JPH0799389B2 - Magnetic detection device - Google Patents
Magnetic detection deviceInfo
- Publication number
- JPH0799389B2 JPH0799389B2 JP63120065A JP12006588A JPH0799389B2 JP H0799389 B2 JPH0799389 B2 JP H0799389B2 JP 63120065 A JP63120065 A JP 63120065A JP 12006588 A JP12006588 A JP 12006588A JP H0799389 B2 JPH0799389 B2 JP H0799389B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- magnetoresistive element
- magnetic
- detection device
- end side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measuring Magnetic Variables (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> この発明は、超電導材料よりなる磁気抵抗素子を用いて
例えば生体磁気や岩石磁気などによる微弱磁界の測定を
行うことができるようにした磁気検出装置に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention uses a magnetoresistive element made of a superconducting material to detect a weak magnetic field due to, for example, biomagnetism or rock magnetism. Regarding the device.
<従来の技術> このような磁気検出装置としては第6図に示すようなも
のがある。この磁気検出装置は、超電導体が磁界により
超電導状態から電気抵抗を持つ状態に移る現象を利用し
て、磁界強度を抵抗値の変化として検出するものであ
る。すなわち、セラミック超電導体61に電流電極62a,62
bを介して電流を流し、電圧電極63a,63b間の電圧を測る
ことによりこの電圧電極間に作用する磁界をこの電圧電
極間の抵抗の変化として検出するようになっている。こ
の磁界に対する電気抵抗特性を種々の電流値に対して表
わしたのが第7図である。この第7図に示す特性は棒状
のセラミック超電導体の場合の特性例であるが、この特
性は超電導材料の形状,組成,製造工程等により大巾に
変えることができる。<Prior Art> An example of such a magnetic detection device is shown in FIG. This magnetic detection device detects the magnetic field strength as a change in resistance value by utilizing the phenomenon that a superconductor moves from a superconducting state to a state having electric resistance due to a magnetic field. That is, the current electrodes 62a and 62a are connected to the ceramic superconductor 61.
By passing a current through b and measuring the voltage between the voltage electrodes 63a and 63b, the magnetic field acting between the voltage electrodes is detected as a change in resistance between the voltage electrodes. FIG. 7 shows the electric resistance characteristics with respect to this magnetic field for various current values. The characteristic shown in FIG. 7 is an example of the characteristic in the case of a rod-shaped ceramic superconductor, but this characteristic can be widely changed depending on the shape, composition, manufacturing process, etc. of the superconducting material.
このことは、超電導体が棒状や板状の場合だけでなく、
非磁性絶縁板、例えばアルミナ板の上にシルクスクリー
ンやスプレーできわめて薄い超電導体を形成した場合で
も同様で、膜の厚み、電極パターン幅、組成等により磁
界に対する抵抗特性を大巾に変えることができる。This is not only the case where the superconductor is rod-shaped or plate-shaped,
The same applies to the case where an extremely thin superconductor is formed on a non-magnetic insulating plate, such as an alumina plate, by silk screen or spraying, and the resistance characteristics against a magnetic field can be drastically changed depending on the film thickness, electrode pattern width, composition, etc. it can.
第8図はこのような絶縁性基板の上にスクリーン印刷で
超電導体81、電流電極82a,82b、電圧電極83a,83bを成膜
した磁気抵抗素子を有する磁気検出装置を示したもので
ある。この磁気抵抗素子の場合、棒状又は板状の磁気抵
抗素子に比べて磁界に対する抵抗変化を大きくでき、特
性のばらつきを小さくすることができる。また、超電導
体81の組成・粒径・製造工程を変えることにより磁界に
対する抵抗特性を変えることができるのはもちろんであ
る。これらを一定にしても超電導対81の長さl、巾W、
厚さdを変えることにより大巾に特性を変えることがで
きる。FIG. 8 shows a magnetic detection device having a magnetoresistive element in which a superconductor 81, current electrodes 82a and 82b, and voltage electrodes 83a and 83b are formed by screen printing on such an insulating substrate. In the case of this magnetoresistive element, the resistance change with respect to the magnetic field can be made larger than that of the rod-shaped or plate-shaped magnetoresistive element, and the variation in characteristics can be reduced. Further, it is needless to say that the resistance characteristic with respect to the magnetic field can be changed by changing the composition, particle size, and manufacturing process of the superconductor 81. Even if these are kept constant, the length l and width W of the superconducting pair 81,
The characteristics can be widely changed by changing the thickness d.
第9図はこの特性の変わる例を示している。ここで、特
性Cは特性Dに比べて巾W、厚みdを共に大きくした場
合の特性である。但し、磁界を十分大きくした場合、す
なわち超電導状態でなく常電導状態になった場合の抵抗
値が、特性Cの場合と特性Dの場合で同程度の値となる
ように長さlを大きくしている。FIG. 9 shows an example in which this characteristic changes. Here, the characteristic C is a characteristic when both the width W and the thickness d are made larger than the characteristic D. However, if the magnetic field is made sufficiently large, that is, the resistance value in the normal conducting state instead of the superconducting state, the length l is increased so that the characteristic C and the characteristic D have similar values. ing.
このように、上記磁気検出装置では第9図の特性Cや特
性Dに代表されるような抵抗特性が得られる。しかしな
がら、特性Dの場合は磁界Bの小さい領域においては磁
界の変化に対する抵抗Rの変化が大きいため感度が良く
なるが、小さい磁界で抵抗が飽和する為測定可能な磁界
領域が狭くなるという問題がある。一方、特性Cの場合
は磁界が微弱な領域においては抵抗が零の超電導状態で
あるため感度が無く、抵抗が現れる磁界の領域において
は、磁界の広い領域まで抵抗が変化するため、測定可能
な磁界領域を広くとれるが、磁界の変化に対する抵抗の
変化が少なく感度が悪いという問題がある。As described above, in the magnetic detection device, the resistance characteristics represented by the characteristics C and D of FIG. 9 are obtained. However, in the case of the characteristic D, the sensitivity is improved in a region where the magnetic field B is small because the change in the resistance R is large with respect to the change in the magnetic field, but there is a problem that the measurable magnetic field region becomes narrow because the resistance is saturated in a small magnetic field. is there. On the other hand, in the case of the characteristic C, there is no sensitivity in a region where the magnetic field is weak because the resistance is zero, and in the region of the magnetic field where the resistance appears, the resistance changes to a wide region of the magnetic field. Although the magnetic field area can be widened, there is a problem that the resistance changes little with respect to the change of the magnetic field and the sensitivity is poor.
そこで、従来より、超電導材料からなり特性が異なる磁
気抵抗素子を直列にしたもの(特開昭56−34130号公
報)や、超電導材料からなる一体の磁気抵抗素子の巾を
部分的に変えることにより、実質的に特性が異なる磁気
抵抗素子を直列としたもの(特開昭56−34132号公報)
が提案されている。Therefore, conventionally, by making a series connection of magnetoresistive elements made of a superconducting material and having different characteristics (JP-A-56-34130), or by partially changing the width of an integral magnetoresistive element made of a superconducting material, , In which magnetoresistive elements having substantially different characteristics are connected in series (JP-A-56-34132)
Is proposed.
例えば、第9図に示す特性Cの磁気抵抗素子と特性Dの
磁気抵抗素子とを、ほゞ同一の磁界が作用する様に接近
させて設置し、かつ両者を直列に接続すると、磁界に対
する抵抗特性は特性Eのようになる。すなわち、この複
合特性Eは、第9図の特性Cの立上り磁界近辺でわずか
に折曲するが、特性Dに比べて磁界の測定可能領域が広
くなっている。また、特性Cに比べて特に磁界の小さい
領域での感度が良くなっている。したがって、感度がよ
く測定可能領域の広い磁気検出装置が得られる。For example, if the magnetoresistive element having the characteristic C and the magnetoresistive element having the characteristic D shown in FIG. 9 are installed close to each other so that substantially the same magnetic field acts, and if they are connected in series, the resistance to the magnetic field is increased. The characteristic becomes like the characteristic E. That is, the composite characteristic E slightly bends near the rising magnetic field of the characteristic C of FIG. 9, but the measurable region of the magnetic field is wider than that of the characteristic D. Further, compared to the characteristic C, the sensitivity is particularly good in a region where the magnetic field is small. Therefore, it is possible to obtain a magnetic detection device having high sensitivity and a wide measurable region.
<発明が解決しようとする課題> しかしながら、上記従来の磁気抵抗素子は直列にする各
部分の巾およびその比によって特性が大きく左右される
ため、素子設計、作製工程の管理が難しいという問題が
ある。また、抵抗を測定するための電流により発生した
磁界が、検出しようとする磁界分布を乱すという問題が
ある。<Problems to be Solved by the Invention> However, since the characteristics of the above-described conventional magnetoresistive element are largely influenced by the widths and the ratios of the respective parts to be connected in series, there is a problem that it is difficult to control the element design and manufacturing process. . Further, there is a problem that the magnetic field generated by the current for measuring the resistance disturbs the magnetic field distribution to be detected.
そこで、この発明の目的は、高感度で、測定可能な磁界
領域が広い上、簡単に設計および作製でき、検出しよう
とする磁界分布を乱すことがない磁気検出装置を提供す
ることにある。Therefore, an object of the present invention is to provide a magnetic detection device that has high sensitivity, a wide measurable magnetic field region, can be easily designed and manufactured, and does not disturb the magnetic field distribution to be detected.
<課題を解決するための手段> 上記目的を達成するため、請求項1に記載の磁気検出装
置は、超電導材料を有する磁気抵抗素子を用いて磁界を
測定する磁気検出装置において、上記磁気抵抗素子の一
部に、上記磁気抵抗素子に作用する磁界の一部をシール
ドするシールド部材を設けたことを特徴としている。<Means for Solving the Problems> In order to achieve the above object, the magnetic detection device according to claim 1 is a magnetic detection device that measures a magnetic field using a magnetoresistive element having a superconducting material. A shield member for shielding a part of the magnetic field acting on the magnetoresistive element is provided in a part of the above.
また、請求項2に記載の磁気検出装置は、非磁性材料か
らなる基板の面上に超電導材料を有する磁気抵抗素子を
帯状に設けて、上記磁気抵抗素子の一端側と他端側との
間に通電して磁界を測定するようにした磁気検出装置に
おいて、上記磁気抵抗素子は、上記一端側から略渦巻き
状に中心部まで延びる部分と、上記中心部から上記部分
の隙間を通って上記部分と反対回りに上記他端側まで延
びる部分とを有することを特徴としている。Further, in the magnetic detection device according to claim 2, a magnetoresistive element having a superconducting material is provided in a strip shape on the surface of a substrate made of a nonmagnetic material, and the magnetoresistive element is provided between one end side and the other end side of the magnetoresistive element. In the magnetic detection device adapted to measure the magnetic field by energizing the magnetic resistance element, the magnetoresistive element includes a portion extending from the one end side to a central portion in a substantially spiral shape, and the portion passing through a gap between the central portion and the portion. And a portion extending in the opposite direction to the other end side.
また、請求項3に記載の磁気検出装置は、非磁性材料か
らなる基板の面上に超電導材料を有する磁気抵抗素子を
帯状に折曲して設けて、上記磁気抵抗素子の一端側と他
端側との間に通電して磁界を測定するようにした磁気検
出装置において、上記磁気抵抗素子は、上記基板の一方
の面上に、上記一端側を含み、折曲した隣接する部分を
流れる電流の向きが逆方向になるようなパターンを持つ
第1の部分を有するとともに、上記基板の他方の面上
に、上記基板に設けられたスルーホールを通して上記第
1の部分の上記一端側と反対側の端部に連なり、上記第
1の部分のパターンを投影したパターンを持つ第2の部
分を有することを特徴としている。Further, in the magnetic detection device according to claim 3, a magnetoresistive element having a superconducting material is bent and provided in a strip shape on the surface of a substrate made of a nonmagnetic material, and one end side and the other end of the magnetoresistive element are provided. In the magnetic detection device adapted to measure a magnetic field by energizing between the side and the side, the magnetoresistive element includes a current flowing in a bent adjacent portion including the one end side on one surface of the substrate. Has a first portion having a pattern in which the direction of is opposite, and through the through hole provided in the substrate on the other surface of the substrate, the side opposite to the one end side of the first portion. Is characterized by having a second portion which is connected to the end portion of and has a pattern obtained by projecting the pattern of the first portion.
<作用> 請求項1の磁気検出装置では、シールド部材が磁気抵抗
素子の一部に作用する磁界の一部をシールドする。この
結果、磁気抵抗素子がシールドされた部分とシールドさ
れていない部分とで異なる電気抵抗を示す。すなわち、
特性が異なる磁気抵抗素子が直列に接続された状態とな
り、全体の電気抵抗は、シールドされた部分の電気抵抗
とシールドされていない部分の電気抵抗の総和となる。
したがって、棒状の構造のものに比して、磁気検出感度
が良くなり、かつ測定可能な磁界領域が広くなる。しか
も、シールド部材を設けるだけであるから、簡単に設計
および作製される。<Operation> In the magnetic detection device of the first aspect, the shield member shields a part of the magnetic field acting on a part of the magnetoresistive element. As a result, the shielded portion and the unshielded portion of the magnetoresistive element show different electric resistances. That is,
The magnetic resistance elements having different characteristics are connected in series, and the total electric resistance is the sum of the electric resistance of the shielded portion and the electric resistance of the unshielded portion.
Therefore, the magnetic detection sensitivity is improved and the measurable magnetic field region is widened as compared with the rod-shaped structure. Moreover, since only the shield member is provided, it can be easily designed and manufactured.
また、請求項2の磁気検出装置では、磁気抵抗素子が略
渦巻き状のパターンとなっているので、基板面上の比較
的狭い面積に、長い電流経路が形成される。したがっ
て、従来に比して、電気抵抗を大きくでき、磁気検出感
度が良くなる。また、上記磁気抵抗素子の隣接する部分
は互いに電流が反対向きに流れる。したがって、電流に
よって発生した磁界が互いに打消し合い、検出しようと
する磁界分布が乱れない。また、磁界を乱さないので、
測定可能な磁界領域が広くなる。なお、互いに反対向き
に流れる電流経路、つまり、上記磁気抵抗素子の一端側
から中心部までの部分と、上記中心部から他端側までの
部分とが、端部を含む全経路にわたって隣接しているの
で、磁界分布を乱さない効果は極めて大きいものとな
る。Further, in the magnetic detection device of the second aspect, since the magnetoresistive element has a substantially spiral pattern, a long current path is formed in a relatively narrow area on the substrate surface. Therefore, the electric resistance can be increased and the magnetic detection sensitivity can be improved as compared with the conventional case. In addition, currents flow in opposite directions to the adjacent portions of the magnetoresistive element. Therefore, the magnetic fields generated by the currents cancel each other out, and the magnetic field distribution to be detected is not disturbed. Also, because it does not disturb the magnetic field,
The measurable magnetic field area becomes wider. It should be noted that current paths flowing in opposite directions, that is, a portion from one end side of the magnetoresistive element to the central portion and a portion from the central portion to the other end side are adjacent to each other over the entire path including the end portion. Therefore, the effect of not disturbing the magnetic field distribution is extremely large.
また、請求項3の磁気検出装置では、基板の両面で、第
1の部分と第2の部分とがそれぞれ磁気抵抗素子が折曲
したパターンとなっているので、基板面上の比較的狭い
面積に、長い電流経路が形成される。したがって、従来
に比して、電気抵抗を大きくでき、磁気検出感度が良く
なる。また、基板の各面で上記磁気抵抗素子の隣接する
部分は互いに電流が反対向きに流れる。しかも、基板の
一方の面と他方の面とで、第1の部分と第2の部分は互
いに電流が反対向きに流れる。したがって、電流によっ
て発生した磁界が互いに打消し合い、検出しようとする
磁界分布が乱れない。また、磁界を乱さないので、測定
可能な磁界領域が広くなる。なお、互いに反対向きに流
れる電流経路、つまり、第1の部分と第2の部分とが、
端部を含む全経路にわたって隣接しているので、請求項
2の磁気検出装置と同様に、磁界分布を乱さない効果は
極めて大きいものとなる。Further, in the magnetic detection device according to the third aspect, since the magnetoresistive element is bent in each of the first portion and the second portion on both surfaces of the substrate, a relatively small area on the substrate surface. Then, a long current path is formed. Therefore, the electric resistance can be increased and the magnetic detection sensitivity can be improved as compared with the conventional case. In addition, current flows in opposite directions to the adjacent portions of the magnetoresistive element on each surface of the substrate. Moreover, on the one surface and the other surface of the substrate, currents flow in opposite directions to each other in the first portion and the second portion. Therefore, the magnetic fields generated by the currents cancel each other out, and the magnetic field distribution to be detected is not disturbed. In addition, since the magnetic field is not disturbed, the measurable magnetic field region is widened. In addition, the current paths that flow in opposite directions, that is, the first portion and the second portion,
Since they are adjacent to each other over the entire path including the end portions, the effect of not disturbing the magnetic field distribution is extremely large as in the magnetic detection device according to the second aspect.
<実施例> 以下、この発明を図示の実施例により詳細に説明する。<Example> Hereinafter, the present invention will be described in detail with reference to illustrated examples.
第3図は第1実施例の磁気検出装置の概略構成を示して
いる。この磁気検出装置は、非磁性誘電体材料からなる
基板23上に、磁気抵抗素子の一部を構成する超電導体21
を所定のパターンで備えている。この超電導体21の図に
おいて右半分に、超電導体21に作用する磁界の一部をシ
ールドするためのシールド部材24を設けている。このシ
ールド部材24としては磁性体あるいは超電導体を用い、
磁性体の磁気シールド作用あるいは超電導体のマイスナ
ー効果による磁気シールド作用を利用するようにしてい
る。FIG. 3 shows a schematic configuration of the magnetic detection device of the first embodiment. This magnetic detection device includes a superconductor 21 forming a part of a magnetoresistive element on a substrate 23 made of a nonmagnetic dielectric material.
Are provided in a predetermined pattern. A shield member 24 for shielding a part of the magnetic field acting on the superconductor 21 is provided on the right half of the superconductor 21 in the figure. A magnetic material or a superconductor is used as the shield member 24,
The magnetic shield effect of the magnetic substance or the magnetic shield effect of the Meissner effect of the superconductor is used.
第2図に示すように、上記磁気抵抗素子は基板23上に巾
が一定の超電導体21を中央部の一定鎖線をはさんで左右
対称となるように形成し、この超電導体21の両端に抵抗
測定端子22を設けている。超電導体21の全体は同一特性
の超電導体からなっている。As shown in FIG. 2, in the magnetoresistive element, a superconductor 21 having a constant width is formed on a substrate 23 so as to be bilaterally symmetric with respect to a constant chain line in the central portion. A resistance measuring terminal 22 is provided. The entire superconductor 21 is made of superconductors having the same characteristics.
このように構成することにより、シールド部材24でシー
ルドされた超電導体21の部分に作用する磁界が小さくな
り、全体として抵抗特性の異なる2種類の超電導体を直
列に接続した場合と等価となる。例えば非シールド部が
第9図に示す特性Dのような特性を示し、シールド部が
特性Cのような特性を示し、全体として特性Eのような
特性が得られる。すなわち、全体の電気抵抗は、シール
ドされた部分の電気抵抗とシールドされていない部分の
電気抵抗の総和となる。したがって、直列でない構造の
ものに比して、磁気検出感度が良くなり、かつ測定可能
な磁界領域が広くなる。しかも、この磁気検出装置は、
従来構造のものにシールド部材を設けるだけであるか
ら、簡単に設計および作製することができる。With this configuration, the magnetic field acting on the portion of the superconductor 21 shielded by the shield member 24 is reduced, which is equivalent to the case where two types of superconductors having different resistance characteristics are connected in series as a whole. For example, the non-shielded portion exhibits the characteristic like the characteristic D shown in FIG. 9, the shielded portion exhibits the characteristic like C, and the characteristic E as a whole is obtained. That is, the total electric resistance is the sum of the electric resistance of the shielded portion and the electric resistance of the unshielded portion. Therefore, the magnetic detection sensitivity is improved, and the measurable magnetic field region is widened, as compared with the structure that is not in series. Moreover, this magnetic detection device
Since only the shield member is provided in the conventional structure, it can be easily designed and manufactured.
この例では超電導体21に作用する磁界の一部をシールド
するようにしたが、磁性体よりなる疎のメッシュや透磁
率の低い板を基板23の近辺に置いても同等の効果が得ら
れる。この場合、メッシュの網目サイズや材質あるいは
線径、シールド板の厚み等のシールド性の要因となるも
のを変えることにより、測定可能な磁界領域を更に広げ
ることができる。In this example, a part of the magnetic field acting on the superconductor 21 is shielded, but the same effect can be obtained by placing a sparse mesh made of a magnetic material or a plate having low magnetic permeability in the vicinity of the substrate 23. In this case, the measurable magnetic field region can be further widened by changing the mesh size and material of the mesh, the wire diameter, the thickness of the shield plate, and other factors that cause the shielding property.
第2図に示す超電導体21は基板23上に左右対称に形成さ
れた同一特性の超電導体で構成されているが、特性の異
なる2種類の超電導体、または、特性の異なる3種以上
の超電導体で構成されるようにしてもよい。The superconductor 21 shown in FIG. 2 is composed of superconductors of the same characteristic formed symmetrically on the substrate 23. However, two kinds of superconductors having different characteristics or three or more kinds of superconductors having different characteristics are used. It may be configured by the body.
なお、磁気抵抗素子は第1図に示すように構成しても良
い。この磁気抵抗素子は基板13上に巾の異なる種類のパ
ターンの超電導体11を直列に形成し、この超電導体11の
両端に抵抗測定端子12を設けている。この場合は、磁気
抵抗素子の組成、製造工程および厚みは一定であるが、
パターン毎にこれらを変えるようにしてもよい。The magnetoresistive element may be configured as shown in FIG. In this magnetoresistive element, superconductors 11 having patterns of different widths are formed in series on a substrate 13, and resistance measuring terminals 12 are provided at both ends of the superconductor 11. In this case, the composition, manufacturing process and thickness of the magnetoresistive element are constant,
These may be changed for each pattern.
また、第1図や第2図に示す磁気抵抗素子は基板の同一
平面上に単位長さ当りの特性の異なる超電導体を直列に
形成しているが、基板の表面と裏面に異なる特性の超電
導体を形成し、これらの超電導体を直列に接続するよう
にしてもよい。また、特性の異なる超電導体を形成した
小さな基板を複数枚作成し、これらの基板を1枚の基板
の上に接着し、ワイヤーボンディング等で各超電導体を
接続するようにしてもよい。In the magnetoresistive element shown in FIGS. 1 and 2, superconductors having different characteristics per unit length are formed in series on the same plane of the substrate. The body may be formed and these superconductors may be connected in series. Alternatively, a plurality of small substrates on which superconductors having different characteristics are formed may be prepared, these substrates may be bonded onto one substrate, and each superconductor may be connected by wire bonding or the like.
また、第1図や第2図に示す磁気抵抗素子は、超電導体
の両端に抵抗測定端子を設け、この抵抗測定端子が電流
電極と電圧電極を兼用するようにしているが、第8図に
示すように電流電極と電圧電極をそれぞれ別々に設ける
ようにしてもよい。In the magnetoresistive element shown in FIGS. 1 and 2, resistance measuring terminals are provided at both ends of the superconductor, and the resistance measuring terminals also function as current electrodes and voltage electrodes. As shown, the current electrode and the voltage electrode may be provided separately.
以上は基板上に膜状超電導体を生成した磁気抵抗素子の
場合について説明したが、これに限定されるものではな
く、超電導体を棒状,線状あるいは板状にしたものでも
よく、更に膜状のものと棒状のものを組合わせるといっ
たように、異なる形態の超電導体を組合わせたものでも
よい。The above is the description of the case of the magnetoresistive element in which the film-shaped superconductor is generated on the substrate, but the present invention is not limited to this, and the bar-shaped, linear or plate-shaped superconductor may be used. It may be a combination of superconductors of different forms, such as a combination of the ones and the rod-shaped ones.
磁界に対する抵抗特性の異なる複数の磁気抵抗素子を直
列に接続した場合は、例えば第9図に示すように、特性
Cの素子と、特性Dの素子を直列に接続すると特性Eに
示すように特性の改善された素子が得られることは上述
した通りであるが、同一特性の素子、例えば特性Dの素
子を複数個直列に接続した場合にも、磁界の変化に対す
る抵抗の変化が大きくなり、特性が改善されることがわ
かる。When a plurality of magnetoresistive elements having different resistance characteristics with respect to a magnetic field are connected in series, when an element of characteristic C and an element of characteristic D are connected in series as shown in FIG. As described above, it is possible to obtain an element with improved characteristics. However, even when a plurality of elements having the same characteristics, for example, characteristics D, are connected in series, the change in resistance with respect to the change in magnetic field becomes large, and It can be seen that is improved.
この同一特性の素子を直列に接続することは例えば第8
図に示す磁気抵抗素子において巾Wや厚みdを同じに
し、長さlを大きくすることと等価となる。しかしなが
ら、単にlを大きくすると、同一磁界中に置くことが困
難となり測定精度上問題が生じるので、例えば基板上に
超電導材料を折曲して帯状に作成して検出部を小さくま
とめる必要がある。Connecting the elements having the same characteristics in series is, for example, the eighth method.
In the magnetoresistive element shown in the figure, it is equivalent to making the width W and the thickness d the same and increasing the length l. However, if l is simply increased, it is difficult to place it in the same magnetic field, which causes a problem in measurement accuracy. Therefore, for example, it is necessary to fold the superconducting material on the substrate into a strip shape to make the detection unit small.
しかし、このようにした場合、抵抗を測定するために流
した電流により発生した磁界が検出しようとする磁界分
布を乱すことがある。However, in this case, the magnetic field generated by the current passed to measure the resistance may disturb the magnetic field distribution to be detected.
そこで、次に、隣接する部分を流れる電流の向きが逆方
向になるようなパターンを持つ第2、第3実施例の磁気
検出装置を説明する。Therefore, next, the magnetic detection devices of the second and third embodiments having a pattern in which the directions of the currents flowing through the adjacent portions are opposite to each other will be described.
第4図は第2実施例の磁気検出装置に含まれる磁気抵抗
素子を示している。この磁気抵抗素子は、非磁性誘電体
基板(図示せず)の面上に超電導材料からなる検出部41
を折曲して帯状に作成している。図に示すように、検出
部41は、一端側から略渦巻き状に中心部まで延びる部分
と、上記中心部から上記部分の隙間を通って上記部分と
反対回りに他端側まで延びる部分とを有している。検出
部41の両端には端子部42,42を設けている。FIG. 4 shows a magnetoresistive element included in the magnetic detector of the second embodiment. This magnetoresistive element includes a detection unit 41 made of a superconducting material on the surface of a non-magnetic dielectric substrate (not shown).
Is bent to create a strip. As shown in the figure, the detection unit 41 includes a portion that extends from one end side to the center portion in a substantially spiral shape, and a portion that extends from the center portion to the other end side through the gap between the portions and opposite to the above portion. Have Terminal portions 42, 42 are provided at both ends of the detection portion 41.
このように磁気抵抗素子の検出部41が略渦巻き状のパタ
ーンとなっているので、基板面上の比較的狭い面積に、
長い電流経路を形成できる。したがって、従来に比し
て、電気抵抗を大きくでき、磁気検出感度を良くするこ
とができる。また、上記磁気抵抗素子の隣接する部分は
互いに電流が反対向きに流れる。したがって、電流によ
って発生した磁界が互いに打消し合い、検出しようとす
る磁界分布を乱さない。また、磁界を乱さないので、測
定可能な磁界領域を広くすることができる。なお、互い
に反対向きに流れる電流経路が、端部42,42を含む全経
路にわたって隣接しているので、磁界分布を乱さない効
果を極めて大きくすることができる。Since the detection unit 41 of the magnetoresistive element has a substantially spiral pattern in this manner, a relatively small area on the substrate surface
A long current path can be formed. Therefore, the electric resistance can be increased and the magnetic detection sensitivity can be improved as compared with the related art. In addition, currents flow in opposite directions to the adjacent portions of the magnetoresistive element. Therefore, the magnetic fields generated by the currents cancel each other out and do not disturb the magnetic field distribution to be detected. Moreover, since the magnetic field is not disturbed, the measurable magnetic field region can be widened. Since the current paths that flow in opposite directions are adjacent to each other over the entire path including the end portions 42, 42, the effect of not disturbing the magnetic field distribution can be extremely increased.
なお、端子部42が検出部41に比べて巾が広くなっている
のは、端子部42の電流密度を小さくして磁界によって生
じる抵抗を小さくするためのものである。このような構
造にすることにより、端子部42の磁界強度が検出部41の
磁界強度に対する測定値に誤差として入ることはない。The terminal portion 42 is wider than the detecting portion 41 in order to reduce the current density of the terminal portion 42 and reduce the resistance generated by the magnetic field. With such a structure, the magnetic field strength of the terminal portion 42 does not enter the measurement value for the magnetic field strength of the detection portion 41 as an error.
第5図は第3実施例の磁気検出装置に含まれる磁気抵抗
素子を示している。この磁気抵抗素子は、非磁性誘電体
基板(図示せず)の表面に、第1の部分としての実線で
示す超電導体51aを折曲して帯状に作成するとともに、
上記基板の裏面に、第2の部分としての点線で示す超電
導体51bを折曲して帯状に作成している。詳しくは、超
電導体51aのパターンは、第4図の検出部41と同様に、
抵抗測定端子52aが設けられた一端側から略渦巻き状に
中心部まで延びる部分と、上記中心部から上記部分の隙
間を通って上記部分と反対回りに他端側まで延びる部分
とを有している。超電導体51bは、上記基板に設けられ
たスルーホール53を通して上記超電導体51aの他端側
(抵抗測定素子52aと反対側の端部)に連なり、上記超
電導体51aのパターンを投影したパターンを持ってい
る。すなわち、この超電導体51aと51bは作図の都合上ず
らして描かれているが、それぞれ基板の表と裏に基板に
対して対称となるように作成されている。また、上記超
電導体51bの上記超電導体51aの一端側と対称な端部は、
基板の裏面に設けられた抵抗測定端子52bに接続されて
いる。FIG. 5 shows a magnetoresistive element included in the magnetic detector of the third embodiment. In this magnetoresistive element, a superconductor 51a shown by a solid line as a first portion is bent and formed in a strip shape on the surface of a non-magnetic dielectric substrate (not shown), and
On the back surface of the substrate, a superconductor 51b shown by a dotted line as a second portion is bent to form a strip shape. Specifically, the pattern of the superconductor 51a is the same as that of the detection unit 41 of FIG.
The resistance measuring terminal 52a is provided with a portion that extends from one end side to a central portion in a substantially spiral shape, and a portion that extends from the central portion through a gap between the portions to the other end side in the opposite direction to the above portion. There is. The superconductor 51b is connected to the other end side of the superconductor 51a (the end opposite to the resistance measuring element 52a) through a through hole 53 provided in the substrate, and has a pattern in which the pattern of the superconductor 51a is projected. ing. That is, although the superconductors 51a and 51b are drawn with a shift for convenience of drawing, they are made to be symmetrical with respect to the front and back of the substrate, respectively. Further, an end portion of the superconductor 51b, which is symmetrical with one end side of the superconductor 51a,
It is connected to a resistance measuring terminal 52b provided on the back surface of the substrate.
このように、基板の両面で、超電導体51a,51bをそれぞ
れ折曲したパターンとしているので、基板面上の比較的
狭い面積に、長い電流経路を形成できる。したがって、
従来に比して、電気抵抗を大きくでき、磁気検出感度を
良くすることができる。また、基板の各面で上記超電導
体51a,51bの隣接する部分は互いに電流が反対向きに流
れる。しかも、基板の表面と裏面とで、相対する超電導
体51aの部分と超電導体51bの部分は互いに電流が反対向
きに流れる。したがって、電流によって発生した磁界が
互いに打消し合い、検出しようとする磁界分布を乱さな
い。また、磁界を乱さないので、測定可能な磁界領域を
広くすることができる。なお、互いに反対向きに流れる
電流経路が、端部52a,52bを含む全経路にわたって隣接
しているので、第2実施例の磁気検出装置と同様に、磁
界分布を乱さない効果を極めて大きくすることができ
る。In this way, since the superconductors 51a and 51b are bent on both surfaces of the substrate, a long current path can be formed in a relatively narrow area on the substrate surface. Therefore,
The electric resistance can be increased and the magnetic detection sensitivity can be improved as compared with the conventional case. In addition, currents flow in opposite directions to the adjacent portions of the superconductors 51a and 51b on each surface of the substrate. Moreover, on the front surface and the back surface of the substrate, currents flow in opposite directions in the portions of the superconductor 51a and the superconductor 51b which face each other. Therefore, the magnetic fields generated by the currents cancel each other out and do not disturb the magnetic field distribution to be detected. Moreover, since the magnetic field is not disturbed, the measurable magnetic field region can be widened. Since the current paths that flow in the opposite directions are adjacent to each other over the entire path including the end portions 52a and 52b, the effect of not disturbing the magnetic field distribution should be made extremely large as in the magnetic detection device of the second embodiment. You can
このように、第4図や第5図に示すパターンを形成する
ことにより、電流によって発生する磁界の影響をなく
し、測定範囲が広く、感度の良い磁気抵抗素子を得るこ
とができる。By forming the patterns shown in FIGS. 4 and 5 in this manner, it is possible to eliminate the influence of the magnetic field generated by the current and obtain a magnetoresistive element having a wide measurement range and high sensitivity.
<発明の効果> 以上より明らかなように、請求項1の磁気検出装置で
は、シールド部材が磁気抵抗素子の一部に作用する磁界
の一部をシールドするので、磁気抵抗素子がシールドさ
れた部分とシールドされていない部分とで異なる電気抵
抗を示し、この結果、棒状の構造のものに比して、磁気
検出感度を良くし、かつ測定可能な磁界領域を広くする
ことかできる。しかも、シールド部材を設けるだけであ
るから、簡単に設計および作製できる。<Effects of the Invention> As is clear from the above, in the magnetic detection device according to claim 1, since the shield member shields a part of the magnetic field acting on a part of the magnetoresistive element, the shielded part of the magnetoresistive element. And the unshielded portion show different electric resistances. As a result, the magnetic detection sensitivity can be improved and the measurable magnetic field region can be widened as compared with the rod-shaped structure. Moreover, since only the shield member is provided, it can be easily designed and manufactured.
また、請求項2の磁気検出装置では、磁気抵抗素子が略
渦巻き状のパターンとなっているので、基板面上の比較
的狭い面積に、長い電流経路を形成できる。したがっ
て、従来に比して、電気抵抗を大きくでき、磁気検出感
度を良くすることができる。また、上記磁気抵抗素子の
隣接する部分は互いに電流が反対向きに流れるので、電
流によって発生した磁界が互いに打消し合い、検出しよ
うとする磁界分布を乱さない。また、磁界を乱さないの
で、測定可能な磁界領域を広くすることができる。な
お、互いに反対向きに流れる電流経路、つまり、上記磁
気抵抗素子の一端側から中心部までの部分と、上記中心
部から他端側までの部分とが、端部を含む全経路にわた
って隣接しているので、磁界分布を乱さない効果を極め
て大きくすることかできる。Further, in the magnetic detection device of the second aspect, since the magnetoresistive element has a substantially spiral pattern, a long current path can be formed in a relatively narrow area on the substrate surface. Therefore, the electric resistance can be increased and the magnetic detection sensitivity can be improved as compared with the related art. In addition, since currents flow in opposite directions in the adjacent portions of the magnetoresistive element, the magnetic fields generated by the currents cancel each other out, and the magnetic field distribution to be detected is not disturbed. Moreover, since the magnetic field is not disturbed, the measurable magnetic field region can be widened. It should be noted that current paths flowing in opposite directions, that is, a portion from one end side of the magnetoresistive element to the central portion and a portion from the central portion to the other end side are adjacent to each other over the entire path including the end portion. Therefore, the effect of not disturbing the magnetic field distribution can be made extremely large.
また、請求項3の磁気検出装置では、基板の両面で、第
1の部分と第2の部分とがそれぞれ磁気抵抗素子が折曲
したパターンとなっているので、基板面上の比較的狭い
面積に、長い電流経路を形成できる。したがって、従来
に比して、電気抵抗を大きくでき、磁気検出感度を良く
することができる。また、基板の各面で上記磁気抵抗素
子の隣接する部分は互いに電流が反対向きに流れる。し
かも、基板の一方の面と他方の面とで、第1の部分と第
2の部分は互いに電流が反対向きに流れる。したがっ
て、電流によって発生した磁界が互いに打消し合い、検
出しようとする磁界分布を乱さない。また、磁界を乱さ
ないので、測定可能な磁界領域を広くすることができ
る。なお、互いに反対向きに流れる電流経路、つまり、
第1の部分と第2の部分とが、端部を含む全経路にわた
って隣接しているので、請求項2の磁気検出装置と同様
に、磁界分布を乱さない効果を極めて大きくすることが
できる。Further, in the magnetic detection device according to the third aspect, since the magnetoresistive element is bent in each of the first portion and the second portion on both surfaces of the substrate, a relatively small area on the substrate surface. In addition, a long current path can be formed. Therefore, the electric resistance can be increased and the magnetic detection sensitivity can be improved as compared with the related art. In addition, current flows in opposite directions to the adjacent portions of the magnetoresistive element on each surface of the substrate. Moreover, on the one surface and the other surface of the substrate, currents flow in opposite directions to each other in the first portion and the second portion. Therefore, the magnetic fields generated by the currents cancel each other out and do not disturb the magnetic field distribution to be detected. Moreover, since the magnetic field is not disturbed, the measurable magnetic field region can be widened. The current paths that flow in the opposite directions, that is,
Since the first portion and the second portion are adjacent to each other over the entire path including the end portion, the effect of not disturbing the magnetic field distribution can be extremely increased, as in the magnetic detection device according to the second aspect.
第1図は第1実施例の磁気検出装置に含まれる磁気抵抗
素子を示す図、第2図は第1実施例の磁気検出装置に含
まれる磁気抵抗素子を示す図、第3図は第1実施例の磁
気検出装置の概略構成を示す図である。第4図は第2実
施例の磁気検出装置に含まれる磁気抵抗素子を示す図、
第5図は第3実施例の磁気検出装置に含まれる磁気抵抗
素子を示す図である。第6図および第7図はそれぞれ従
来の棒状超電導磁気抵抗素子およびその特性を示す図、
第8図および第9図はそれぞれ従来の膜状超電導磁気抵
抗素子およびその特性を示す図である。 11,21,41,51a,51b……超電導体、 12,22,42,52a,52b……抵抗測定端子、 13,23……基板、24……シールド部材。FIG. 1 is a diagram showing a magnetoresistive element included in the magnetic detector of the first embodiment, FIG. 2 is a diagram showing a magnetoresistive element included in the magnetic detector of the first embodiment, and FIG. It is a figure which shows schematic structure of the magnetic detection apparatus of an Example. FIG. 4 is a diagram showing a magnetoresistive element included in the magnetic detection device of the second embodiment,
FIG. 5 is a diagram showing a magnetoresistive element included in the magnetic detection device of the third embodiment. 6 and 7 are views showing a conventional rod-shaped superconducting magnetoresistive element and its characteristics,
8 and 9 are diagrams showing a conventional film-shaped superconducting magnetoresistive element and its characteristics, respectively. 11,21,41,51a, 51b …… Superconductor, 12,22,42,52a, 52b …… Resistance measuring terminal, 13,23 …… Board, 24 …… Shield member.
Claims (3)
磁界を測定する磁気検出装置において、 上記磁気抵抗素子の一部に、上記磁気抵抗素子に作用す
る磁界の一部をシールドするシールド部材を設けたこと
を特徴とする磁気検出装置。1. A magnetic detection device for measuring a magnetic field using a magnetoresistive element having a superconducting material, wherein a shield member for shielding a part of a magnetic field acting on the magnetoresistive element is provided in a part of the magnetoresistive element. A magnetic detection device characterized by being provided.
料を有する磁気抵抗素子を帯状に設けて、上記磁気抵抗
素子の一端側と他端側との間に通電して磁界を測定する
ようにした磁気検出装置において、 上記磁気抵抗素子は、上記一端側から略渦巻き状に中心
部まで延びる部分と、上記中心部から上記部分の隙間を
通って上記部分と反対回りに上記他端側まで延びる部分
とを有することを特徴とする磁気検出装置。2. A magnetic resistance element having a superconducting material is provided in a strip shape on the surface of a substrate made of a non-magnetic material, and a magnetic field is measured by energizing the magnetic resistance element between one end side and the other end side. In the magnetic detection device configured as described above, the magnetoresistive element includes a portion that extends substantially spirally from the one end side to a central portion, and the other end side that is opposite to the portion through a gap between the central portion and the portion. And a part extending to the magnetic detection device.
料を有する磁気抵抗素子を帯状に折曲して設けて、上記
磁気抵抗素子の一端側と他端側との間に通電して磁界を
測定するようにした磁気検出装置において、 上記磁気抵抗素子は、上記基板の一方の面上に、上記一
端側を含み、折曲した隣接する部分を流れる電流の向き
が逆方向になるようなパターンを持つ第1の部分を有す
るとともに、上記基板の他方の面上に、上記基板に設け
られたスルーホールを通して上記第1の部分の上記一端
側と反対側の端部に連なり、上記第1の部分のパターン
を投影したパターンを持つ第2の部分を有することを特
徴とする磁気検出装置。3. A magnetoresistive element having a superconducting material is bent and provided in a strip shape on a surface of a substrate made of a nonmagnetic material, and an electric current is applied between one end side and the other end side of the magnetoresistive element. In the magnetic detection device configured to measure a magnetic field, the magnetoresistive element includes the one end side on one surface of the substrate, and a direction of a current flowing through a bent adjacent portion is opposite. A first portion having a different pattern, and is connected to an end portion of the first portion opposite to the one end side through a through hole provided in the substrate on the other surface of the substrate. A magnetic detection device having a second portion having a pattern obtained by projecting the pattern of the first portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63120065A JPH0799389B2 (en) | 1988-05-17 | 1988-05-17 | Magnetic detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63120065A JPH0799389B2 (en) | 1988-05-17 | 1988-05-17 | Magnetic detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01291182A JPH01291182A (en) | 1989-11-22 |
JPH0799389B2 true JPH0799389B2 (en) | 1995-10-25 |
Family
ID=14777020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63120065A Expired - Fee Related JPH0799389B2 (en) | 1988-05-17 | 1988-05-17 | Magnetic detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0799389B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6750648B1 (en) | 1997-08-29 | 2004-06-15 | Nec Corporation | Magnetic field detector having a dielectric looped face |
CN114061823B (en) * | 2021-11-16 | 2024-04-02 | 杭州电子科技大学温州研究院有限公司 | Temperature self-compensating high-sensitivity pressure sensor array and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5634130A (en) * | 1979-08-29 | 1981-04-06 | Nec Corp | Element for detecting magnetic field |
JPS5634132A (en) * | 1979-08-29 | 1981-04-06 | Nec Corp | Element for detecting magnetic field |
JPS58108025A (en) * | 1981-12-18 | 1983-06-28 | Victor Co Of Japan Ltd | Magnetoresistance effect type magnetic head |
JPS5917175A (en) * | 1982-07-20 | 1984-01-28 | Aisin Seiki Co Ltd | Detecting element of magnetic field for extremely low temperature |
-
1988
- 1988-05-17 JP JP63120065A patent/JPH0799389B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01291182A (en) | 1989-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0286079B1 (en) | Sensing devices utilizing magneto electric transducers | |
US7495541B2 (en) | Current sensor | |
US3814863A (en) | Internally biased magnetoresistive magnetic transducer | |
US6069476A (en) | Magnetic field sensor having a magnetoresistance bridge with a pair of magnetoresistive elements featuring a plateau effect in their resistance-magnetic field response | |
US7064937B2 (en) | System and method for fixing a direction of magnetization of pinned layers in a magnetic field sensor | |
US7098655B2 (en) | Eddy-current sensor with planar meander exciting coil and spin valve magnetoresistive element for nondestructive testing | |
US7145331B2 (en) | Magnetic sensor having a closed magnetic path formed by soft magnetic films | |
CN108780131B (en) | Balanced magnetic field detection device | |
JPH0897488A (en) | Magnetism detector | |
JP2005502888A (en) | Method and system for improving efficiency of magnetic sensor set and offset strap | |
JP2019516094A (en) | Anisotropic magnetoresistance (AMR) sensor without set / reset device | |
JP2022167857A (en) | current sensor | |
US5923162A (en) | Non-inductive lead path hall effect electrical current sensor | |
US9116197B2 (en) | Integrated interconnect and magnetic-field detector for current sensing | |
JP3058899B2 (en) | Magnetic sensing element | |
JPH0799389B2 (en) | Magnetic detection device | |
JP2545926B2 (en) | Current detector | |
EP4407333A1 (en) | Magnetic sensor and electronic device | |
JPS638531B2 (en) | ||
KR900000980B1 (en) | Angle measuring device and pattern forming method using magnetoresistive element | |
WO2021059751A1 (en) | Magnetic sensor | |
JPH0266479A (en) | Magnetoresistance effect element | |
JPH01227482A (en) | Magneto-resistive element | |
JP2666613B2 (en) | Magnetic sensor | |
JPH06289060A (en) | Current sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |