the cDNA library described in Example 1, p-hybridization was performed to detect acid-resistant α-amylase c.
Selection of clones containing DNA was performed. This series of operations is described in "Molecular Cloning" pp. 63
-67, Cold Spring HarborLab
According to the usual method described in oratory (1982). The probe used for plaque hybridization was prepared by PCR using the cDNA as a template by synthesizing a base sequence deduced from the amino acid sequence shown below as a primer.

【0029】 5′ 3′ Leu-Ser-Ala-Ala-Glu-Trp-Arg-Thr-Gln 5′ 3′ Ile-Glu-Asn-His-Asp-Asn-Pro-Arg5 ′ 3 ′ Leu-Ser-Ala-Ala-Glu-Trp-Arg-Thr-Gln 5 ′ 3 ′ Ile-Glu-Asn-His-Asp-Asn-Pro-Arg

【0030】この方法により約4500個のプラーク中
から、上記のプローブにハイブリダイゼーションするポ
ジティブなクローン3個を選択し、これをE.coli
のプラスミドベクターpUC118に連結して、pUC
118−AAAcDNAを得た。
By this method, three positive clones which hybridize with the above-mentioned probe were selected from about 4,500 plaques, and these were cloned into E. coli. coli
Ligated into the plasmid vector pUC118 of
118-AAA cDNA was obtained.

【0031】[0031]

【実施例3】 アスペルギルス・カワチの耐酸性α−アミラーゼ(AA
A)cDNAに含まれるコーディング領域のDNA配列
の決定:
Example 3 Acid-resistant α-amylase (AA of Aspergillus kawachi)
A) Determination of the DNA sequence of the coding region contained in the cDNA:

【0032】実施例2に記載のpUC118−AAAc
DNAについてcDNA由来のコーディング領域のDN
A配列を決定するにあたり、pUC118−AAAcD
NAを各種制限酵素処理し、サブクローンを作製した。
このサブクローンをシークエンスすることにより、下記
の表1、表2で示される配列表の配列番号1に示される
DNA配列を得た。この全DNA配列は、2142bp
sであり、Metではじまる671アミノ酸からなるペ
プチドをコードするものである。
PUC118-AAAc described in Example 2
For DNA DN of coding region derived from cDNA
In determining the A sequence, pUC118-AAAcD
NA was treated with various restriction enzymes to prepare subclones.
By sequencing this subclone, the DNA sequence shown in SEQ ID NO: 1 of the sequence listing shown in Tables 1 and 2 below was obtained. The total DNA sequence is 2142 bp
s, which encodes a peptide consisting of 671 amino acids beginning with Met.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【実施例4】 活性アスペルギルス・カワチのα−アミラーゼ(AA)
を生産するサッカロミセス・セレビシアエの作製:
Example 4 Active Aspergillus kawachi α-amylase (AA)
Production of Saccharomyces cerevisiae that produces:

【0036】配列表の配列番号1に示したα−アミラー
ゼのコーディング領域を含む実施例2に記載されたpU
C118−AAAcDNAクローンのcDNAを酵母サ
ッカロミセス・セレビシアエの発現ベクターに連結し、
酵母に移入し、発現させることによりAAAの分泌生産
が可能になる。
PU described in Example 2 containing the coding region for α-amylase shown in SEQ ID NO: 1 of the Sequence Listing
The cDNA of the C118-AAA cDNA clone was ligated to the expression vector of yeast Saccharomyces cerevisiae,
Secretion production of AAA becomes possible by transferring it into yeast and expressing it.

【0037】pUC118−AAAcDNAクローンか
ら制限酵素EcoRIで切り出したcDNA(2.1k
bps)を1%アガロースゲル電気泳動により分取後、
図1に示すように発現ベクターに連結した。使用したベ
クターはMethod inEnzymology,1
01,pp.192〜201(1983)記載のpYC
DE1である。本ベクターは酵母で複製可能な2μDN
A、E.coliのpBR322、標識遺伝子として酵
母TRP1及び酵母のプロモーターとしてアルコール脱
水素酵素遺伝子(ADH1)、ターミネーターとしてチ
トクロームCIの遺伝子(CYC1)で構成されてい
る。異種DNA挿入部位はEcoRI部位である。この
ベクターをEcoRIで処理後、細菌のアルカリフォス
ファターゼを用いて5′末端のリン酸を除去し、これに
AAAのcDNA断片を加えて、T4DNAリガーゼで
連結し、pYEAAを得た。
CDNA cleaved from the pUC118-AAA cDNA clone with the restriction enzyme EcoRI (2.1 k
bps) by 1% agarose gel electrophoresis,
It was ligated to an expression vector as shown in FIG. The vector used was Method in Enzymology, 1
01, pp. PYC described in 192-201 (1983)
It is DE1. This vector is 2μDN capable of replicating in yeast
A, E. E. coli pBR322, yeast TRP1 as a marker gene, alcohol dehydrogenase gene (ADH1) as a yeast promoter, and cytochrome CI gene (CYC1) as a terminator. The heterologous DNA insertion site is the EcoRI site. After treating this vector with EcoRI, the phosphate at the 5'end was removed using bacterial alkaline phosphatase, and the cDNA fragment of AAA was added thereto and ligated with T4 DNA ligase to obtain pYEAA.

【0038】次のこのpYEAAをE.coli HB
101に移入し、常法により大量に精製した。続いて精
製pYEAAをIto等のJ.bacteriol.,
Vol.153,163〜168(1983)記載の方
法に従って酵母宿主DBY746(a trpl−28
9 his 3Δ1 leu 2−3−112 ura
3−52)に導入し、トリプトファン要求性が相補され
たことにより、トリプトファンを含まない培地において
生育可能な形質転換体(A)を得た。この形質転換体を
次に示す組成の合成培地100mlに接種し、30℃、
120時間、振とう培養した。
The following pYEAA was transformed into E. coli HB
101, and was purified in a large amount by a conventional method. Subsequently, the purified pYEAA was added to J. Bacteriol. ,
Vol. 153, 163-168 (1983) according to the method described in yeast host DBY746 (a trpl-28).
9 his 3Δ1 leu 2-3-112 ura
3-52) and complemented with the tryptophan requirement, a transformant (A) capable of growing in a medium containing no tryptophan was obtained. This transformant was inoculated into 100 ml of synthetic medium having the following composition,
Shaking culture was carried out for 120 hours.

【0039】合成培地:2%グルコース、0.67%イ
ーストニトロゲンペース(ディフコ社製)、24mg/
lウラシル、24mg/1L−ヒスチジン、36mg/
1L−ロイシン、pH5.7。
Synthetic medium: 2% glucose, 0.67% yeast nitrogen pace (manufactured by Difco), 24 mg /
Uracil, 24 mg / 1 L-histidine, 36 mg /
1 L-leucine, pH 5.7.

【0040】培養後、3000rpm、10分間の遠心
分離によって集めた菌体を、あらかじめ冷却した乳鉢に
ガラスビーズ(直径約0.5mm)数gと一緒に加え、
これに液体窒素20〜50mlを加え凍結させ、摩砕し
た。さらに同様に液体窒素を加え摩砕操作をさらに2回
繰り返した後、得られた摩砕菌体に0.2M酢酸緩衝液
10mlを加えた。得られた液を15000rpm、1
0分間冷却遠心し、上清を分取した。その上清中のα−
アミラーゼ活性を測定し、下記表3に示した。
After culturing, the bacterial cells collected by centrifugation at 3000 rpm for 10 minutes were added to a pre-cooled mortar together with several g of glass beads (diameter of about 0.5 mm),
Liquid nitrogen (20 to 50 ml) was added to this, and the mixture was frozen and ground. Similarly, liquid nitrogen was added and the milling operation was repeated twice more, and then 10 ml of 0.2 M acetate buffer was added to the resulting milled cells. The obtained liquid is 15000 rpm, 1
The solution was cooled and centrifuged for 0 minutes, and the supernatant was collected. Α- in the supernatant
Amylase activity was measured and is shown in Table 3 below.

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【実施例5】 形質転換体(A)により得られたα−アミラーゼの耐酸
性:実施例4により得られたα−アミラーゼの各pHに
て30℃・3時間保持後のpH安定性を図2に示す。p
H2〜7の範囲で安定であった。
Example 5 Acid Resistance of α-Amylase Obtained from Transformant (A): pH stability of α-amylase obtained in Example 4 after holding at 30 ° C. for 3 hours at each pH is shown. 2 shows. p
It was stable in the range of H2-7.

【0043】[0043]

【実施例6】 形質転換体(A)により得られたα−アミラーゼの耐熱
性:実施例4により得られたα−アミラーゼの各温度に
おける熱安定性を図3に示す。60℃で60分後すくな
くとも80%の残留活性を有していた。
Example 6 Thermostability of α-amylase obtained from transformant (A): The thermostability of α-amylase obtained from Example 4 at each temperature is shown in FIG. After 60 minutes at 60 ° C, it had a residual activity of at least 80%.

【0044】[0044]

【実施例7】 形質転換体(A)により得られたα−アミラーゼの生デ
ンプン分解活性:
Example 7 Raw starch degrading activity of α-amylase obtained by transformant (A):

【0045】実施例4により得られたα−アミラーゼ
(70ユニット/ml)500mlを50mg生デンプ
ンと30℃にて反応させて遊離してくる還元糖量をフェ
ノール硫酸法により測定した。還元糖の生成経時変化を
図4に示す。生デンプンが分解され遊離還元糖の生成が
確認された。
The amount of reducing sugars released by reacting 500 ml of α-amylase (70 units / ml) obtained in Example 4 with 50 mg of raw starch at 30 ° C. was measured by the phenol-sulfuric acid method. The time course of production of reducing sugar is shown in FIG. It was confirmed that raw starch was decomposed and free reducing sugar was produced.

【0046】[0046]

【発明の効果】本発明により、耐酸性α−アミラーゼ遺
伝子をコードする配列がはじめて明らかにされ、しかも
酵母においてこれを発現せしめることに成功した。
Industrial Applicability According to the present invention, the sequence encoding the acid-resistant α-amylase gene was clarified for the first time, and it was successfully expressed in yeast.

【0047】この耐酸性α−アミラーゼは、耐酸性のほ
かに耐熱性及び生デンプン分解性も併有しており、各種
の用途に広く利用することができる。例えば、本遺伝子
で形質転換したサッカロミセス・セレビシアエを用いる
と、酸性条件下で、直接デンプンを原料にして糖化、ア
ルコール発酵を行うことができ、アルコールや酒類製造
の省力化が図られる。
The acid-resistant α-amylase has not only acid resistance but also heat resistance and raw starch degrading property, and can be widely used for various purposes. For example, when Saccharomyces cerevisiae transformed with this gene is used, saccharification and alcohol fermentation can be carried out directly using starch as a raw material under acidic conditions, and labor saving in alcohol and liquor production can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】α−アミラーゼ発現用プラスミドpYEAAの
構築図である。
FIG. 1 is a construction diagram of a plasmid for expressing α-amylase, pYEAA.

【図2】形質転換体により得られたα−アミラーゼのp
H安定性を示す。
[Fig. 2] p of α-amylase obtained by the transformant
H stability is shown.

【図3】形質転換体により得られたα−アミラーゼの熱
安定性を示す。
FIG. 3 shows the thermostability of α-amylase obtained from the transformant.

【図4】形質転換体により得られたα−アミラーゼの生
デンプン分解活性を示す。
FIG. 4 shows the raw starch degrading activity of α-amylase obtained by the transformant.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 //(C12N 15/09 ZNA C12R 1:66) (C12N 1/19 C12R 1:865) (C12N 9/28 C12R 1:865) C12R 1:66) (72)発明者 金子 明裕 東京都北区滝野川1丁目54番18号 株式会 社醸造資源研究所内 (72)発明者 田村 學造 東京都北区滝野川1丁目54番18号 株式会 社醸造資源研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location // (C12N 15/09 ZNA C12R 1:66) (C12N 1/19 C12R 1: 865) (C12N 9/28 C12R 1: 865) C12R 1:66) (72) Inventor Akihiro Kaneko 1-54-18 Takinogawa, Kita-ku, Tokyo Inside Institute for Brewing Resources, Inc. (72) Inventor, Gakuzo Tamura, Kita-ku, Tokyo Takinogawa 1-54-18 Stock Company Brewing Resources Institute

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 配列表の配列番号1に示す塩基配列。1. A base sequence represented by SEQ ID NO: 1 in the sequence listing. 【請求項2】 該塩基配列が、アスペルギルス・カワチ
のα−アミラーゼmRNAから合成したcDNA配列で
あること、を特徴とする請求項1に記載の塩基配列。
2. The base sequence according to claim 1, wherein the base sequence is a cDNA sequence synthesized from α-amylase mRNA of Aspergillus kawachi.
【請求項3】 請求項1又は請求項2に記載の配列を含
んでなる、サッカロミセス・セレビシアエのベクター。
3. A vector of Saccharomyces cerevisiae, which comprises the sequence according to claim 1 or 2.
【請求項4】 請求項3に記載のベクターをサッカロミ
セス・セレビシアエに移入してなる、耐酸性α−アミラ
ーゼ生産能を有する形質転換体。
4. A transformant having the ability to produce an acid-resistant α-amylase, which is obtained by transferring the vector according to claim 3 into Saccharomyces cerevisiae.
【請求項5】 請求項4に記載の形質転換体を培養する
ことを特徴とする耐酸性α−アミラーゼの製造方法。
5. A method for producing an acid-resistant α-amylase, which comprises culturing the transformant according to claim 4.
【請求項6】 α−アミラーゼが、耐酸性、耐熱性及び
生デンプン分解能を有する酵素であること、を特徴とす
る請求項5に記載の方法。
6. The method according to claim 5, wherein the α-amylase is an enzyme having acid resistance, thermostability, and raw starch decomposing ability.
【請求項7】 α−アミラーゼの耐酸性が、pH2〜7
の範囲で安定であり、耐熱性が、60℃で60分後の残
留活性が少なくとも80%であること、を特徴とする請
求項6に記載の方法。
7. The acid resistance of α-amylase is pH 2-7.
7. The method according to claim 6, wherein the method is stable in the range, and has a heat resistance of 60% at 60 ° C. and a residual activity of at least 80%.
JP5265447A 1993-09-30 1993-09-30 New gene, transformant using the same and use thereof Pending JPH0799979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5265447A JPH0799979A (en) 1993-09-30 1993-09-30 New gene, transformant using the same and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5265447A JPH0799979A (en) 1993-09-30 1993-09-30 New gene, transformant using the same and use thereof

Publications (1)

Publication Number Publication Date
JPH0799979A true JPH0799979A (en) 1995-04-18

Family

ID=17417288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5265447A Pending JPH0799979A (en) 1993-09-30 1993-09-30 New gene, transformant using the same and use thereof

Country Status (1)

Country Link
JP (1) JPH0799979A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100415879C (en) * 2005-06-22 2008-09-03 天津科技大学 Acid-resistant and high-temperature-resistant α-amylase and preparation method thereof
US7498159B2 (en) * 2004-05-27 2009-03-03 Genencor International, Inc. Heterologous alpha amylase expression in Aspergillus
US9670509B2 (en) 2003-03-10 2017-06-06 Novozymes A/S Alcohol product processes
CN109679937A (en) * 2019-01-07 2019-04-26 安徽大学 A kind of produced amylolysis enzyme with high specific enzyme activity power, its encoding gene and its application

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9670509B2 (en) 2003-03-10 2017-06-06 Novozymes A/S Alcohol product processes
US7498159B2 (en) * 2004-05-27 2009-03-03 Genencor International, Inc. Heterologous alpha amylase expression in Aspergillus
CN100415879C (en) * 2005-06-22 2008-09-03 天津科技大学 Acid-resistant and high-temperature-resistant α-amylase and preparation method thereof
CN109679937A (en) * 2019-01-07 2019-04-26 安徽大学 A kind of produced amylolysis enzyme with high specific enzyme activity power, its encoding gene and its application
CN109679937B (en) * 2019-01-07 2022-06-07 安徽大学 A kind of raw starch hydrolase with high specific enzyme activity, its encoding gene and application thereof

Similar Documents

Publication Publication Date Title
US4769326A (en) Expression linkers
JP4250716B2 (en) Production of enzymatically active recombinant carboxypeptidase B
JPH0630586B2 (en) Glucoamylase gene
NO840200L (en) GLUCOAMYLASE CDNA.
CN115725524B (en) Carbonyl reductase mutant and application thereof in reduction of cyclopentanedione compounds
JPS61141890A (en) Production of alcohol
GB2175590A (en) Process for the isolation of fermentation products
CN110229804A (en) A kind of limonene synzyme SynLS1 and its application
JPS63133984A (en) Starch hydrolase producing bacteria formed by recombinant dna technique and its use in fermentation method
JPH09507742A (en) Glucoamylase promoter obtained from Neurospora crassa and its use in the production of heterologous polypeptides
JPH0799979A (en) New gene, transformant using the same and use thereof
JP4526638B2 (en) High protein expression system
JPS60141292A (en) A plasmid vector for expressing a protein in a microorganism by cloning, containing a promoter for expressing β-glucosidase in at least yeast; a microorganism containing the same; a fermentation method and the enzyme obtained
CN115141763B (en) A yeast engineered strain with high-efficiency exocytosis protein and its construction method and application
EP0208706A1 (en) Dna sequence useful for the production and secretion from yeast of peptides and proteins
JPH02117385A (en) Plasmid vector for gene destruction or gene replacement, transformant therefrom and its use
CN107988191B (en) A kind of low temperature acid protease and its encoding gene and application
CN100537754C (en) A kind of S-adenosylmethionine is produced the structure and the large scale fermentation of bacterial strain
JP3759794B2 (en) Novel gene, vector, transformant using the same, and use thereof
JP2003164284A (en) Novel endoglucanase and endoglucanase gene
JPH11313683A (en) New xylosidase gene, vector, transformant using the same and its use
JP3544877B2 (en) Method for producing S-hydroxynitrile lyase
JPH0533032B2 (en)
JP2685125B2 (en) Novel gene, transformant using the same, and use thereof
JPH0595787A (en) Phosphoglycerate kinase gene promoter, its terminator or/and gene expression unit composed of the same, genome gene of phosphoglycerate kinase and cdna gene

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040105

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20041012